บทที่ 6 moment distribution methodcivil.in.th/cen321/cen321-06t.pdfmoment distribution...
Embed Size (px)
TRANSCRIPT
-
Moment Distribution Method 1
FABBAAB ML
32LEI2
M
+= )(
FBABABA ML
32LEI2
M
+= )(
6 Moment Distribution Method Indeterminate Beam Rigid Frame Slope-Deflection
4 1) Fixed End Moments2) Rotation A 3) Rotation B 4) Relative Translation A B
Moment Distribution Method 2
Moment DistributionLocking Joint
Fixed End Moments (MFAE ,MFEA ,MFED ,.... )
Unlocking Unbalanced Moment E (A ,B ,C D ) Carry-Over Moment
2
B
A C
D
EMFAE
MFDE
MFCEMFEA
MFED
MFEA+MFEB+MFBC+MFED
B
A C
D
E
-
Moment Distribution Method 3
Moment Distribution
Moment Slope-Deflection Moment
Rotation
Fixed End Moments ( Slope-Deflection )
+ -
+-
Moment Distribution Method 4
Fixed-End MomentsP
L
L/28
PL8
PL WL12
WL2
12WL2
W
L
a
)( 2222
a3aL8L6L12
Wa+ )( a3L4
L12Wa
2
3
P
L
a2
2
LPab b
2
2
LbPa
ML
a)( a2b
LMb
2 b
)( ab2LMa
2
WL20
WL2
30WL2
W
L96WL5 2
96WL5 2
L/2
1
3
5
2
4
6
7
-
Moment Distribution Method 5
Distribution Factor Distribution Joint
MFEDM
B
A C
D
E MFEC
MFEB
MFEA
Frame
Joint E
()
E
M
B
A C
D
E
B
A C
D
E
Moment Distribution Method 6
Slope-Deflection
EEAEEAEA 4K4LEI
M == )(
EECEECEC 4K4LEI
M == )(
EEBEEBEB 4K4LEI
M == )(
EEDEEDED 4K4LEI
M == )(
-
Moment Distribution Method 7
Joint E
K4KKKK4MMMMM EEDECEBEAEEDECEBEA =+++=+++= )(
MK
KM
KK
MK
KM
KK
K4M EDECEBEA
E )()()()( +
+
+
=
=
EDECEBEA MMMMM +++=
Distributed Moments
Distribution Factor
DEA DEB DBC DED Joint E Distribution Factor
Moment Distribution Method 8
Carry-Over Factor Carry-Over Moment (A) (B)
Slope-Deflection
MBAMAB A BA
AAB LEI
4M = ABA LEI
2M =
ABAB M21
M =
Carry-Over Moment
Carry-Over Factor (CBA) (B) Fixed End
-
Moment Distribution Method 9
EX.1 ( 1Joint) Moment Distribution
B
A C
D
E3I
2I
4II
1.2 k/ft.
10 ft10 ft
10 ft
10 ft
Moment Distribution Method 10
1) Fixed End Moments (FEM)
2) Distributed Moments (DM)
Fixed End Moment
Distributed Moments
D
B
A CE10 k-ft. .
.ftk10
121021
12WL
FEMFEM22
AEEA =
===
100.1100.210
0.310
0.410
)( 0FEM =
EI2010EI2
LEI
KEI1010EI
LEI
K EBEA .;. ======
EI4010EI4
LEI
KEI3010EI3
LEI
K EDEC .;. ======
EIEI40EI30EI20EI10K =+++= ....
10EIEI10KKDF EAEA ././ ===
40DF30DF20DF EDECEB .;.;. ===
-
Moment Distribution Method 11
2) Distributed Moments (DM) - Unbalance Moment
E = (0.110) + (0.210) + (0.310) + (0.410) = -10 ()
0010DFUMDM AEAE === 11010DFUMDM EAEA === .
0010DFUMDM BEBE === 22010DFUMDM EBEB === .
0010DFUMDM CECE === 33010DFUMDM ECEC === .
0010DFUMDM DEDE === 44010DFUMDM EDED === .
DFMomentUnbalanceDM =
Moment Distribution Method 12
3) Carry-Over Moments (COM)COM = DM () / 2
4) ()
Carry-Over Moments
DF 0 0.1 0 0.2 0 0.3 0 0.4 AE EA BE EB CE EC DE ED1) FEM -10 10 0 0 0 0 0 02) DM 0 -1 0 -2 0 -3 0 -43) COM -0.5 0 -1 0 -1.5 0 -2 04) -10.5 9 -1 -2 -1.5 -3 -2 -4
B
A C
D
1 2
342
0.5
1.51
DF= 0.1+0.2+0.3+0.4 = 1
-
Moment Distribution Method 13
EX.2 Moment Distribution( EI )
B C
60 ft. 20 ft. 20 ft.
A1 k/ft. 20 k
Moment Distribution Method 14
1) Fixed End Moments (FEM)
Fixed End Moments2) Distributed Moments (DM)
- Distribution Factor (DF)
Distributed Moments
B CA300 k-ft. 300 k-ft. 100 k-ft. 100 k-ft.
.ftk30012601
12WL
FEMFEM22
ABBA =
===
.ftk1008
40208
PLFEMFEM CBBC =
===
EI025040EI
KEI01667060EI
K BCBA .;. ====
EI041670EI0250EI016670K ... =+=
)(Fixed0DFAB =
200
BCA
80 12060 ft. 20 ft. 20 ft.
40EI041670EI016670KKDF BABA .././ ===
)(Fixed0DFCB =
60EI041670EI02570KKDF BCBc .././ ===
-
Moment Distribution Method 15
2) Distributed Moments (DM) - Unbalance Moment
A ; (-300) = 300 ()
B ; (300-100) = -200 ()
C ; 100 = -100 ()
00300DFUMDM ABAAB ===
8040200DFUMDM BABBA === .
12060200DFUMDM BCBBC === .
00100DFUMDM CBCCB ===
Moment Distribution Method 16
3) Carry-Over Moments (COM)COM = DM () / 2
4) ()
DF 0 0.4 0.6 0 AB BA BC CB1)FEM -300 300 -100 1002)DM 0 -80 -120 03)COM -40 0 0 -604) -340 220 -220 40
B CA340 220 220 40
B CA40 80 120 60
Carry-Over Moments
-
Moment Distribution Method 17
EX.3 A 0.0016 Rad. Moment Distribution ( EI = 10,000 k-ft2.)
B C
A
10 ft.
20 ft.
2II =0.0016 Rad.
Moment Distribution Method 18
1) = 0.0016 Rad. FEM
2) Distributed Moment (DM)
- Distribution Factor (DF)
..., ftk4610
00160000104LEI4
FEMAB =
=
=
..., ftk2310
00160000102LEI2
FEMBA =
=
=
B
A
10 ft.=0.0016 Rad.
3.2
6.4
EI1020EI2
KEI1010EI
K BCBA .;. ==== EI20EI10EI10K ... =+=
)(Fixed0DFAB = 50EI20EI10KKDF BABA .././ ===
)(Fixed0DFCB = 50EI20EI10KKDF BCBC .././ ===
-
Moment Distribution Method 19
2) Distributed Moments (DM) - Unbalance Moment
A ; 6.4 = -6.4 ()
B ; (3.2 - 0) = -3.2 ()
C ; 0
0046DFUMDM ABAAB === .
615023DFUMDM BABBA ... ===
615023DFUMDM BCBBC ... ===
0DFUMDM CBCCB ==
Moment Distribution Method 20
3) Carry-Over Moments (COM)COM = DM () / 2
4) ()
DF 0 0.5 0.5 0 AB BA BC CB1)FEM 6.4 3.2 0 02)DM 0 -1.6 -1.6 03)COM -0.8 0 0 -0.84) 5.6 1.6 -1.6 -0.8
BC
A5.6
1.6 0.8
-
Moment Distribution Method 21
Joint Joint Moment Distribution
FEM (Locking) DM (Unlocking) COM ()
Joint 1 Joint Moment Distribution Carry-Over Moment
FEM DM COM COM ()
Moment Distribution Method 22
EX.4 Moment Distribution ( E I )
BC
4 m. 2 m. 2 m.
A 300 kg/m.800 kg
EI EI
-
Moment Distribution Method 23
1) Fixed End Moments (FEM)
2) Distributed Moments (DM)
BC
4 m. 2 m. 2 m.
A300 kg/m.
800 kg
EI EI
-400 400 -800 800 .mkg40012
430012WL
FEM22
AB =
==
.mkg8008
480012
43008PL
12WL
FEM22
BC =
==
.mkg40012
430012WL
FEM22
BA =
==
.mkg8008
480012
43008
PL12WL
FEM22
CB =
+
=+=
EI2504EI
KEI2504EI
K BCBA .;. ==== EI50EI250EI250K ... =+=
)(Fixed0DFAB = 50EI50EI250KKDF BABA .././ ===
)(Hinge1DFCB = 50EI500EI250KKDF BCBc .././ ===
Moment Distribution Method 24
2) Distributed Moments (DM) - Unbalance Moment
A ; 400 = -400 ()
B ; (400-800) = -400 ()
C ; 800 = -800 ()
00400DFUMDM ABAAB ===
20050400DFUMDM BABBA === .
20050400DFUMDM BCBBC === .
8001800DFUMDM CBCCB ===
-
Moment Distribution Method 25
DF 0 0.5 0.5 1FEM -400 400 -800 800DM 0 200 200 -800COM 100 0 -400 100DM 0 200 200 -100COM 100 0 -50 100DM 0 25 25 -100COM 12.5 0 -50 12.5DM 0 25 25 -12.5COM 12.5 0 -6.25 12.5DM 0 3.125 3.125 -12.5COM 1.563 0 -6.25 1.563DM 0 3.125 3.125 -1.563COM 1.563 0 -0.781 1.563DM 0 0.391 0.391 -1.563 -172 857 -857 0
3) Carry-Over Moments (COM)COM = DM () / 2
4) ()
BA
300 kg/m.172 857
B C
300 kg/m.800 kg
857
Moment Distribution Method 26
EX.5 Moment Distribution (SFD) (BMD)( E I )
B
C
A3 m.
6 m.
2EIEI3 T/m.
2.5 T
3EI
6 m.
DE
6 T3 m.
3 m.
2EI
-
Moment Distribution Method 27
1) Fixed End Moments (FEM)
2) Distributed Moments (DM)
B
C
A3 m.
6 m.
2EIEI
3 T/m. 2.5 T
3EI
6 m.
DE
6 T3 m.
3 m.
2EI.// mT9126312WLFEM 22BD ===
..// mT548668PLFEMCB ===.// mT9126312WLFEM 22DB ===
..// mT548668PLFEMBC ===... mT57352PLFEMDE ===
0FEMFEM BAAB ==
EI50006EI3
KEI333306EI2
KEI166706EI
K BCBDBA .;.;. ======
EIEI5000EI3330EI1670K =++= ...
)(Fixed0DFAB =
1670KKDF BABA ./ == 5000KKDF BCBC ./ ==3330KKDF BDBD ./ ==
)(Fixed0DFCB = )(Cantiliver0DFED = )(Hinge1DFDB =
Moment Distribution Method 28
A B C D AB BA BD BC CB DB DEDF 0 0.167 0.333 0.5 0 1 0FEM 0 0 -9 4.5 -4.5 9 -7.5DM 0 0.75 1.5 2.25 0 -1.5 0
COM 0.35 0 -0.75 0 1.125 0.75 0DM 0 0.125 0.25 0.375 0 -0.75 0COM 0.063 0 -0.35 0 0.188 0.125 0DM 0 0.058 0.117 0.275 0 -0.125 0COM 0.029 0 -0.063 0 0.088 0.059 0DM 0 0.011 0.021 0.032 0 -0.059 0COM 0.006 0 -0.03 0 0.016 0.011 0DM 0 0.005 0.01 0.015 0 -0.011 0 0.45 0.95 -8.30 7.35 -3.08 7.5 -7.5
-
Moment Distribution Method 29
(BMD) (SFD)
B
C
AD E
0.45
-0.95-8.30
-3.08
-7.35
-7.50
(T.-m.)
B
C
A D E-0.23
-0.23
-3.71
9.13
-8.87
2.5
(T.)
Moment Distribution Method 30
Modified Stiffness Factor (K) (Far End) 4 1) Stiffness Factor Fixed ()
KAB = EI/L ( Stiffness Factor )
)( AAB 2LEI2
M = ALEI
4 = )(BA
-
Moment Distribution Method 31
2) Stiffness Factor Hinge (Modified Stiffness Factor K)
KAB = 3EI/4L (Modified Stiffness Factor Hinge)
3) Stiffness Factor (B = - A)
KAB = EI/2L (Modified Stiffness Factor B = - A)
)( BAAB 2LEI2
M +=BA
2 AB /=
)( BAAB 2LEI2
M = AL2EI1
4 = )(
AL4EI3
4 = )(
BABA
Moment Distribution Method 32
4) Stiffness Factor (B = A)
KAB = 3EI/2L (Modified Stiffness Factor B = A)
)( BAAB 2LEI2
M += AL2EI3
4 = )(
BA BA=
-
Moment Distribution Method 33
EX.6 4 Moment Distribution( E I )
BC
4 m. 2 m. 2 m.
A 300 kg/m.800 kg
EI EI
Moment Distribution Method 34
2) BC ( Hinge)
DF 0 0.571 0.429 1 AB BA BC CBFEM -400 400 -800 800DM 0 228.4 171.6 -800COM 114.2 0 -400 0DM 0 228.2 171.6 0COM 114.2 0 0 0DM 0 0 0 0 -171.6 856.8 -856.8 0
4EI
LEI
KBA == 16EI3
L4EI3
KBC ==
BC
4 m. 2 m. 2 m.A
300 kg/m.800 kg
EI EI-400 400 -800 800
3
16EI7
16EI3
4EI
K =+=
-
Moment Distribution Method 35
EX.7 Moment Distribution ( EI )
B C
A1.2 k/ft.
12 k
D
12 k
10 ft.10 ft. 10 ft. 10 ft.20 ft.
Moment Distribution Method 36
- Fixed End Moments (FEM)
DF 0 0.667 0.333 AB BA BCFEM -30 30 -40DM 0 6.67 3.33COM 3.33 0 0DM 0 0 0 -26.27 36.67 -36.67 36.67 -36.67 26.67
.// ftk30820128PLFEMAB ===
././ ftk4012202112WLFEM 22BC ===
./ ftk3082012FEMBA ==
./. ftk40122021FEM 2CB ==
.// ftk30820128PLFEMCD === ./ ftk3082012FEMDC ==
40EI
340EI
20EI
K20EI
KBA =+== ,
-
Moment Distribution Method 37
EX.8 Moment Distribution ( EI )
DC
1.2 k/ft. 1.2 k/ft. 1.2 k/ft.
A B E F
24 ft. 24 ft. 24 ft. 24 ft. 24 ft.
Moment Distribution Method 38
- Fixed End Moments (FEM)
- Stiffness Factor (K) Distribution Factor (DF) B
C
.././ ftk65712242112WLFEMFEM 22BAAB ====
96EI7
24EI
32EI
K24EI
LEI
K32EI
L4EI3
K BCBA =+===== ,,
.././ ftk65712242112WLFEMFEM 22DCCD ====
.././ ftk65712242112WLFEMFEM 22FEEF ====
16EI
48EI
24EI
K48EI
242EI1
K24EI
LEI
K CDCB =+===== ,,
5710KKDF4290KKDF BCBCBABA ./;./ ====
3330KKDF6670KKDF CDCDCBCB ./;./ ====
-
Moment Distribution Method 39
DF 1 0.429 0.571 0.667 0.333FEM -57.6 57.6 0 0 -57.6DM 57.6 -24.7 -32.9 38.4 19.2COM 0 28.8 19.2 -16.5 0DM 0 -20.6 -27.4 -11 5.5COM 0 0 5.5 -13.7 0DM 0 -2.36 -3.14 9.14 4.56COM 0 0 4.57 -1.57 0DM 0 -1.96 -2.61 1.05 0.52COM 0 0 0.53 -1.31 0DM 0 -0.23 -0.30 0.87 0.44COM 0 0 0.44 -0.15 0DM 0 -0.19 -0.25 0.10 0.05COM 0 0 0.05 -0.13 0DM 0 -0.02 -0.03 0.09 0.04 0 36.3 -36.3 27.3 -27.3
Moment Distribution Method 40
Moment Distribution Joint
Joint(=0)
Frame Joint
Frame (Sway)
-
Moment Distribution Method 41
Superposition ( Joint Translation) 1) Joint Translation R Joint- Moment Distribution R 2) R R- Joint
R
R=
+
Moment Distribution Method 42
R Joint Joint Translation
R Joint Translation
1) Joint Translation Joint- F.E.M. Lock Joint
2) Joint Rotation 1)- Unlock Joint Moment Distribution
Note - Moment Distribution F.E.M. Joint Translation
=
+
R1
R2
-
Moment Distribution Method 43
EX.9 Moment Distribution ( E I )
3EIa
Wb
L
EIc
L
Moment Distribution Method 44
1) Joint Translation
ac ca cb bcDF 0 0.75 0.25 0FEM -0.0833 0.0833 -0.0833 0.0833 WL2
DM 0 0 0 0 -0.0833 0.0833 -0.0833 0.0833 WL2
R
wL/2wL/2
w
wL/2
-0.0833wL2 wwL/2 wL/2
0.0833wL20.0833wL2
bccbcaac FEMFEMFEMFEM ===
222 WL121
12242112WL === /./
LEI4
KLEI
KLEI3
K cbca === ;;
R3EIa
Wb
L
EIc
L
)(Fixed0DFac =
750LEI4LEI3DFca .)//()/( ==
)(Fixed0DFbc =
250LEI4LEIDFcb .)//()/( ==
- Fixed End Moment (FEM)
- Stiffness Factor (K)
- Distribution Factor (DF)
-
Moment Distribution Method 45
WL3EIa W b
L
EIc
L
22ac LEI18
LEI36
FEM
=
=)(
2) R Joint-Translation Fixed-End Moment Moment Distribution
- Fixed End Moment (FEM) ac ca cb bcDF 0 0.75 0.25 0FEM -18 -18 6 6 EI/L2
COM 4.5 0 0 1.5DM 0 0 0 0 -13.5 -9 9 7.5 EI/L2
22ca LEI18
LEI36
FEM
=
=)(
2cb LEI6
FEM
= 2bc LEI6
FEM
=
3EI
a b
L
EIcL
Moment Distribution Method 46
Fy = 0
ac ca cb bc -13.5 -9 9 7.5 EI/L2 = 1 / 39(1) -0.0833 0.0833 -0.0833 0.0833(2) -0.3462 -0.2308 0.2308 0.1923
M -0.4295 -0.1475 0.1475 0.2756 WL2
WL3EI
a22.5EI/L2
b
L
EIc
L
16.5EI/L22LEI516522WL /)..( +=
39WL
LEI 2
2 =
-
Moment Distribution Method 47
EX.10 Joint Moment Distribution( E I )
9 kN.
EI
8/3EI
6 m.
6 m.
A
B C
Moment Distribution Method 48
- 9 kN. B
- C BC Roller
- Fixed End Moment (FEM)
=1.
6 m.
6 m.
RC
A
B
6 m.
6 m.
9 kNC
A
B
;)(6EI
LEI
K ABBA ==
6EI636EI2FEMFEM BAAB /)/(/ ===
9EI4
63EI8
LEI
K BCBC === )(
3EI
9EI4
43
KBC ==
0FEMFEM CBBC ==
2EI
3EI
6EI
K =+=
-
Moment Distribution Method 49
- Distribution Factor (DF)
AB BA BC CBDF 0 0.333 0.667 1FEM -0.1667 -0.1667 0 0 EIDM 0 0.0556 0.1111 0COM 0.0278 0 0 0DM 0 0 0 0 -0.1389 -0.1111 0.1111 0 EI
)(Fixed0DFAB = 3330EI500EI1670KKDF BABA .././ ===
)(Hinge1DFCB = 6670EI500EI3330KKDF BCBC .././ ===
Moment Distribution Method 50
- B (Fx=0)0.0417EI = 9 kN. EI = 216 ( EI )
AB BA BC CB
-0.1389 -0.1111 0.1111 0 EI = 216M -30 -24 24 0
9 kN.0.1111EI
0.1111EI
0.1389EIA
BC
0.0417EI
0.1417EI
0.1111EI
0.1389EIA
B0.1111EI
0.0185EI 0.0185EI
B C
-
Moment Distribution Method 51
EI = Moment-Distribution 9 kN. Factor
9 kN.24
24
30A
B C
Moment Distribution Method 52
EX.11 Moment Distribution( E I )
600 kg/m
EI
2EI
2.5 m.
1.5 m.300 kg
1.5 m.
1.0 m.A
B C
D
1.5EI
-
Moment Distribution Method 53
- Fixed End Moments (FEM)
- Stiffness Factor (K) Distribution Factor (DF) B ; ;)(
3EI
LEI
K BABA ==
.. mkg51128
33008PL
FEMAB =
=
=
.. mkg51128
33008
PLFEMBA =
==
... mkg531212
5260012WL
FEM22
BC =
=
=
... mkg531212
5260012WL
FEM22
CB =
==
5EI4
52EI2
LEI
K BCBC === .)(
15EI17
5EI4
3EI
K =+=
600 kg/m
EI
2EI
2.5 m.
1.5 m.300 kg
1.5 m.
1.0 m.A
B C
D
1.5EI
)(Fixed0DFAB = 294015EI17
3EI
KK
DF BABA ./ === 7060
15EI17
5EI4
KK
DF BCBC ./ ===
Moment Distribution Method 54
C ;
1) Moment Distribution Joint Translation
600 kg/m
300 kg
A
B C
D
5EI4
52EI2
LEI
K CBCB === .)(
32EI9
44EI513
L4EI3
K CDCD =
==.)(
160EI173
32EI9
5EI4
K =+=
)(Hinge1DFDC =7400160EI173
5EI4
KK
DF CBCB ./ === 2600
160EI173
32EI9
KK
DF CDCD ./ ===
-
Moment Distribution Method 55
A B C D AB BA BC CB CD DCDF 0 0.294 0.706 0.740 0.260 1FEM -112.5 112.5 -312.5 312.5 0 0DM 0 58.8 141.2 -231.2 -81.3 0
COM 29.4 0 -115.6 70.6 0 0DM 0 34.0 81.6 -52.2 -18.4 0 COM 17 0 -26.1 40.8 0 0DM 0 7.67 18.43 -30.2 -10.6 0COM 3.84 0 -15.1 9.22 0 0DM 0 4.44 10.66 -6.82 -2.40 0COM 2.22 0 -3.41 5.33 0 0DM 0 1.00 2.41 -3.94 -1.39 0COM 0.50 0 -1.97 1.21 0 0DM 0 0.58 1.39 -0.80 -0.31 0COM 0.29 0 -0.45 0.70 0 0DM 0 0.13 0.32 -0.52 -0.18 0(1) -59.3 219.1 -219.1 114.6 -114.6 0
Moment Distribution Method 56
(H) = 300-96.7-28.7= 174.6 kg.
()
D 28.7
28.7600 kg/m
C701.8
B708.2
114.6
300
A
B
97.6
203.3
59.3
219.1
-
Moment Distribution Method 57
2) H Joint-Translation Fixed-End Moment
Moment Distribution
- Fixed End Moments (FEM)
A
B C
D
3EI2
33
3EI2
FEMFEM BAAB
=
== )(
0FEMFEM CBBC ==
16EI9
43
4EI51
2FEMFEM DCCD
=
== ))(.(
174.6 kg
A
B C
D
Moment Distribution Method 58
AB BA BC CB CD DCDF 0 0.294 0.706 0.740 0.260 1FEM -0.6667 -0.6667 0 0 -0.5625 -0.5625 EIDM 0 0.196 0.471 0.4163 0.1463 0.5625
COM 0.098 0 0.2082 0.2355 0.2813 0DM 0 -0.0612 -0.1470 -0.3824 -0.1344 0COM -0.0306 0 -0.1912 -0.0735 0 0 DM 0 0.0562 0.1350 0.0544 0.0191 0COM 0.0281 0 0.0272 0.0675 0 0DM 0 -0.0080 -0.0192 -0.0500 -0.0175 0COM -0.0040 0 -0.0250 -0.0096 0 0DM 0 0.0074 0.0176 0.0071 0.0025 0COM 0.0037 0 0.0036 0.0088 0 0DM 0 -0.0011 -0.0025 -0.0065 -0.0023 0COM -0.0006 0 -0.0033 -0.0013 0 0DM 0 0.0010 0.0023 0.0010 0.0003 0(2) -0.5721 -0.4764 0.4764 0.2673 -0.2672 0 EI
-
Moment Distribution Method 59
- EI (Fx =0)0.3495EI + 0.0668EI = 174.6EI = 174.6/0.4163 = 419.4 EI = 419.4 (2)
(1) -59.3 219.1 -219.1 114.6 -114.6 0(2) -0.5721 -0.4764 0.4764 0.2673 -0.2672 0 EI = 419.4(2) -239.9 -199.8 199.8 112.1 -112.1 0
AB BA BC CB CD DC(1)+(2) -299.2 19.3 -19.3 226.7 -226.7 0 kg.-m.
174.6 kg
A
BC
D 0.0668EI
0.3495EI
Moment Distribution Method 60
EX.12 Moment Distribution ( EI )
100 kg
A
B C
D
3 m. 5 m. 3 m.
4 m.
4 m.
-
Moment Distribution Method 61
1) Joint Translation- Fixed End Moments- H = 100 kg.
2) Joint Translation-
100 kg
A
B C
D
3 m. 5 m. 3 m.
4 m.
4 m.H=100 kg
100 kg
A
B C
D
Joint Translation
=
== EI256
53
5EI2
FEMFEM BAAB )(
0FEMFEM CBBC ==
=
== EI256
53
5EI2
FEMFEM DCCD
45
SIN
=
=
Moment Distribution Method 62
- Stiffness Factor (K)
B ;
C ;
- Distribution Factor (DF)
;)(5EI
LEI
K BABA == ;)( 5EI
LEI
K BCBC == 5EI2
5EI
5EI
K =+=
;)(5EI
LEI
K CBCB == ;)( 5EI
LEI
K CDCD == 5EI2
5EI
5EI
K =+=
)(Fixed0DFAB = 50EI400EI20DFDF BCBA ../. ===
)(Fixed0DFDC = 50EI400EI20DFDF CDCB ../. ===
-
Moment Distribution Method 63
AB BA BC CB CD DCDF 0 0.5 0.5 0.5 0.5 0FEM -0.24 -0.24 0 0 0.24 0.24DM 0 0.12 0.12 -0.12 -0.12 0COM 0.06 0 -0.06 0.06 0 -0.06DM 0 0.03 0.03 -0.03 -0.03 0COM 0.015 0 -0.015 0.015 0 -0.015DM 0 0.0075 0.0075 -0.0075 -0.0075 0 COM 0.0038 0 -0.0038 -0.0038 0 -0.0038DM 0 0.0019 0.0019 -0.0019 -0.0019 0 COM 0.0009 0 -0.0009 0.0009 0 -0.0009DM 0 0.0004 0.0005 -0.0005 -0.0004 0COM 0.0002 0 -0.0003 0.0003 0 -0.0002DM 0 0.00015 0.00015 -0.00015 -0.00015 0
-0.1601 -0.0801 0.0801 -0.0801 0.0801 0.1601 EI
Moment Distribution Method 64
- EI (Fx=0)100 = 0.0601EI 2 EI = 831.9 EI = 831.9
-0.1601 -0.0801 0.0801 -0.0801 0.0801 0.1601 EI = 831.9
-
AB BA BC CB CD DCM -133.2 -66.6 66.6 -66.6 66.6 133.2 kg.-m.
100 kg B CD
A0.0601EI
0.0601EI
-
Moment Distribution Method 65
Joint Translation 1 Degree of Freedom Moment Distribution
n DOF. Joint Translation n+1 case
Case 1 Joint Translation Rotation Case 2 (n+1) Joint Translation Case 1 DOF.
Lock Joint Translation Case
Moment Distribution Method 66
3 3 DOFS Joint Translation
F1
F2
F3
Case 1 Lock DOF
-
Moment Distribution Method 67
F1 = x1 + r12 x2 + r13 x3F2 = r21 x1 + x2 + r23 x3F3 = r31 x1 + r32 x2 + x3
r31 x1r21 x1
x1
Case 2 Lock DOF 1
r32 x2
r12 x2
x2
Case 3 Lock DOF 2
r23 x3r13 x3
x3
Case 4 Lock DOF 3
x1 , x2 x3
Moment Distribution Method 68
EX.13 Moment Distribution (EI )
50 k
100 k 20 ft.
20 ft.
10 ft.
6 ft.4 ft.
6 ft.4 ft.
A
B
C D
E
F
-
Moment Distribution Method 69
- 2 DOF Joint Translation 3 Case (n+1)
Case 1) DOF Joint Translation Lock - Fixed End Moments (FEM)
.ftk14410
64100L
PabFEM 2
2
2
2
BE =
==
0FEM =
.ftk9610
64100L
bPaFEM 2
2
2
2
EB =
==
.ftk7210
6450L
PabFEM 2
2
2
2
CD =
==
.ftk4810
6450L
bPaFEM 2
2
2
2
EB =
==
50 k
100 k 20 ft.
20 ft.
10 ft.
6 ft.4 ft.
6 ft.4 ft.
A
B
CD
E
F
Moment Distribution Method 70
- Distribution Factor (DF) B ;
E ; C ;
D ;
Moment Distribution
;)(20EI
LEI
K BABA == ;20EI
KBC = 5EI1
10EI
20EI
20EI
K =++=;10EI
KBE =
500DF250DF250DF BEBCBA .;.;. ===
500DF250DF250DF EBEDEF .;.;. ===;)(
20EI
LEI
K BACB == ;10EI
KCD = 20EI3
10EI
20EI
K =+=
6670DF3330DF CDCB .;. ==
6670DF3330DF DCDE .;. ==
50 k
100 k
43.6
20.4
52.6
40.893.4
34.1
41.2
31.115.6
3.06 2.345
1.045
0.3372.5
-
Moment Distribution Method 71
Case 2) Joint B E Lock - Fixed End Moments (FEM)
- Distribution Factor (DF) Case 1 Moment Distribution
200EI3
203
20EI2
FEMFEMFEMFEM EFFEBAAB
=
==== )(
0FEM =
20 ft.
20 ft.
10 ft.
A
B
C D
E
F
x1200EI3
203
20EI2
FEMFEMFEMFEM DEEDCBBC
=
==== )(
2.07x10.455x1
2.07x1
0.272x1 0.273x1
0.273x10.273x1
2.70x1 2.70x1
0.21x12.49x12.07x1
2.49x1x1
Moment Distribution Method 72
Case 3) Joint C D Lock - Fixed End Moments (FEM)
- Distribution Factor (DF) Case 1 Moment Distribution
0FEM =
200EI3
203
20EI2
FEMFEMFEMFEM DEEDCBBC
=
==== )(20 ft.
20 ft.
10 ft.
A
B
CD
E
F
x2
4.90x2
1.19x2
4.90x2
0.095x2 0.095x2
0.635x20.635x2
1.27x2 1.27x2
3.82x25.08x2
2.07x25.08x2
x2
-
Moment Distribution Method 73
- 3
D 1.045 = -0.455X1 + X2 E 0.330 = -X1 + 1.19X2
X1 Case 2 X2 Case 3 Case 1 , Case 2 Case 3
2 1 3
21AB X6350X732420M ... +=
.. ftk2116M AB =
X1 = 1.99 kX2 = 1.95 k
Moment Distribution Method 74
EX.14 Moment Distribution1) B2) A , B C ( E I )
6 m. 4 m.
3EIA
20 kN
B EIC
3 m.
-
Moment Distribution Method 75
1) Joint Translation B- Fixed End Moments (FEM)
- Stiffness Factor (K)
FEM
- Distribution Factor (DF)
3EIA
20 kNB
6 m.EI C
4 m.
3 m.
0FEMFEM BAAB ==
.. mkN7534
3120L
bPaFEM 2
2
2
2
CB =
==
.. mkN25114
3120L
PabFEM 2
2
2
2
BC =
==
EI50KBA .= EI250KBC .=EI750K .=
6670DFBA .= 3330DFBC .=
PB C
Lba
Moment Distribution Method 76
AB BA BC CBDF 0 0.667 0.333 0FEM 0 0 -11.3 3.8DM 0 7.5 3.8 0
COM 3.8 0 0 1.9DM 0 0 0 0 3.8 7.5 -7.5 5.6
1 B
2 Joint Translation
BABCB VVR =
BCCBBCBC L320MMV /)( ++=
.).( mkN317RB =
ABBAABCB LMMV /)( +=
RB
VBA B VBC
A
RBB
C= EI50FEMAB .= EI50FEMBA .= EI3750FEMBC .= EI3750FEMCB .
-
Moment Distribution Method 77
AB BA BC CBDF 0 0.667 0.333 0
FEM -0.5 -0.5 0.375 0.375DM 0 0.083 0.042 0
COM 0.042 0 0 0.021DM 0 0 0 0 -0.458 -0.417 0.417 0.396 EI(2) -22.8 -20.7 20.7 19.7
(1)+(2) -19 -13.2 13.2 25.3
RB = 0.349EI EI = 17.3 / 0.349 = 49.7 / EI = 49.7 / EI
A = -19.0 kN-m. B = 13.2 kN-m. C = -25.3 kN-m.
Moment Distribution Method 78
EX.15 Moment Distribution( EI)
1.2 k/ft.
24 ft. 24 ft. 24 ft. 24 ft.
DCA B E
-
Moment Distribution Method 79
- C Joint C C= 0 Fixed Support
- Fixed End Moments (FEM)
- Stiffness Factor (K) Distribution Factor (DF)
1.2 k/ft.
24 ft. 24 ft.
CAB
../ ftk65712WLFEMFEM 2BAAB ===
96EI7
24EI
32EI
K24EI
LEI
K32EI
L4EI3
K BCBA =+===== ,,
../ ftk65712WLFEMFEM 2DCCD ===
5710KKDF4290KKDF BCBCBABA ./;./ ====
B ;
Moment Distribution Method 80
AB BA BC CB CD DC DE EDDF 1 0.429 0.571 0FEM -57.6 57.6 -57.6 57.6DM 57.6 0 0 0COM 0 28.8 0 1.9DM 0 -12.36 -16.44 0COM 0 28.8 0 -8.22DM 57.6 0 0 0 0 74.04 -74.04 49.38 -49.38 74.04 -74.04 0
-
Moment Distribution Method 81
-
1.2 k/ft.
24 ft. 24 ft. 24 ft. 24 ft.
DCA B E1.2 k/ft.
CB CD 0 Simply Support
Moment Distribution Method 82
- Fixed End Moments (FEM)
- Stiffness Factor (K) Distribution Factor (DF)
1.2 k/ft.
DCA B E24 ft. 24 ft. 24 ft. 24 ft.
1.2 k/ft.
CB CD 0
../ ftk65712WLFEMFEM 2CBBC ===
../ ftk65712WLFEMFEM 2DCCD ===
1.2 k/ft.
24 ft. 24 ft.
CAB
16EI
32EI
32EI
K32EI
L4EI3
K32EI
L4EI3
K BCAB =+===== ;;
50161321DFDF CBBC .)//()/( ===
B ;
)(Hinge1DFAB =
-
Moment Distribution Method 83
AB BA BC CB CD DC DE EDDF 0.6 0.46 0.23 1FEM 0 0 -57.6 57.6DM 0 28.8 28.8 0COM 0 0 0 0DM 0 0 0 0 0 28.8 -28.8 57.6 -57.6 -28.8 28.8 0
Moment Distribution Method 84
EX.16 Moment Distribution( ACI)
2 k/ft. CA B4 k/ft. 2 k/ft.
4 k/ft.4 k/ft. 2 k/ft.
D
EF G
H
I J K L
EI
EI
EIEI
EI EI
EI
EI
2EI
2EI2EI
2EI2EI
2EI
16 ft. 16 ft. 16 ft.
12 ft.
12 ft.
-
Moment Distribution Method 85
-
- Fixed End Moments (FEM)
- Stiffness Factor (K) Distribution Factor (DF)
2 k/ft. CA B4 k/ft. 2 k/ft.
D
EEI
2EI 2EI2EI
16 ft. 16 ft. 16 ft.
12 ft.FEI
GEI
HEI
../ ftk674212162FEMFEMFEMFEM 2DCCDBAAB =====
60DF24EI5
8EI
12EI
K8EI
16EI2
K12EI
K ABABAE .;; ==+====
460481381DFBA .)//()/( ==
A ;
../ ftk338512164FEMFEM 2CBBC ===
48EI13
K12EI
K16EI
32EI2
K8EI
K BFBCBA ===== ;;; B ;
2304813161DFBC .)//()/( ==
Moment Distribution Method 86
AB BA BCDF 0.6 0.46 0.23FEM -42.67 42.67 -85.33 DM 25.60 19.62 9.81COM 9.81 12.80 0DM -5.89 -5.89 -2.49COM -2.49 -2.49 0DM 1.76 1.35 0.68COM 0.68 0.88 0DM -0.41 -0.4 -0.40 -14.06 69.09 -77.98
-
Moment Distribution Method 87
14.06 k-ft.(MAF)
Joint [68.09+(-77.98)] = 9.89 k-ft.(MBF)
AB BA BCM -14.06 69.09 -77.98
7.03
14.06
14.06 68.09
9.89
77.98
4.95
77.98
- 1/2 Carry-Over Unlock
Moment Distribution Method 88
- Fixed End Moments (FEM)
- Stiffness Factor (K)
../ ftk674212162FEMFEMFEMFEM 2DCCDBAAB =====
StiffnessColumn12EI
KKKK FJBFEIAE ====
../ ftk338512164FEMFEM 2CBBC ===
4 k/ft. GE F 2 k/ft.4 k/ft.
H
IEI
2EI 2EI2EI
16 ft. 16 ft. 16 ft.
12 ft.JEI
KEI
LEI
A
EI
B
EI EI EI 12 ft.
C D
StiffnessBeam16EI
K8EI
K FGEF == ;;
-
Moment Distribution Method 89
EF FE FGDF 0.43 0.35 0.18FEM -85.33 85.33 -42.67 DM 36.69 -14.93 -7.68COM -7.47 18.35 0DM 3.21 -6.42 -3.30COM -3.21 1.16 0DM 1.38 -0.56 -0.29 -54.73 83.38 -53.94
Moment Distribution Method 90
- Joint E 2 Stiffness Factor (K)
..).( ftk3727735421
MM EIEA ===
..).( ftk713372721
MM IEAE ===
..).( ftk7214442921
MM FJFB ===
..).( ftk47721421
MM JFBF ===