各種磁気センサの動作原理と応用 ~講義内容~...

41
各各各各各各各各各各各各各各 各各各各 各各各 各各各各 各 各 各 各各各各 各 、MR、GMR、M I 各各各FG 各各各各 各各各各各各各 各各 / 各各 各各 各各各各 各各各各各 7 各 26 各 各各各各各 各各各各各各各各 各各各各各各 ・・ I 8 各 11 各 各各各各各各 II 8 各 25 各 各各各各各各各各 各各各各各各各 各各各各各各各各 各各各各各 各各

Upload: ilar

Post on 02-Feb-2016

101 views

Category:

Documents


1 download

DESCRIPTION

各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性 / 特徴 ③用途 ④製造方法 ■スケジュール 第 1 回  7 月 26 日 磁気の基礎・各センサの概要・センサー各論 I 第 2 回  8 月 11 日 センサー各論 II 第 3 回  8 月 25 日 応用商品と用途,製造方法の基礎                            奈良工業高等専門学校                            電気工学科 藤田直幸 . 自己紹介. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

各種磁気センサの動作原理と応用

~講義内容~ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等 ①動作原理・理論 ②特性 / 特徴 ③用途 ④製造方法

■ スケジュール第 1 回  7 月 26 日 磁気の基礎・各センサの概要・センサー各論 I第 2 回  8 月 11 日 センサー各論 II第 3 回  8 月 25 日 応用商品と用途,製造方法の基礎

                          

                           奈良工業高等専門学校                           電気工学科 藤田直幸 

Page 2: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

自己紹介

 豊橋技術科学大学 電気電子工学課程修了 松下電器 電化本部( 4 年) 大阪府立高専 電子情報工学科( 12 年)  4 月より現職

専門:磁気工学,表面処理,電気電子材料

テーマ:電気化学的手法(めっき)によるナノスケール磁性薄膜     の作製と応用

所属学会:電気学会(調査専門委員会委員),日本応用磁気学会 表面技術協会(評議員,関西支部常任幹事), The Electrochemical Society ,電気鍍金研究会(理事), ソフト溶液プロセス研究会,ナノプレーティング研究会, ソノケミストリー研究会

Page 3: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

事前アンケート

   サンエテック様 「磁気センサーの基礎」技術講習会 前提知識確認表

よく知っている 知っている ほとんど知らない 知らない1保磁力2飽和磁化3磁性体のヒステリシス曲線4磁束密度5スピン6磁界7電流密度8移動度9ローレンツ力10軟磁性材料11硬磁性材料12ホール効果13磁気抵抗効果14巨大磁気抵抗効果15反磁界

列の丸の数の合計個数

Page 4: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎

Page 5: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 I  磁性材料の諸量

B-H 曲線ー磁束密度 B と磁界 H の関係強磁性体の場合は,比例しないB=μ0H + I = μH

・ μi :初透磁率・ μm :最大透磁率・ Bs :飽和磁束密度・ Br :残留磁束密度・ Hc :保磁力・( BH)m :最大磁気エネルギー積

I-H 曲線ー磁化 I と磁界 H の関係・ χ :磁化率

先端材料応用事典編集委員会,先端材料応用事典  ( 1990 産業調査会)

Page 6: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 II  物質の磁性の起源① 原子中の磁石

A

L

-er

i

③ 上記の軌道運動以外に,電子の自転(スピン)に基づく運動でも  磁化が発生する.④このような原子中の小さな磁石のことをスピン(軌道と自転をあわせて:軌道の運動よりスピンが有効なことが多いため)と呼ぶ

① 電流が流れると磁界が発生する② 原子:・原子核の周りを電子 (-e)が円運動している   (軌道運動)→ 等価的に図のような円電流が流れている   ように見える.

・磁化 mが図のような方向に表れる.

 (ここで, m は原子が作る最小単位の磁石と考える)

Page 7: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 II  物質の磁性の起源② スピンの配列 I

フェロ アンチフェロ

結晶を作ると原子は,規則正しく並ぶため,スピンもある規則で整列する.(低温で)①フェロ磁性(強磁性):  原子磁石(磁気モーメント)が結晶の中で  すべて同じ向きに並んでいる。②アンチフェロ磁性(反強磁性):  結晶中の2種類の位置AとBにある原子磁石が、  平行だが逆向きに並んでいる場合。  全体として、打ち消し合って磁気(自発磁化)を持たない。

Page 8: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 II  物質の磁性の起源③ スピンの配列 II

③フェリ:  アンチフェロの一種であるが、A,B両格子の磁気モーメント  が等しくないため、差が外に現れる。④パラ磁性(常磁性):  原子磁石が勝手な方を向いていて規則配列の無いもの。  (あらゆる強磁性体は、ある温度(キュリー温度)  以上では、パラになる。)      全温度で、パラのものを常磁性体という。

フェリ パラ

Page 9: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 III  磁性体の分類

保磁力の大きさによって・軟磁性材料(ソフト):変圧器,コイル,信号処理・硬磁性材料(ハード):磁石磁気記録材料 ハードほどではないが十分な保磁力

強磁性体を応用面から分類

大分類 小分類 例 磁化率フェロ磁性 Fe,Co,Ni

強磁性フェリ磁性 フェライト

 大 1~104

反強磁性 Cr,Mn,FeO常磁性 Al弱磁性反磁性 Cu

 小 10-3~10-7

(負)

強磁性体を応用面から分類

Page 10: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 IV  反磁界

++++

----

図のような磁石がある.磁石の端には, N(図中+)と S (図中-)の磁極ができる.磁石の外では,磁界は,図の H のような方向にできている.しかし,磁石の中では, H とは逆向きの Hd の向きに磁界ができている.この Hd の向きは,磁気モーメント I  (磁石の強さを表す物理量)の向きと逆向きであるので,反磁界(自己減磁界)と呼ばれる.

反磁界の大きさは, I に比例する(磁石が強くなると反磁界も強くなる)すなわち,     μ0H d=- NI の関係がある.ここで, Nを反磁界係数と呼ぶ.    ( μ0 は,単位あわせのために必要)

I HHd

Page 11: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 IV  反磁界の例

①Fe の球

Hex=10 kOe (8 ×10 5 A/m )

Hd=5.7×105A/m

球の場合,実質的に Feを磁化するのに役立つ磁界は,2.3×10 5 A/m にすぎない.(約29%)

② 薄い板:厚さ方向には大きな反磁界が働き, 磁化しにくい.板の面方向は磁化しやすい.

Page 12: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 V  磁気異方性① 結晶磁気異方性Fe単結晶の例

結晶の中では,特定の方向は磁化されやすく,別の方向は磁化されにくい.このように,方向によって磁気特性が変化することを磁気異方性と言う. 容易軸方向:磁化されやすい方向 困難軸方向:磁化されにくい方向

Page 13: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 V  磁気異方性② 誘導磁気異方性

何らかの操作によって,異方性の方向や大きさを制御する

例(a) 磁界中冷却効果 物質を一旦高温にして,冷却中に磁界を加えると, その磁界方向に容易軸を持つ磁気異方性が 形成されることがある.

(b)圧延磁気異方性 ある種の多結晶を冷間圧延すると圧延によって, 結晶方位がそろい,異方性が誘導される.

Page 14: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 VI  磁区① 磁区とは

磁区とは:飽和まで磁化していない強磁性体内には,自発磁化の方向が異なる,いくつかの領域(磁区)が形成されている.

磁極が現れると: 静磁エネルギーが増加する

静磁エネルギー最小にすると: 交換エネルギーが増加する.

スピンが角度をなすとエネルギーが生じる

Page 15: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 VI  磁区② 磁区の例

Si-Fe   (001)

珪素鉄  (001)パーマロイ  (110)

Page 16: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 VI  磁区③ いろいろな磁区

磁気異方性の大きい立方晶円板

磁気異方性の大きい一軸晶円板

磁歪の大きい磁性体

Page 17: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 VI  磁区④ 磁壁

磁区と磁区の境界では,スピンは一方の磁区の磁化方向から,他方の磁化方向へと徐々に向きを変えている.このスピンの遷移層を磁壁と呼ぶ.

Page 18: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 VI  磁区⑤ 磁壁の移動

磁界をかけると磁界方向の磁区の面積が増える.

→磁壁が移動する.

Page 19: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 VII  磁化過程① 単結晶の場合

H//[100] H//[110]

Si-Fe   (001)

Page 20: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 VII  磁化過程② 単結晶の磁化曲線

1/√2 = 0.71

Page 21: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気の基礎 VII  磁化過程③ 多結晶の磁化曲線の例

Page 22: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気センサの種類と概要

Page 23: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気センサの動作領域

測定対象によって選ばれるセンサが異なる. → 高周波,微弱磁界の検出へ

Page 24: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気センサの特徴比較

種類 SQUID MI効果 フラックスゲート Hall効果 MR/GMR/ TMR効果原理 磁気量子効果 磁化回転による

透磁率変化高透磁率磁性コアの飽和特性

電子移動が受けるローレンツ力

磁気抵抗効果スピンと伝道電子の相互作用

出力変化 電圧 インピーダンス 交流起電力波形 起電力,抵抗 抵抗材料 金属系超伝導体

酸化物超伝導体アモルファス磁性体FeCoSiB,CoSiB,CoNbZr

軟磁性体+コイルFe-Ni- In,Fe-Hf-O,Co- Ta-Hf

半導体InSb,InAs,GaAs,Si

強磁性体NiCo,NiFe,FeMn/ NiFe/ Cu/ NiFe

製法 蒸着,スパッタ スパッタ 電着,スパッタ MBE,蒸着, エピ スパッタ,蒸着感度 超高 高 高 中 中~低(A/m)動作域 10-7~10-4 10-4~104 10-4~102 100~106 100~104

特徴 量子化出力極低温動作医療用

高速応答小型パターン化

マイクロコイルで小型化

一般用途 小型HD

磁気センサの特徴比較 (「 21 世紀版薄膜作製応用ハンドブック」 P1063)

Page 25: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

センサデバイスの薄膜化の流れ

エレクトロニクス関連製品の小型化・軽量化・高性能化

→ センサデバイスの小型化       ← 薄膜化技術         ・成膜技術         ・マイクロパターンニング         ・ IC との結合による信号処理技術         ・パッケージ技術(小型,高信頼)

薄膜化のもう一つの利点 → ナノ構造磁性体 高機能化,新機能の発現

Page 26: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気センサの各論 I     磁気抵抗( MR )センサ

Page 27: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

電流磁気効果

IB

E h

Er

Ep

物質に電流 Iを流しておき,時速磁束 Bを加えると電流と磁気の相互作用(ローレンツ力)によって,電圧が誘起される.

■B と I と同一平面で観測される電圧  ・電流に水平な成分  Er :縦電流磁気起電力効果(角野)                                  → 磁気抵抗効果  ・電流に垂直な成分 Ep:横電流磁気起電力効果(角野)                                  → プレーナーホール効果■B と I に垂直に観測される電圧  ・ Eh :ホール電圧                                  → ホール効果 

Page 28: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁性体中の電流磁気効果

電子は,スピンをもっているので,磁性体中では,磁化の効果が加わる

    非磁性体にも現れる   磁性体にのみ現れる

    正常磁気抵抗効果     異常磁気抵抗効果                       強制磁気抵抗効果                       異方性磁気抵抗効果◎        (正常)ホール効果◎     異常ホール効果                     (プレーナーホール効果は,磁気抵抗効果と垂直な方向で     観測した同じ現象である)          

「磁気工学ハンドブック」1 .5章(角野)を参考に整理した

Page 29: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気抵抗効果(別の分類方法)

磁気抵抗効果の分類

 正常磁気抵抗効果

 異常磁気抵抗効果  ・異方性磁気抵抗効果( AMR )

  ・巨大磁気抵抗効果( GMR )  ・トンネル型磁気抵抗効果( TMR )  ・超巨大(コロッサル)磁気抵抗効果( CMR )

Page 30: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気抵抗センサ① 現象=異方性磁気抵抗効果

θM

I

磁化容易軸:磁界をかけないとき M はこの方向を向いている

H

Hを大きくしていくと M の向きが変化するM と I のなす角を θ とすると,以下の関係がある.

                                                 ρ :抵抗率               ρ0 :外部磁界の無いときの抵抗率               Δρm: 最大抵抗率の変化

そのため, H の大きさによって,抵抗率が変化することとなる.

      (1) 20 cosm

Page 31: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気抵抗センサ② 原理

(a)H=0 (b)H≠0

H

① 磁界を強くする   ↓② スピンの向きが変化   ↓③ 電子の散乱(衝突の)  度合いが変化   ↓④ 抵抗値が変化

※散乱は (b) の方が小さい.伝導電子のスピンを考慮した2電流モデル

電流に水平に Hをかけた

電流に垂直に Hをかけた

Page 32: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気抵抗センサ③ 使われる材料

82 Ni-Fe 合金薄膜→抵抗は小さな磁界で飽和する.Δρ = 0.6μΩ ・cm

Page 33: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気抵抗センサ④ 特徴・用途

・感度 1%/ Oe →  比較的良い感度・広帯域,安定性に優れる・構造がシンプルで安価・再生ヘッドとして HDD の高密度化に役立った.  (←誘導型薄膜ヘッド)

・磁気記録のトラック幅の減少: MR センサの膜厚を薄くする必要  →電子散乱が起こり,性能に限界 → GMRヘッドに置き換え

・その他の磁気応用センサの分野も GMRヘッドが使われつつある.

Page 34: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

磁気センサの各論 II  巨大磁気抵抗( GMR )センサ

Page 35: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

GMR センサ① 開発の歴史

・ 1988 年  Fe/Cr 金属多層膜における GMR 効果 ( 巨大磁気抵抗効果)      の発見: 45% 抵抗変化  20kOe , 4.2K

      〔磁性薄膜間に磁気的な結合がある〕

・ 1989 年  Fe-Ni/Cu/Co多層膜  8% の抵抗変化 1kOe 以下,室温       〔磁性薄膜間に磁気的な結合がない〕

・ 1991 年 スピンバルブ膜の開発 

・グラニュラ合金での GMR の発見

Page 36: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

GMR センサ②  GMR 薄膜の構造(カップリングがある場合)

非磁性層(薄い)

磁性層

H=0H> 0

非磁性層の厚さを適切に選ぶ   ↓磁性層同士が漏れ磁界により磁気的にカップリングする.   ↓反平行にスピンが並ぶ

例) ( Fe3.0nm/Cr0.9nm ) ×60層

Page 37: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

GMR センサ③  GMR 薄膜の構造(カップリングが無い場合)

例) ( Cu5.0nm/Co3.0nm/Cu5.0nm/Ni-Fe3.0nm ) ×15層

CuCoCu

Ni-Fe (軟磁性)

Hが小さいとNi-Feだけが磁界方向に向く

Hが大きいとCo のスピンも磁界方向に向く

反平行 平行

Page 38: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

GMR センサ④  GMR 効果の原理

H=0

H=Hsat

■2 電流モデル:① スピンの向きが違う 2 種類の伝導  電子が,電気抵抗に関係している.

②伝導電子のスピンと磁性層のスピンの向きが同じなら散乱しにくい.逆向きなら散乱しやすい.

③散乱しやすい場合の抵抗 R ,散乱しにくい場合の抵抗 r とするとr<< R となる.

④ 等価回路から, H=0 の場合は,合成抵抗は(r+ R)/2 R/2≒H = Hsat の場合は, 2rR/(r+R) 2r≒

⑤磁界をかけた時(平行状態)の方が,抵抗が小さい.

r R

rR

r

R

r

R

↑の電子

↓の電子

Page 39: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

GMR センサ⑤  GMR の特性

■結合型 GMR 膜 ■非結合型 GMR 膜Co/Cu多層膜では,室温で 65% の抵抗変化

・大きな印加磁界が必要 (10~ 20kOe)・非磁性層の厚さを厳密に制御しないと 反平衡状態にならない.

・小さな磁界で抵抗が変化

・抵抗の変化値は小さい・ヒステリシス特性が現われる

Page 40: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

GMR センサ⑥ スピンバルブ膜

Fe-Mn(反強磁性層)

交換バイアス:反磁性層の影響で,等価的に磁界ができる

H

Fe-Ni (ピン層)Cu (非磁性層)Fe-Ni (フリー層)

Fe-Mn7nm/Ni-Fe4nm/Cu2.2nm/Ni-Fe6.2nm

小さな磁界で大きな MR 効果HDD 用ヘッドとして実用

Page 41: 各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、M I センサ、 FG センサ等  ①動作原理・理論 ②特性

GMR センサ⑦ グラニュラ膜

平行

単一磁区強磁性微粒子が非磁性金属微粒子中に分散( Co-Cu,Co-Ag,NiFe-Ag ) 磁性微粒子濃度: 15 ~ 30% (体積比)・磁界を加える前 平均的には反平行状態・磁界を加えることで,平行状態になる

簡単に作れる磁気抵抗の変化のために大きな磁界が必要

H