第五章 影响外源性化学物 毒作用的因素

69
第第第 第第第 第第第第第第第第 第第第第第第第第 第第第第第第 第第第第第第

Upload: ayala

Post on 11-Jan-2016

91 views

Category:

Documents


0 download

DESCRIPTION

第五章 影响外源性化学物 毒作用的因素. 一、污染物形态及生物有效性 二、污染物的毒激活过程 三、环境因子的影响 四、来自生物的差异 五、多因子的联合作用. 一、污染物形态及生物有效性. (一)化学结构 (二)理化特性. 化学结构. 取代基团. 构型. (一)化学结构. 结构活性相关性研究 QSAR. 研究外源性化学物的结构和毒效应之间的关系,可对同类的新化学物的生物活性及其安全限量范围进行预测,同时也可以推测其毒作用机理。. 烃类. 在烷烃中,甲烷和乙烷是惰性气体. 丙烷至庚烷,碳原子数量增加,其麻醉作用增强. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 第五章   影响外源性化学物       毒作用的因素

第五章 第五章 影响外源性化学物影响外源性化学物 毒作用的因素 毒作用的因素

Page 2: 第五章   影响外源性化学物       毒作用的因素

一、污染物形态及生物有效性一、污染物形态及生物有效性二、污染物的毒激活过程二、污染物的毒激活过程三、环境因子的影响三、环境因子的影响四、来自生物的差异四、来自生物的差异五、多因子的联合作用五、多因子的联合作用

Page 3: 第五章   影响外源性化学物       毒作用的因素

一、污染物形态及生物有效性一、污染物形态及生物有效性

(一)化学结构(一)化学结构(二)理化特性(二)理化特性

Page 4: 第五章   影响外源性化学物       毒作用的因素

化学结构

取代基团 构型

(一)化学结构(一)化学结构

Page 5: 第五章   影响外源性化学物       毒作用的因素

研究外源性化学物的结构和毒效应之间的关研究外源性化学物的结构和毒效应之间的关系,可对同类的新化学物的生物活性及其安系,可对同类的新化学物的生物活性及其安全限量范围进行预测,同时也可以推测其毒全限量范围进行预测,同时也可以推测其毒作用机理。作用机理。

结构活性相关性研究QSAR

Page 6: 第五章   影响外源性化学物       毒作用的因素

烃类

在烷烃中,甲烷和乙烷是惰性气体

丙烷至庚烷,碳原子数量增加,其麻醉作用增强

庚烷之后,碳原子数量增加,其麻醉作用减弱

丁醇、戊醇的毒性大于乙醇、丙醇

甲醇在体内可转化为甲醛和甲酸,故其毒性反而比乙醇大

同系物的碳原子数量非烃类化合物中引入烃基

Page 7: 第五章   影响外源性化学物       毒作用的因素

分子不饱和度

分子中不饱和键增多可使化学物活性增大,毒性增强。乙炔毒性大于乙烯,乙烯毒性大于乙烷

芳香烃毒性大于脂肪烃丙烯醛对眼结膜的刺激作用大于丙醛

丁烯醛毒性大于丁醛。

Page 8: 第五章   影响外源性化学物       毒作用的因素

卤素基团

卤族元素有强烈的吸电子效应,在化学物分子结构中增加卤素,

可使分子极性增加,更易与酶系统结合,

从而毒性增强。如对肝脏的毒性 CCl4>CHCl3>CH2Cl2>CH3Cl>CH4

Page 9: 第五章   影响外源性化学物       毒作用的因素

羟 基

脂肪族化合物引入羟基后,麻醉作用增强,毒性增高。芳香族化合物引入羟基后,毒性增高。

多羟基的芳香族化合物毒性更高。如苯引入羟基后成为苯酚,后者具弱酸性,

易与蛋白质中的碱性基团结合,与酶蛋白有较强的亲和力。毒性增大。

Page 10: 第五章   影响外源性化学物       毒作用的因素

酸基

酯基

羧基和磺酸基引入分子中时,水溶性和电离度增高,脂溶性降低,难以吸收和转运,毒性降低。如苯甲酸毒性较苯低,人工合成染料中引入磺酸基也可降低其毒性。

酸基经酯化后,电离度降低、脂溶性增高,使吸收率增加,毒性增大。

Page 11: 第五章   影响外源性化学物       毒作用的因素

胺基和硝基

胺具碱性,易与核酸、蛋白质的酸性基团起反应,易与酶发生作用。

伯胺 RNH2> 仲胺 RNHR‘> 叔胺 RNR’R’’

芳香族化合物的H 原子被硝基取代后,毒性发生改变。

如苯环上引入硝基后,即成为高铁血红蛋白的形成剂。

Page 12: 第五章   影响外源性化学物       毒作用的因素

醛和酮

这两类化学物质性质活泼,易与体内多种成分发生反应。醛的生物学效应一般高于酮类,

但其毒性随 C 原子的增加而递减。

Page 13: 第五章   影响外源性化学物       毒作用的因素

同分异构体 旋光异构体

构型

Page 14: 第五章   影响外源性化学物       毒作用的因素

同分异构体

一般:对位 > 邻位 > 间位

如二甲苯、硝基酚、氯酚等

但也有例外:如邻硝基苯醛 > 对硝基苯醛

Page 15: 第五章   影响外源性化学物       毒作用的因素

旋光异构体

由于受体或酶一般只能与一种旋光异构体结合而产生生物效应。故同一化学物的不同旋光异构体的毒性不同。

一般 L- 异构体易与酶、受体结合,具生物活性;而D- 异构体则反之。

如 L- 吗啡对机体有作用,而 D- 吗啡对机体无作用。

但也有例外,如 D- 尼古丁毒性 >L- 尼古丁

Page 16: 第五章   影响外源性化学物       毒作用的因素

结构活性相关性模型QSAR

Page 17: 第五章   影响外源性化学物       毒作用的因素

(二)理化特性(二)理化特性

脂 /水分配系数

电离度

挥发度和蒸气压

分散度

纯度

Page 18: 第五章   影响外源性化学物       毒作用的因素

脂脂 // 水分配系数水分配系数 一般脂溶性高的毒物易于被吸收且不易被排泄,在一般脂溶性高的毒物易于被吸收且不易被排泄,在

体内停留时间长,毒性较大。如机体对氯化高汞的体内停留时间长,毒性较大。如机体对氯化高汞的吸收率为吸收率为 2%2% ,醋酸汞为,醋酸汞为 50%50% ,苯基汞,苯基汞 50-80%50-80% ,,甲基汞甲基汞 90%90% 以上。以上。

有毒化学物在体液中的溶解度愈大,毒性愈强。如有毒化学物在体液中的溶解度愈大,毒性愈强。如砒霜(砒霜( AsAs22OO33 )在水中的溶解度比雄黄()在水中的溶解度比雄黄( AsAs22SS33 ))大大 33 万倍,因而毒性较后者大;氯气和二氧化硫易万倍,因而毒性较后者大;氯气和二氧化硫易溶于水,能迅速对上呼吸道产生刺激作用,而溶于水,能迅速对上呼吸道产生刺激作用,而 NO2NO2

的水溶性较低,不易引起上呼吸道病变,需经一定的水溶性较低,不易引起上呼吸道病变,需经一定潜伏期才能引起深部呼吸道病变。潜伏期才能引起深部呼吸道病变。

Page 19: 第五章   影响外源性化学物       毒作用的因素

电离度电离度 电离度低,非离子型比例越高,越易被吸电离度低,非离子型比例越高,越易被吸

收而发挥毒效应。收而发挥毒效应。 电离度高,离子型比例越高,化合物虽易电离度高,离子型比例越高,化合物虽易

溶于水,但较难被吸收而易随尿排出,毒溶于水,但较难被吸收而易随尿排出,毒性的发挥受到影响。性的发挥受到影响。

Page 20: 第五章   影响外源性化学物       毒作用的因素

挥发度和蒸气压挥发度和蒸气压汽油、四氯化碳、二硫化碳汽油、四氯化碳、二硫化碳

有些液态毒物的有些液态毒物的 LDLD5050 相近,即绝对毒性相相近,即绝对毒性相当,但由于各自的挥发度不同,所以实际当,但由于各自的挥发度不同,所以实际毒性(即相对毒性)可相差很大。毒性(即相对毒性)可相差很大。

Page 21: 第五章   影响外源性化学物       毒作用的因素

分散度分散度 化学物以粉尘、烟和雾等状态污染空气,化学物以粉尘、烟和雾等状态污染空气,

其毒性与该物质的分散度有关。其毒性与该物质的分散度有关。 如如 ZnOZnO 粉尘进入呼吸道后,毒作用并不太粉尘进入呼吸道后,毒作用并不太

明显;但金属明显;但金属 ZnZn 熔融时产生的熔融时产生的 ZnZn 蒸气,蒸气,在空气中进一步氧化成在空气中进一步氧化成 ZnOZnO 烟尘,其颗粒烟尘,其颗粒极为微细,表面活性相应增大,可引起急极为微细,表面活性相应增大,可引起急性中毒。性中毒。

Page 22: 第五章   影响外源性化学物       毒作用的因素

纯度纯度 工业化学品中往往混有溶剂、剩余的原料、工业化学品中往往混有溶剂、剩余的原料、

原料中的杂质、合成的副产品等;商品中原料中的杂质、合成的副产品等;商品中往往还含有赋形剂、添加剂等。这些杂质往往还含有赋形剂、添加剂等。这些杂质有可能影响、增强、甚至改变原化合物的有可能影响、增强、甚至改变原化合物的毒性作用,有的杂质毒性比原化合物的毒毒性作用,有的杂质毒性比原化合物的毒性还要大。性还要大。

例如,除草剂例如,除草剂 22 ,, 44 ,, 5-T5-T 的致畸性主要的致畸性主要是由于其中所含有的杂质是由于其中所含有的杂质 TCDDTCDD 所致。所致。

Page 23: 第五章   影响外源性化学物       毒作用的因素

二、污染物的毒激活过程二、污染物的毒激活过程 毒物的代谢饱和状态:一些能解毒的途径毒物的代谢饱和状态:一些能解毒的途径

饱和后转而以其他解毒途径。饱和后转而以其他解毒途径。 低浓度氯乙烯低浓度氯乙烯————氯乙酸氯乙酸 高浓度氯乙烯高浓度氯乙烯————环氧氯乙烯环氧氯乙烯 ++ 氯乙醛氯乙醛

Page 24: 第五章   影响外源性化学物       毒作用的因素

三、环境因子的影响三、环境因子的影响

地质条件

气象条件

Page 25: 第五章   影响外源性化学物       毒作用的因素

地质条件地质条件 地壳、空气和水的化学组成物为人类和其他生物提供地壳、空气和水的化学组成物为人类和其他生物提供了多种可被机体利用的元素,从而直接或间接地影响了多种可被机体利用的元素,从而直接或间接地影响生物体的正常生理活动。生物体的正常生理活动。

这些元素有些是构成蛋白质或酶的关键成分,对核酸、这些元素有些是构成蛋白质或酶的关键成分,对核酸、激素、细胞起着稳定和激活作用。因此机体必须维持激素、细胞起着稳定和激活作用。因此机体必须维持一定量和一定比例的多种为两元素,才能保证机体正一定量和一定比例的多种为两元素,才能保证机体正常的生长发育和实现正常的生理功能。常的生长发育和实现正常的生理功能。

但在自然地质环境中,这些元素的分布是不均匀的,但在自然地质环境中,这些元素的分布是不均匀的,过多或过少都会影响人体的健康,从而影响人体抵御过多或过少都会影响人体的健康,从而影响人体抵御环境毒物的能力。环境毒物的能力。

Page 26: 第五章   影响外源性化学物       毒作用的因素

气象条件气象条件气 温气 温

气温升高可使机体毛细血管扩张、血液循环加快、气温升高可使机体毛细血管扩张、血液循环加快、呼吸加速、经皮和经呼吸道吸收的环境化学物吸呼吸加速、经皮和经呼吸道吸收的环境化学物吸收速度加快。收速度加快。

高温多汗时氯化钠随汗液排出增多,胃液分泌减高温多汗时氯化钠随汗液排出增多,胃液分泌减少,胃酸减少,从而影响胃肠吸收。少,胃酸减少,从而影响胃肠吸收。

排汗增多则尿量减少,使经肾随尿排出的毒物在排汗增多则尿量减少,使经肾随尿排出的毒物在体内滞留时间延长,毒作用增强。体内滞留时间延长,毒作用增强。

研究:研究: 5858种化学物中,有种化学物中,有 5555种在种在 3636摄氏度的摄氏度的高温环境中毒性最大,高温环境中毒性最大, 2626摄氏度时毒性最小。摄氏度时毒性最小。

Page 27: 第五章   影响外源性化学物       毒作用的因素

气 湿气 湿

高气湿(尤其伴随高气温时)能使环境化学物经高气湿(尤其伴随高气温时)能使环境化学物经皮吸收的速度加快。皮吸收的速度加快。

气湿增大,汗液蒸发困难,皮肤表面的水合作用气湿增大,汗液蒸发困难,皮肤表面的水合作用增强,水溶性强的环境化学物可溶于皮肤表面的增强,水溶性强的环境化学物可溶于皮肤表面的水膜而被吸收;同时也延长了化学物与皮肤的接水膜而被吸收;同时也延长了化学物与皮肤的接触时间,使吸收量增加。触时间,使吸收量增加。

在高湿环境下,某些化学物如在高湿环境下,某些化学物如 HClHCl 、、 HFHF 、、 HH22SS

的刺激作用增大;某些毒物还可改变形态,如的刺激作用增大;某些毒物还可改变形态,如SOSO22 可转化为可转化为 SOSO33 和和 HH22SOSO44 ,使毒性增大。,使毒性增大。

Page 28: 第五章   影响外源性化学物       毒作用的因素

气 压气 压

气压可引起某些化学物毒性作用的变化。气压可引起某些化学物毒性作用的变化。 如在高原低气压下士的宁的毒性降低,而如在高原低气压下士的宁的毒性降低,而氨基丙苯的毒性增强。氨基丙苯的毒性增强。

Page 29: 第五章   影响外源性化学物       毒作用的因素

其 他其 他某些环境化学物(如大气中的氮氧化物和某些环境化学物(如大气中的氮氧化物和醛类)在强烈的日光照射下可转化为毒性醛类)在强烈的日光照射下可转化为毒性更强的光化学烟雾等。更强的光化学烟雾等。

Page 30: 第五章   影响外源性化学物       毒作用的因素

四、来自生物的差异四、来自生物的差异

(一)种属和个体差异 (一)种属和个体差异 (二)性别和激素(二)性别和激素(三)年龄(三)年龄(四)营养与健康(四)营养与健康(五)生物节律(五)生物节律

Page 31: 第五章   影响外源性化学物       毒作用的因素

(一)种属和个体差异(一)种属和个体差异 不同种属动物对同一毒物的反应不一。不同种属动物对同一毒物的反应不一。 研究:研究: 154154种化合物中,小鼠对其中种化合物中,小鼠对其中 3838种种敏感,家兔敏感,家兔 2828种,狗种,狗 4444种。种。

研究:研究: 260260种化合物的致死量比较发现,种化合物的致死量比较发现,多数毒物对动物的致死量比人高多数毒物对动物的致死量比人高 1-101-10 倍,倍,约有约有 3%3% 高出高出 25-45025-450 倍,只有倍,只有 8%8%左右人左右人的致死量比动物高。即人对毒物比动物普的致死量比动物高。即人对毒物比动物普遍敏感。遍敏感。

Page 32: 第五章   影响外源性化学物       毒作用的因素

吸收部位的生理特点和物理状态吸收部位的生理特点和物理状态

皮肤皮肤————明显的种属差异明显的种属差异————如有机磷化合物的毒如有机磷化合物的毒性由强及弱依次为性由强及弱依次为————兔、大鼠、豚鼠、猪、人兔、大鼠、豚鼠、猪、人

消化道消化道————种属消化道的种属消化道的 pHpH 环境不同环境不同————如羊胃如羊胃pHpH 为为 7.6-8.27.6-8.2 、大鼠胃、大鼠胃 pHpH 为为 2.0-4.02.0-4.0 、人胃、人胃 pHpH

为为 1.5-2.51.5-2.5 。。 呼吸系统呼吸系统————呼吸频率、呼吸强度等。呼吸频率、呼吸强度等。

对吸收的影响差异

Page 33: 第五章   影响外源性化学物       毒作用的因素

不同种属动物的血浆蛋白质浓度、组成配不同种属动物的血浆蛋白质浓度、组成配比和类型不同,变动范围也不同。比和类型不同,变动范围也不同。

血浆蛋白质浓度血浆蛋白质浓度————从某些鱼的大约从某些鱼的大约 20g/L20g/L至牛的至牛的 83g/L83g/L 。。

不同动物的血浆蛋白质不同动物的血浆蛋白质————可能结合的毒可能结合的毒物量不同。物量不同。

对分布的影响差异

Page 34: 第五章   影响外源性化学物       毒作用的因素

氧化反应氧化反应

绝大多数哺乳动物,都能进行外来化合物的氧绝大多数哺乳动物,都能进行外来化合物的氧化代谢,但不同种属的氧化代谢有很大不同。化代谢,但不同种属的氧化代谢有很大不同。

种间差异,常常是对某种化合物氧化速率的不种间差异,常常是对某种化合物氧化速率的不同,而不是氧化途径的不同。同,而不是氧化途径的不同。

对代谢转化的影响差异

Page 35: 第五章   影响外源性化学物       毒作用的因素

还原反应还原反应

Page 36: 第五章   影响外源性化学物       毒作用的因素

水解反应水解反应

绝大多数生物都含有水解酯和酰胺的酯酶,绝大多数生物都含有水解酯和酰胺的酯酶,但不同种属之间的活性差异很大。但不同种属之间的活性差异很大。

研究:哺乳动物中,马拉硫磷主要水解成二研究:哺乳动物中,马拉硫磷主要水解成二羟酸,毒性很小;而在昆虫中,则被代谢为羟酸,毒性很小;而在昆虫中,则被代谢为马拉氧磷,是一种很强的胆碱酯酶抑制剂。马拉氧磷,是一种很强的胆碱酯酶抑制剂。————马拉硫磷的选择毒性即源于此。马拉硫磷的选择毒性即源于此。

Page 37: 第五章   影响外源性化学物       毒作用的因素

结合反应结合反应

不同生物对外来化合物的结合反应有明显不同生物对外来化合物的结合反应有明显差异。差异。

多数种属都有一个主要的结合途径。多数种属都有一个主要的结合途径。

Page 38: 第五章   影响外源性化学物       毒作用的因素

葡萄糖醛酸结合葡萄糖醛酸结合————是大多数动物,包括哺乳动是大多数动物,包括哺乳动物、鸟类、两栖类、爬行类的一个重要途径,但物、鸟类、两栖类、爬行类的一个重要途径,但鸟类除外。鸟类除外。

• 昆虫利用 葡萄糖昆虫利用 葡萄糖————葡萄糖苷化合物葡萄糖苷化合物• 猫体内缺乏某种葡萄糖醛酸苷基转移酶,不能生猫体内缺乏某种葡萄糖醛酸苷基转移酶,不能生

成葡萄糖醛酸苷化合物;但猫却有另外一种葡萄成葡萄糖醛酸苷化合物;但猫却有另外一种葡萄糖醛酸苷基转移酶,能生成胆红素葡萄糖醛酸苷。糖醛酸苷基转移酶,能生成胆红素葡萄糖醛酸苷。因此,猫对苯酚的毒性比那些能通过葡萄糖醛酸因此,猫对苯酚的毒性比那些能通过葡萄糖醛酸苷结合解毒的动物敏感。苷结合解毒的动物敏感。

Page 39: 第五章   影响外源性化学物       毒作用的因素

硫酸结合硫酸结合• 绝大多数哺乳类、两栖类、鸟类、爬行类绝大多数哺乳类、两栖类、鸟类、爬行类动物和昆虫,都存在外来化合物与硫酸的动物和昆虫,都存在外来化合物与硫酸的结合代谢,但鱼类缺乏这种代谢反应。因结合代谢,但鱼类缺乏这种代谢反应。因此,对于一些需要与硫酸结合而解毒的化此,对于一些需要与硫酸结合而解毒的化学物,鱼类就很敏感。学物,鱼类就很敏感。

Page 40: 第五章   影响外源性化学物       毒作用的因素

氨基酸结合氨基酸结合• 有些鸟类不具备这种结合反应方式。有些鸟类不具备这种结合反应方式。

Page 41: 第五章   影响外源性化学物       毒作用的因素

谷胱甘肽结合谷胱甘肽结合• 生成生成 N-N- 乙酰半胱氨酸乙酰半胱氨酸 //半胱氨酸衍生物,半胱氨酸衍生物,

由尿液排出,如人、大鼠、田鼠、小鼠、由尿液排出,如人、大鼠、田鼠、小鼠、猫、狗、兔、豚鼠、苍蝇等。猫、狗、兔、豚鼠、苍蝇等。

Page 42: 第五章   影响外源性化学物       毒作用的因素

甲基化反应甲基化反应• 包括包括 NN 、、 SS 、、 OO 的甲基化的甲基化• 多数研究过的哺乳类动物、鸟类、两栖类、多数研究过的哺乳类动物、鸟类、两栖类、昆虫等。昆虫等。

Page 43: 第五章   影响外源性化学物       毒作用的因素

乙酰化反应乙酰化反应• 除狗以外的哺乳动物都有。除狗以外的哺乳动物都有。

Page 44: 第五章   影响外源性化学物       毒作用的因素

总之,在哺乳动物体内发现的所有代谢反应,总之,在哺乳动物体内发现的所有代谢反应,人体内均存在。人体内均存在。

代谢量的差异,主要是由于酶浓度、酶动力学代谢量的差异,主要是由于酶浓度、酶动力学参数、辅因子的有效性和组织底物浓度的种属参数、辅因子的有效性和组织底物浓度的种属差异。差异。

量的差异意味着不同的种属,其占优势的代谢量的差异意味着不同的种属,其占优势的代谢途径不同,导致药理学或毒理学活性的差异。途径不同,导致药理学或毒理学活性的差异。

Page 45: 第五章   影响外源性化学物       毒作用的因素

经肾脏的排除经肾脏的排除• 大多数哺乳动物的肾脏相似,但种属之间有功能大多数哺乳动物的肾脏相似,但种属之间有功能

上的不同,而且尿的上的不同,而且尿的 pHpH 、排泄量和产尿速率明、排泄量和产尿速率明显不同。显不同。

• 如大鼠产尿率比人大得多。尿如大鼠产尿率比人大得多。尿 pHpH只要有一点变只要有一点变化,都将明显改变毒物的溶解度,因而改变排泄。化,都将明显改变毒物的溶解度,因而改变排泄。

• pHpH 改变改变 11个单位,某些磺胺和乙酰化代谢物的溶个单位,某些磺胺和乙酰化代谢物的溶解度显著改变,剂量大时,甚至在肾小管内形成解度显著改变,剂量大时,甚至在肾小管内形成结晶,引起肾脏毒性。结晶,引起肾脏毒性。

对排泄的影响差异

Page 46: 第五章   影响外源性化学物       毒作用的因素

经胆汁的排除经胆汁的排除• 种属差异非常明显,如兔和豚鼠胆汁排出种属差异非常明显,如兔和豚鼠胆汁排出

能力弱,而大鼠则很强。能力弱,而大鼠则很强。• 化合物分子量的大小,是影响胆汁排出的化合物分子量的大小,是影响胆汁排出的重要原因。分子量小于重要原因。分子量小于 300300 的化合物,很的化合物,很少由胆汁排出,分子量大于少由胆汁排出,分子量大于 300300 的化合物,的化合物,胆汁排出容易。分子量胆汁排出容易。分子量 300300左右的化合物,左右的化合物,种属差异最明显。种属差异最明显。

Page 47: 第五章   影响外源性化学物       毒作用的因素

(二)性别和激素(二)性别和激素

性激素

甲状腺素

肾上腺素

胰岛素

Page 48: 第五章   影响外源性化学物       毒作用的因素

(三)年龄(三)年龄

新生动物

老年动物

组织器官和酶系的发育不全CNS

膜通透性混合功能氧化酶体系

体液 pH肠道内微生物菌群

et al

血浆白蛋白含量酶活力下降:葡萄糖 -6-磷酸脱氢酶、

线粒体细胞色素还原酶、红细胞的 Na+ 、 K+-ATP 酶。

肠道的蠕动状况

Page 49: 第五章   影响外源性化学物       毒作用的因素

37.024.9167.8狄氏剂

194.5437.8>4000.0DDT

3697.0925.5134.4马拉硫磷

成年大鼠断奶前大鼠新生大鼠农药

大鼠年龄对 3 种农药急性毒性 LD50 的影响( mg/Kg )

Page 50: 第五章   影响外源性化学物       毒作用的因素

CNS兴奋剂

CNS抑制剂

DDT

狄氏剂

马拉硫磷

不敏感

敏感

Page 51: 第五章   影响外源性化学物       毒作用的因素

八甲磷 代谢活化 成年大鼠敏感

对硫磷 代谢灭活 幼年大鼠敏感

Page 52: 第五章   影响外源性化学物       毒作用的因素

(四)营养与健康(四)营养与健康营养不足或失调将影响化学物的毒性。营养不足或失调将影响化学物的毒性。 病理状况将影响化学物的毒性。病理状况将影响化学物的毒性。

Page 53: 第五章   影响外源性化学物       毒作用的因素

蛋白质缺乏将引起酶蛋白合成减少及酶活蛋白质缺乏将引起酶蛋白合成减少及酶活性降低,使毒物代谢减慢,机体对性降低,使毒物代谢减慢,机体对多数多数毒毒物的解毒能力降低,毒物毒性增强。物的解毒能力降低,毒物毒性增强。

吸收障碍症吸收障碍症————消化道消化道血管扩张并发症血管扩张并发症————肌肉肌肉肝脏疾病损伤肝脏疾病损伤————半衰期半衰期肾脏肾脏————毒物积累毒物积累心肺疾病等。心肺疾病等。

Page 54: 第五章   影响外源性化学物       毒作用的因素

(五)生物节律(五)生物节律 化学物的毒性与其进入机体发挥作用的时间有关。化学物的毒性与其进入机体发挥作用的时间有关。• 例如,给小鼠腹腔注射相同剂量的乙醇,发现下例如,给小鼠腹腔注射相同剂量的乙醇,发现下

午午 16:0016:00 和和 20:0020:00 死亡率最高;给大鼠相同剂量死亡率最高;给大鼠相同剂量的苯丙胺,清晨的苯丙胺,清晨 3:003:00死亡率为死亡率为 78%78% ,而上午,而上午8:008:00仅为仅为 7%7% 。。

• 不仅在一日内的不同时间化学物的毒性不同,而不仅在一日内的不同时间化学物的毒性不同,而且季节变化也会影响化学物的毒性。且季节变化也会影响化学物的毒性。

Page 55: 第五章   影响外源性化学物       毒作用的因素

五、多因子的联合作用五、多因子的联合作用

凡两种或两种以上的化学物同时或短期内先后作用于机体所产生的综合毒性作用,称为化学物的联合毒性作用。

Page 56: 第五章   影响外源性化学物       毒作用的因素

相加作用

协同作用

拮抗作用

联合作用

独立作用

(一)联合作用的类型

Page 57: 第五章   影响外源性化学物       毒作用的因素

相加作用

M=M1+M2

丙烯腈 乙腈

大部分刺激性气体的刺激作用

具麻醉作用的化合物

有机磷农药对胆碱酯酶的抑制

Page 58: 第五章   影响外源性化学物       毒作用的因素

协同作用

M>M1+M2

马拉硫磷 苯硫磷

CO NOx

甲醇 CCl4

O3 H2SO4

Page 59: 第五章   影响外源性化学物       毒作用的因素

增效作用

M>M1+M2

M1=M1-0

M2>M2-0

异丙醇 CCl4

Page 60: 第五章   影响外源性化学物       毒作用的因素

拮抗作用

M<M1+M2

DDT 氨基甲酸酯

Fe 剂 Mn

CH2Cl2 乙醇

Na2S2O3 氰化物

Page 61: 第五章   影响外源性化学物       毒作用的因素

独立作用

M=M1+M2 ( 1-M1 )

乙醇 氯乙烯

线粒体脂质过氧化 微粒体脂质过氧化

Page 62: 第五章   影响外源性化学物       毒作用的因素

(二)联合作用类型的评定

等毒性溶液法等效应线图法联合作用系数法Bliss法Logistic 模型评价法

Burgi法

药物联合作用的参数分析法药物联合作用的参数分析法联合用药定量分析法联合用药定量分析法药物动力学模型药物动力学模型组分相乘和半数效应模型组分相乘和半数效应模型等概率和曲线法等概率和曲线法方差分析法方差分析法RashRash法法

Page 63: 第五章   影响外源性化学物       毒作用的因素

11 .联合作用系数法.联合作用系数法

Page 64: 第五章   影响外源性化学物       毒作用的因素

分别测定每个化合物的 LD50

按等效比混合测定混合物实测 LD50

50505050 LDNLDBLDALD

1

的的的值混合物的预期

nba

联合作用系数 (K)=预期 LD50∕实测 LD50

K>1

K=1

K<1

协同相加

拮抗

Page 65: 第五章   影响外源性化学物       毒作用的因素

>1.750.57-1.75<0.57Keplinger法

>2.700.4-2.7<0.40Smyth法

协同作用相加作用拮抗作用

联合作用系数( K )与联合作用类型

Page 66: 第五章   影响外源性化学物       毒作用的因素

22 .等效应线图法.等效应线图法

分别测定 A、 B 化合物的 LD50 及 95% 可信限

按等效比混合测定混合物实测 LD50

求混合物 LD50 中 A、 B 化合物的实际剂量

绘图

两种化合物

Page 67: 第五章   影响外源性化学物       毒作用的因素

B

上限

上限

下限

下限

LD50

LD50

A

I

II

III

协同

相加

拮抗

I

II

III

Page 68: 第五章   影响外源性化学物       毒作用的因素

以特定浓度的化合物混合物进行实验加以验证

Page 69: 第五章   影响外源性化学物       毒作用的因素

GB 15193.3-2003  急性毒性试验 GB 15193.3-1994