تصميم مقاطع الخرسانة المسلحة

Upload: abulawaleed

Post on 11-Oct-2015

109 views

Category:

Documents


9 download

DESCRIPTION

مثال لتصميم مقطع خرساني

TRANSCRIPT

  • 1 .gE ,.vinU ainiM-lE ,.tpeD gnE liviC ,deyaS-lE .A rmA /:yB deraperP

    53 \ -1

    53 / bals fo naps trohs = sT . 01

    revoc + bals fo thgiew nwo = daol daeD mc 21 = St emussA . 51.0 + 5.2 * St =

    2/005 2/004 2/002= .2/ 0001

    .2m/.gk 003 = daol eviL

    .2m/t 57.0 = 03.0 + 51.0 + 21.0*5.2 = daol latoT

    : ( )

    y

    xmLRmL

    * =1*

    : erehW .oitaR ytiralugnatceR : R 67.0 ro 78.0 eb dluoc m dna 1m

    78.0 = )1m ro/dna m( 67.0 = )1m ro/dna m(

    .snoitcerid Y dna X ni snoisnemid bals eht era yL dna xL

    2> R 2< R

    : : 2/ 003 -1

    R = 0.050.51 2 dnA

    0.53R

    =

    . ffohsarG 2/ 003< -2

    R =+ 41 dnA R

    11

    R =+ 4

    .sucraM -3

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 2

    R 1.0 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.0 0.395 0.473 0.543 0.606 0.660 0.705 0.745 0.778 0.806 0.830 0.849 0.395 0.323 0.262 0.212 0.172 0.140 0.113 0.093 0.077 0.63 0.055

    1 .

    Design of R.C. sections:

    d`

    d

    b

    t

    Fc

    Fs / n

    CsCc

    T

    Yct

    c

    s

    z

    Notations:

    b Breadth of the rectangular section

    t Total depth of the cross section

    d Theoretical depth of cross section, from the center of tension steel to the outside fiber of the compression zone.

    d` Distance from compression steel to the outside fiber of the compression zone.

    z Distance from the Neutral Axis to the outside fiber of the compression zone.

    YCT Arm of resisting moment of internal force = distance between the compression and tension internal forces.

    AS Cross sectional area of tension steel

    AS` Cross sectional area of compression steel Notations, Cont.

    M External moment acting on the section

    CC Compression force on concrete

    CS Compression force on compression steel

    C = CS + CC = Total compression force on the section

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 3

    T Tensile force on tension steel

    C Strain of outside fibers of concrete

    S Strain of tension steel

    FC Maximum compressive stress of concrete in compression

    FS Tensile stress of steel in tension

    FS` Compressive stress of steel in compression

    n Modular ratio =

    C

    S

    EE

    , where E is the modulus of elasticity

    (zeta) = dz

    (beta) = dd`

    r =

    C

    S

    FF

    Ratio of tension steel reinforcement in the cross section

    = dbAS.

    ` Ratio of compression steel reinforcement in the cross

    section = dbAS.

    `

    Assumptions:

    1- .

    2- . (Strain) .

    zdz=S

    C

    .. for the elastic stage . (1)

    and EconstStrainStress == .

    SS EF =

    S and C

    C EF =

    C

    C S )1(

  • 4 .gE ,.vinU ainiM-lE ,.tpeD gnE liviC ,deyaS-lE .A rmA /:yB deraperP

    dzz

    EFE

    F

    S

    S

    C

    C

    dz ro =z

    EE

    FF

    C

    S

    S

    C

    .=

    dzz

    FF

    nS

    C

    )2( . .=

    A.N ( 2)

    dzz

    nF

    )3( . . = CS F

    (3) SA . SF = T T

    zA CSznA CS) ( ro = ... TnFdz

    )4( . = ... TFdz . SA.n SA

    r dna d . = zFF

    C

    = S (2)

    .

    -dd.-d

    rn

    1 ==

    )r + n( = n r. = .n n r. = )-1(n

    nrn )5( . =+

    1 esaC -1 :ylno leets noisnet htiw noitces ralugnatceR .SA dna ,d ,b ,M : neviG .CF dna ,SF : deriuqeR

    .

    :

    dohtem noitceS demrofsnarT -1 dohtem secroF lanretnI -2

    -1 dohtem noitces demrofsnarT -2

  • 5 .gE ,.vinU ainiM-lE ,.tpeD gnE liviC ,deyaS-lE .A rmA /:yB deraperP

    :

    `d

    d

    b

    t

    cF

    sF

    z

    sA.n

    Ytc

    : SA.n = etercnoc fo aera tnelaviuqE

    = )lairetam eno fo edam saw noitces eht fi sa( noitces eht fo aera lautriv ehT .SA.n + t.b =

    z :

    0.0 = A.N eht tuoba saera fo M )z-d( SA.n = )2/z( z.b 0.0 = d SA.n z )SA.n( + 2z )2/b(

    : )z(

    axbbca

    2 = 24

    2

    ..2.... 22b

    nAbnAdb =+ SSS znA

    =++

    S

    SS

    nAbd

    bnA

    bnA

    z.

    .12....2

    22

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 6

    S

    SS

    Andb

    bAn

    bAn

    z.

    ..21... ++=

    ++=

    S

    S

    Andb

    bAnz

    ...211.

    . . (1-1)

    z = .d (AS / b.d) =

    ++=

    .211....nb

    dbnd.

    ++= .

    211...n

    dn . (1-2)

    .

    ( )223 ..2

    ..12. zdAnzzbzbI SX +

    +=

    xC I

    zMF .= and ( )X

    S IzdMF = . . (1-3)

    3- Internal forces method

    Internal moment = external applied moment

    T. C.YCT = M but the force = (stress * area)

    = dAFC C . = dybFC C .. ) ( = dyFbC C .. = b . area of stress diagram

    the compression force ( C ) = width of the section * area of stress diagram C = (0.5 FC.z) . b M = (0.5 FC.z) . b . YCT and YCT = d z/3

    ( )32zdbz

    MFC = . (1-4)

    substituting for z with .d

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 7

    ( ) 2..31

    2

    3...2

    dbM

    dddbMFC

    == ..

    putting 131

    2 C=

    .

    21 ..dbMCFC = . (1-5)

    where .2

    1 =C taking the moment about the line of action of compression force: T . YCT = M ( ) MzdFA SS = 3.

    ( )3zdAMF

    SS = . (1-6)

    Putting AS = . b . d & z = . d

    222 .

    .

    31.dbMC

    db

    MFS =

    =

    . . (1-7)

    Where

    =

    31

    12 .C & 31

    =

    then .1

    2 =C

    2- Case (2) Given : M, b, d, AS & AS` required : FS , FC Moment of areas about the N.A = 0.0

    ( ) ( )zdAndzAnzb SS =+ ..`..2 `2

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 8

    C

    Fc

    d`

    Z

    Z - d

    `

    Cs Z/3

    2/3

    Z

    ( ) ( ) 0.0`......2 ``

    2 =+++ dAdAnzAAnzb SSSS

    z

    ( ) ( ) ( )`...2. `2

    `` dAdAbn

    bAAn

    bAAnz SSSSSS ++

    +++= . (2-1)

    z = . d , AS = .b.d , AS` = `.b.d = `/ , = d`/d

    ( ) ( ) ( )`..`...2`... 22 ddbdbbn

    bdbn

    bdnbd ++

    +++= `.

    ( ) ( ) ( ) .1...21..1... 22222 +++++= dndndnd.

    ( ) ( ) ( )( )

    +++++= 22222 1..

    .1211...1..

    ndndnd.

    ( ) ( )( )

    +++++= 21..

    .1211.1.

    nn . (2-2)

    z.

    Stresses in concrete and steel: C = CS + CC M about tension steel = 0.0

    ( )`3

    ddCzdCM SC +

    =

    ( )`.3

    ...21 `` ddFAzdbzFM SSC +

    = . (2-3)

    but `` dz

    z

    nFF

    S

    C

    =

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 9

    ( )zdzFnF CS

    `` .. = or ( )

    dddFnF CS .....`

    =

    ( ) = ..` CS FnF . (2-4)

    FS` )2-4 ( )2-3(

    ( ) ( )zdzFn

    ddAzdbzFM CSC`

    `` ..3

    ...21 +

    =

    ( )`` `..32

    . ddzdzAnzdzb

    MFS

    C

    +

    = . (2-5)

    z = . d , AS = .b.d , AS` = `.b.d = `/ , = d`/d

    ( )ddddddbndddb

    MFC.

    .`.....

    3.

    2.. ` +

    =

    ( ) 22 ..1.....3

    1.21 dbndb

    MFC

    +

    =-

    ( )

    +

    =1...

    31.

    21

    1.. 2

    -

    ndbMFC . (2-6)

    21 ..dbMCFC = . (2-7)

    where : ( )

    +

    =1...

    31.

    21

    11

    -

    nC . (2-8)

    FC.

    FC )2-7 ( )2-4.( ( )

    21`

    ....dbMCnFS

    = . (2-9) to find FS

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 10

    zdz

    nFFS

    C

    = (z = .d)

    ( )CS F

    nF .1.= . (2-10)

    FC )2-6 ( )2-10(

    ( ) n

    ndbMFS

    )1(.1...

    31.

    21

    1.. 2

    -

    +

    =

    ( )

    +

    =1...

    31.

    21

    )1(.. 2

    -

    2 n

    ndbMFS

    22 ..dbMCFS = . (2-11)

    where:

    ( )

    +

    =1...

    31.

    21

    )1(2

    -

    2 n

    nC . (2-12)

    Case 3 Design of Rectangular section with tension steel only: 3-1 Free design (the depth is unlimited) Given : M, b, FC, and FS Required : d, and AS

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 11

    d`

    d

    bt

    Fc

    Fs / n

    C

    T

    Yct

    :

    zdz

    nFFS

    C

    = . (3-1)

    of moment about tension steel C.YCT = M

    MzdbzFC =

    3

    ....21 . (3-2)

    and from equation 3-1 d

    FFn

    nz

    C

    S.

    += and r

    FF

    C

    S =

    drnnz .+=

    z (3-2)

    Mrnndd

    rnnbFC =

    ++ 31.....

    21 and =+ rn

    n

    MdbFC =

    3

    1.....21 2

    bM

    Fd

    C

    .

    31.

    2

    =

    . putting 1

    31.

    2 KFC

    =

    .

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 12

    bMKd .1= . (3-3)

    (3-3) (Balanced Depth)

    K1 FC FS.

    M about C = 0.0 M = T . YCT

    =3

    .. zdFAM SS dz .=

    =

    31..dF

    MAS

    S = 31

    dFMAS

    S ..= 2. KFS =

    dKMAS .2

    = . (3-4) 3-2 Fixed design (the depth is given) 3-2-1 The given depth > the balanced depth

    d`

    d

    b

    t

    Fc

    Fs / n

    C

    T

    Yct

    Given : M, b, d, FC, and FS Required : AS

    (Balanced Depth)

    FS AS.

  • 31 .gE ,.vinU ainiM-lE ,.tpeD gnE liviC ,deyaS-lE .A rmA /:yB deraperP

    :

    bM 1K wonk nac ew os 1= Kd

    .CF teg nac ew sixA-X no CF dna ,sixA-Y no 1K neewteb sevruc eht morf -1 CF ngised fo esac siht ni( ton ro elbawolla si ti fi enimreted nac ew CF gniwonk morf -2 .).lla CF < eb tsum

    .2K dnif nac ew ,2K dna ,CF neewteb sevruc eht morf -4

    -5Kd

    2. SAM =

    )htpeD decnalaB(

    SF CF .

    :

    bM 1K wonk nac ew os 1= Kd

    owt ward ,sixA-Y no 1K fo eulav eht dna ,sixA-X no CF elbawolla mumixam eht morf htiw evruc a no tcesretni lliw senil owt eht dna ,ylevitcepser senil lacitrev dna latnoziroh .2K teg nac ew os , niatrec fo SF mumixam eht snoitceS-T fo ngiseD = ceS-T fo htdiw evitceffe = ro

    :

    CF T :

    B -1

    . ) T ( -2

    ( ) ( ) .

    ) ) T ( -3

    (

    ].ceS-R fo esac ni[ ).lla( CF fo 57.0 ~ 5.0 = ].ceS-T fo esac ni[ ).lla( CF

    . CF

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 14

    Examples: For the plan shown in the following figure, find the loads on all beams knowing

    that: 1- Slab thickness = 12.0 cm 2- Weight of cover = 150.0 kg/m2 3- Live load = 200.0 kg/m2 4- Wall height = 3.0 m 5- Depth of all beams = 60.0 cm 6- Breadth of beams ab, cde = 12.0 cm 7- Breadth of the remaining beams = 25.0 cm

    And the draw the absolute shearing force and bending moment of the main beam (fbd), and design the critical sections, the draw to scale 1:20 the details of reinforcement of a longitudinal section of the beam (fbd).

    4.00A

    5.00

    2

    3

    1

    B2.00 2.00

    5.00

    3

    2

    1

    A B

    2.006.00

    5.00

    5.00

    60 60

    3.00

    a

    b

    c

    d

    e

    f

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 15

    -8.27

    16.45

    -9.28

    17.48

    -9.63-0.3

    21.41

    -19.22

    20.9

    -1.8

    -4.63

    23.75

    -18.38

    20.25

    -2.12 -0.73

    20.54

    -18.2

    23.82

    -6.47

    3.0 t/m

    3.4

    -7.1

    13.9

    -2.59

    -16.09

    15.91

    -4.09-10.09

    3.912.89

    -4.11

    9.89

    -1.83

    -15.33

    16.67

    -4.96

    -13.96

    7.04

    2.99

    -4.01

    9.99

    -2.17

    -15.67

    16.33

    -4.23-10.23

    3.772.5

    -8.0

    13.0

    -1.45-10.45

    10.55

    -3.74 -12.74

    8.26

    3.0 t/m2.0 t/m

    3.0 t

    Absolute bending moment of a continues beam

    19.22

    -23.75 -23.82

    9.638.27