חדוא חשבון דיפרנציאי 1 א סיכום

53
חדו" א1 אפשטייןכי מרד מר שלאותרצ הה סיכום עורך: רובינשטיין אודיhttp://www.cs.tau.ac.il/~ehudrubi בתאריך עודכן: 30/08/2004

Upload: yakubov-boaz

Post on 20-Nov-2015

57 views

Category:

Documents


19 download

DESCRIPTION

סיכום מלא של חדוא 1 א תל אביב

TRANSCRIPT

  • 1 "

    : http://www.cs.tau.ac.il/~ehudrubi

    30/08/2004:

    http://www.cs.tau.ac.il/~ehudrubi

  • a b

    [a, b]

    a b

    (a, b)

    a b

    [a, b)

    a b

    (a, b]

  • )(A

    A

    x

    AxA

    A

    B

    BA

    A

    B

    cAA

  • BAA BA B

    BA BAA B

    A B

    A - B

  • (X, Y) = { {x}, {x, y} }

    z = (x, y)

    x

    y

    x = Pr1(z)

    y = Pr2(z) (x1, y1)(x2, y2)

    (x3, y3) (x4, y4)

    (x5, y5)y5

    y4y3

    y1y2

    x5x4x3x2x1

    G -

    Pr1(G)

    Pr2(G)

    ),(),( xyyx

  • },,{ 321 aaaA =

    },,{ 321 bbbB =

    =

    ),(),,(),,(),,(),,(),,(),,(),,(),,(

    332313

    323212

    312111

    bababababababababa

    BA

    ABBA nAAA = ...2AAA =

    BBA = )(2PrABA = )(1Pr

  • (A, B, R) (A, B, R) = (A, B, R)A = AB = BR = R

    RyxxRy = ),(

    y5y4y3

    y1

    y2

    x5x4x3x2x1

    R

    AR )(1Pr

    BR )(2Pr

    (A, A, R)

    (A, B, AxB)-

    R-1

  • A BBAf :

  • R -

    zyzx

    yx

    ++

    yzxz

    zyx

    0

  • x y

    z

    R

  • supA AinfA A

    AxAAxA

    infsup

  • . , RA

    :

    . , RA

  • Dedekind

    :

    yxByAxRBA

    BARBA

    z

  • R , :

    .nx>y - n , x>0 - Ryx ,

  • 1][][ + xxx

    [x]

  • .x x V

    x)( )(( )

    )(

    x

    )(x

    )( x

    x

  • Rx

    V(x) x

    x)( )(( )

    vxxVv )()(),( xVwwvxVv

    )()(, 2121 xVvvxVvv

    )()()( yVvwyxVwxVv

    x)( )(

    w

    v

    y

    , " X (V(X X x . X

    .

  • , x x . x

    x)( )( ( ) )(

  • AV- , x V A- x

    x)( )(

    A

    V

    y

    AcAc

    ( )

    .A0- A A AA 0

    . Ac A y .A Ac)0)

    .

    000

    00

    )( BABABABA

    =

  • . A , , A=A0 RA

    x)( )(

    y( )

    z( )

    A

    . .

  • : x A A x AV

    x)( )(

    y( )

    z( )

    A

    V

    A A A

    AA A

  • AA A = Ac A

    . .

  • . A- x , A x

    x )( )( y( ) z( )

    A

    V

    A- A A

    ='A A

    . , x

    RAAA '

    X A V x . AV

    . , A

  • . x

    x -A V x }{xAV =

    .

    . Z- N

    AAA': , A =

  • Weierstrass-Bolzano

    , ). (

    RA

    )(x

    ( )

    A

  • : A R . RAIiiEF = )(

    Ii

    iEA

    A

    )(( ) ( )( )

    E3E2E1

    . F F

    .F A F . A F

    . F- , F- , A- F

  • , , A F

    : , -F (Ei,,Ek) RA

    k

    iiEA

    1=

    . Borel-Lebesgue RA

  • *Nvvn

    l

    *Nvna >

    laal

    n

    n

    = lim .L- an - , an L

    . an

    . an .

  • ) (

    L .

    l( )

  • 0|| lan

    an , :

    00 >*Nvvn > Rl

    l

    0

    *Nvna >

  • ) (

    , A an , , A L , . L-

    RA

    lR

    A

    an

    ( )

    .A L L an

    . A , an Aan lim

  • },{ += RR

    . ) R ( RR

    =++=+)(x

    x

    0>x 0

  • Weierstrass : - , an

    . R

  • . an

    Rl

    knala

    kn

    l

    kna

    na

    ( )

    an .

    Rl

    . Cesaro

    . , ) ( an +)(

    . R. l an , ) ( l an

    . -

    . -

    RnasuplimR

    nainflim

  • : . an

    . nn aa supliminflim =

    .A- A- .A- A- ,

    RA

  • Cauchy ) (Cauchy an . an

    : - 0>

    *Nvvn vm

  • : " ax . x- rn . - a>0 Rx

    nrx aa lim=: , x- rn - rn Rx

    nnnn rrrr aaa = ''

    : - , 0 - nn rr '1' nn rra

    nn rr aa limlim ' =

  • e

    xn

    ne

    nx

    =+

    )1(lim

  • bxxe

    bxxab

    ab

    ==

    ==

    ln

    log

    ccara

    cacacaac

    bb

    br

    b

    bbb

    bbb

    log)/1(logloglog

    loglog)/(logloglog)(log

    ==

    =+=

    xb

    xbx

    xb

    b =

    =log

    )(log

    0)ln(

    ln >=

    =

    xxexe

    x

    x

    0ln

    0log

    >==

    >==

    yyxey

    yyxbyx

    bx

    mxx

    a

    am log

    loglog =

  • f . - A x0 -

    x0 , W l V* x0 :RRAf :RRl

    WxfAVx )(*lxf

    xx=

    )(lim

    0

    l

    (

    (

    W

    x0( )

    V*

    A

  • ) ( . x0 - f - A x0 - RAf :R

  • Cauchy-Bolzano x0 - f . - A x0 -

    : x0 *V RAf :R0>

    AVyx *,

  • Stolz

    x0( )

    A - {x0}

    x1 x2 x3 x4 x5x6

    xn

    )(lim nxfl =

    x0 - f . - A x0 - xn - A - {x0} x0 , f(xn) .

    RAf :R

    Heine l f x0 xn A - {x0} x0 . lxf n )(

  • x0 - . A x0 -

    l f/B - , B x0 - f l . B x0 , :

    RAf :AB

    x0( )

    A

    B

    l

    lxfBxxx

    =

    )(lim0

  • ) ( . A x0 -

    : x0 RAf :lxf

    xx=

    )(lim

    0AB

    lxfBxxx

    =

    )(lim0

    !

  • x0

    )(lim0

    xfxx

    )(lim0

    xfxx +

    ),( 00 xAAx = ),( 00 +=+ xAAx

    : , x0 x0 - f

    )(lim)(lim)(lim000

    xfxfxfxxxxxx +

    ==

  • : )(lim),(lim

    00

    xgxfxxxx

    ( ) )(lim)( 000

    0

    0

    0

    000

    00

    000

    )(lim)(lim

    )(lim)(lim

    ))((lim

    )(lim)(lim))((lim

    ))((lim))((lim

    )(lim)(lim))((lim

    xg

    xx

    xg

    xx

    xx

    xx

    xx

    xxxxxx

    xxxx

    xxxxxx

    xxxfxf

    xgxf

    xgf

    xgxfxfg

    xfxf

    xgxfxgf

    =

    =

    =

    =

    +=+

  • x0 (x0 f .

    : x0 (f(x0 W f RRAf :Ax 0

    WAVf )(

    0x

    )( 0xfW

    V

    AWxfAVf: x0 f A x0 = )}({)( 0

    x0 ) ( f .

    RAf :Ax 0]),(( 0xA ),[ 0 + xA

  • ) ( f x0 f .

    : , x0 RAf :'0 AAx

    )()(lim 00

    xfxfxx

    =

    0x

    )( 0xf

    ) ( f x0 .(f(x0 ) ( ,

    ),[]),(( 00 + xAxA

  • ) ( .

    . (f(A , A f , RA

    RAf : . f , A

  • Darboux

    c

    )(cf

    a b

    )(af)(bf

    . I Darboux I f ) Bolzano( .(f(a)

  • : Ayx , 0>0>
  • Heine .A " f . f RA

    " 1