Ê ÅÁ aʼ¸ Ä»zÀÅz» |» ®Ì¿z°»Ê |ÀÆ» · m. navabi, h.r. mirzaei, dynamic modeling...

12
1394 15 5 1 - 12 mme.modares.ac.ir : Please cite this article using: M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering Vol. 15, No. 5, pp. 1-12, 2015 (In Persian) 1 * 2 1 - 2 - - * 1983963113 [email protected] : 04 1393 : 09 1393 : 15 1394 . - . . - - - . . . . Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight Mohammad Navabi*, Hamidreza Mirzaei Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran. P.O.B. 1983963113 Tehran, Iran, [email protected] ARTICLE INFORMATION ABSTRACT Original Research Paper Received 26 September 2014 Accepted 28 February 2015 Available Online 04 April 2015 This paper presents dynamic modeling, classical and nonlinear control of flight of mesicopter. First, nonlinear multiple-input multiple-output model is derived taking into consideration the body and rotor gyroscopic effects, then three classical control methods for fast response with high performance are used and compared with respect to control effort. Mesicopters are always affected by uncertainties. Classical approach is not able to properly compensate these effects. To overcome this problem, model reference adaptive control is used with three different types based on single-input single-output linear equations, multiple-input multiple-output linear equations and nonlinear multiple-input multiple-output equations. Based on the simulation results, the adaptive control method with estimation mechanism improved performance, attitude stabilization and control of system states in different conditions. Stability is guaranteed by Lyapunov stability theory. Results demonstrate good performance of adaptive control for parameter uncertainty compensation. Keywords: Mesicopter Nonlinear Control Optimal Control Adaptive Control 1 - ] 1 .[ ) ( . . ] 2 .[ 4 . ] 3 .[ . . . Downloaded from mme.modares.ac.ir at 1:12 IRST on Sunday January 31st 2021

Upload: others

Post on 28-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

139415 5 1 -12

mme.modares.ac.ir

: Please cite this article using:

M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering Vol. 15, No. 5, pp. 1-12, 2015 (In Persian)

1*2

1- 2- - * [email protected]

:04 1393 :09 1393

:15 1394

.-

.

. - - -

. . .

.

Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight

Mohammad Navabi*, Hamidreza Mirzaei

Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran.P.O.B. 1983963113 Tehran, Iran, [email protected]

ARTICLE INFORMATION ABSTRACTOriginal Research PaperReceived 26 September 2014Accepted 28 February 2015Available Online 04 April 2015

This paper presents dynamic modeling, classical and nonlinear control of flight of mesicopter.First, nonlinear multiple-input multiple-output model is derived taking into consideration thebody and rotor gyroscopic effects, then three classical control methods for fast response with highperformance are used and compared with respect to control effort. Mesicopters are alwaysaffected by uncertainties. Classical approach is not able to properly compensate these effects. Toovercome this problem, model reference adaptive control is used with three different types basedon single-input single-output linear equations, multiple-input multiple-output linear equationsand nonlinear multiple-input multiple-output equations. Based on the simulation results, theadaptive control method with estimation mechanism improved performance, attitudestabilization and control of system states in different conditions. Stability is guaranteed byLyapunov stability theory. Results demonstrate good performance of adaptive control forparameter uncertainty compensation.

Keywords:MesicopterNonlinear ControlOptimal ControlAdaptive Control

1 -

] 1 .[

) ( .

.

] 2.[4

.

] 3 .[

.

. .

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021

Page 2: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

2 139415 5

. 1

]5.[

.

.

.4 .

.

.

. PID2 LQR3 . PID

LQR ]6[.

. ]7[.

PD PID .

.

PID ]8[.LQR PID

. -LQR

PID ]9[.

.-

]10[. .

.

1- Mesicopter2- Proportional-Integral-Derivative 3- Linear Quadratic Regulator

]11[ . PID

.

.

.

.

.

.

. .

.

2 -

.

.

.x y

z . 1 .x

y z .

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021

Page 3: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

139415 5 3

1

2

B ]V u v w E Z]V X

B ]p q r E ] .

R .)1( ( , )R z

z ( , )R y y ( , )R x

x ]12[) .1 () .c cos ,s sin ,t tank k k k k k (

)1(

BE

c c -s c c s s s s c s cs c c c s s s -c s s s c

( ) ( ) ( )

c

R V

R

V

R z R y R x

T)2( .

)2(

E 1 B

1

s t c ts

s /c c /c

s t c t

s /c c /c

T

T

pqr

Q

Q

2

.

.

) )3(( ) )9( ( B B B ]x y zF F F

x y z

2-1- :1-

2 - 3- 14- . .)4(

)4( B B B B BG T H FF F F F F

2-1 -1- B

GF 1R )5(

)5(

EG

B -1 EG G

sincos sincos cos

Fmg

mgF R F mg

mg

2-1 -2-

z . )6( ] 13.[

)6(

2T rad

2 2 twT0

1 1 1( ) -(1+ )6 4

)

4

(

8

T C A RC

a

TC NcR

[m]c Na 0[rad] tw[rad]

m 2 r rad[m]R

2-1 -3- z

H) )7((Y . H

Y

.H ( )

.

1- Hub Force 2- Rotor Advance Ratio

)3(

BBb/i

B

B

B

B

( )

-1-

-

x

y

z

dvm v Fdt

Fu rv qwv pw ru F

mw qu pv F

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021

Page 4: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

4 139415 5

)7(

2H rad

twHd 0

4

1

T

1 14 4 2

-

( )

00

ii

H C A RC C

a

H

H

2-1 -4-

.

. xy .

)8(

)8( B 2

F D12

F C Av

rh I J . :

)9(

b/iB B Bb/i b/i r b/i r

B B

B B B Br

p p p(

0 0) (J 0 0 )

d dM I I J Jdt dt

pI q M q I q q

r r r r

2-2- )10(

: 1- .2- .3-

)10( BQ T R HM M M M M

2-2-1- 2 4 ) )11(: (

)11( Tx 4 2( )M L T T

1 3 ) )12(:(

)12( Ty 3 1( )M L T T

2-2-2 -

Q )13( R )14(

)13(

2Q rad

Q 2

Q1 2 3

D 0 t 0

4

w1 1 1 1(1

( )

) ( )8 6 8 4

z

C A R RC

Ca a

M Q Q Q Q

Q W

)14(

2R ra

R1 2

0 t

4

d

R

3

w

( )1 1 1( )6 8 8

z

C A R RC

a

M R R R R

R

2-2-3 - h

y )15(

)15( 4

H

1( )y i

iM h H

2 4 z )16( :

)16( H2 4( )zM L H H

.

- )17( ]14[:

)17( 0.936( )

0.178 1G s

s

2-3-

)18(

)18(

20

1

2 2 2 21 2 3 4

2 3 4

0

4

4

b mg

mgb

b mgW W W WW

W W W W

W

3 - 3

x . 4 5

. ) )1( ( .

.1

4 -

1 ]4[

kg650/0 xkg.m2 3-10×5/7 ykg.m2 3-10×5/7 zkg.m2 2-10×3/1 N.s2

5-10×13/3 N.m.s2 7-10×5/7 m 32/0

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021

Page 5: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

139415 5 5

3

4

5

.

4 -1 - -– )19(

6

6 .

(E) .( )U

. )20( :

)20(

2 31 41 2

2

2 1 2 42

2 31 43

2 1 2 44

4 2 4

4 2 4

4 2 4

4 2 4

UU Ub bL d

U U Ub bL d

UU Ub bL d

U U Ub bL d

W

W

W

W

45 . 7 8

.PID

4-2 - 1

T]x z z= ))21(.(

)21( ( ) ( ) ( )( ) ( )

x t Ax t Buy t Cx t

t

8A RÎ8 4B R ´Î4 8C R ´Î é ù= ë ûT

1 2 3 4u u u u u .)22(

) .(

)22( ( ) ( )u Kx t Nr t

( )r t ( )x t N K .

K N

1- Full State Feedback Control (FSC)

0 1 2 3 4 5 6 7 8 9 10210

220

230

t (s)

1

(rad

2 /s2 )

0 1 2 3 4 5 6 7 8 9 10224

226228

t (s)

2

(rad

2 /s2 )

0 1 2 3 4 5 6 7 8 9 10220

230240

t (s)

3

(rad

2 /s2 )

0 1 2 3 4 5 6 7 8 9 10224

226228

t (s)

4

(rad

2 /s2 )

0 1 2 3 4 5 6 7 8 9 100

2000

4000

t (s)

(de

g)

0 1 2 3 4 5 6 7 8 9 10-100

0

100

t (s)

(

deg)

0 1 2 3 4 5 6 7 8 9 10-200

-100

0

t (s)

(

deg)

0 5 100

2

4

6

8

10

t (s)

X (m

)

0 5 10-1

0

1

2

3

4x 10-3

t (s)

Y (m

)

0 5 10-11

-10.5

-10

-9.5

t (s)

Z (m

)

0 5 10-1

0

1

2

3

4x 10-3

X (m)

Y (m

)

)19(

2 2 2 21 2 3 4

2 24 2

2 21 3

2 2 2 2

1

2

3

1 2 3 44

( )

( )

( )

( )

U b

U bL

U bL

U d

W W W W

W W

W W

W W W W

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021

Page 6: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

6 139415 5

7

8

9

] 15:[ .

)22 (:

10

)23( ( ) ( ) ( ) ( )( ) ( )

x t A BK x t BNr ty t Cx t

K N .

1 2 , , n .)24( K

)24( 1 2det( ) ( )( ) ( )nsI A BK s s s

N )25(

N 1 T .

.9

.

. 10

4-3- p q n )21(

.)26(

)26( 0

T T1 ( ) ( ) ( ) ( )2 t

J x t Qx t u t Ru t dt

Q R . -

( )u kx t= - .k 1 TR B P- .P

)27( ] 16.[)27( T 1 0PA A P Q PBR BP

. .

1- Right Inverse

0 2 4 6-15

-10

-5

0

5

t (s)

Z (

m)

0 2 4 6-20

0

20

40

60

t (s)

(

deg)

0 2 4 6-20

0

20

40

60

t (s)

(d

eg)

0 2 4 6-20

0

20

40

60

t (s)

(d

eg)

0 2 4 60

1

2

3

4

5x 105

t (s)

2 1

(ra

d2 /s2 )

0 2 4 60

1

2

3

4x 105

t (s)

2 2

(ra

d2 /s2 )

0 2 4 60

1

2

3x 105

t (s)

2 3

(ra

d2 /s2 )

0 2 4 60

1

2

3x 105

t (s)

2 4

(ra

d2 /s2 )

0 2 4 6-10

-8

-6

-4

-2

0

t (s)

Z(m

)

0 2 4 6-20

0

20

40

60

t (s)

(

deg)

0 2 4 6-20

0

20

40

60

t (s)

(de

g)

0 2 4 60

10

20

30

40

50

t (s)

(

deg)

0 2 4 6-1

0

1

2

3

4x 106

t (s)

2 1

(rad

2 /s2 )

0 2 4 6-1

0

1

2

3

4x 106

t (s)

2 2

(rad

2 /s2 )

0 2 4 6-1

0

1

2

3

4x 106

t (s)

2 3

(rad

2 /s2 )

0 2 4 6-1

0

1

2

3

4x 106

t (s)

2 4

(rad

2 /s2 )

)25( R 1( ) , = ( )N T T C A BK B

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021

Page 7: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

139415 5 7

11

12

13 PID LQR FSC

. P K

. 11 12

45

14 PID LQR FSC

15 50

4-4 - PID LQR FSC

. .

45 10- .

13

. 14

4-5-

.15 PID

. .

.

0 5 10-15

-10

-5

0

t (s)

Z (m

)

0 5 10-20

0

20

40

60

t (s)

(

deg)

0 5 10-20

0

20

40

60

t (s)

(

deg)

0 5 10-20

0

20

40

60

t (s)

(

deg)

0 2 4 60

2

4

6x 105

t (s)

2 1

(ra

d2 /s2 )

0 2 4 60

1

2

3

4

5x 105

t (s)

2 2

(rad

2 /s2 )

0 2 4 60

2

4

6x 105

t (s)

2 3

(rad

2 /s2 )

0 2 4 60

1

2

3

4

5x 105

t (s)

2 4

(rad

2 /s2 )

0 2 4 6-15

-10

-5

0

5

t (s)

Z (m

)

LQRFSCPID

0 2 4 6-20

0

20

40

60

t (s)

(

deg)

LQRFSCPID

0 2 4 6-50

0

50

t (s)

(

deg)

LQRFSCPID

0 2 4 6-20

0

20

40

60

t (s)

(

deg)

LQRFSCPID

0 0.2 0.4 0.6-1

0

1

2

3

x 106

t (s)

2 1

(rad

2 /s2 )

0 0.2 0.4 0.6-1

0

1

2

3

x 106

t (s)

2 2

(rad

2 /s2 )

0 0.2 0.4 0.6-1

0

1

2

3

x 106

t (s)

2 3

(rad

2 /s2 )

0 0.2 0.4 0.6-1

0

1

2

3

x 106

t (s)

2 4

(rad

2 /s2 )

LQRFSCPID

LQRFSCPID

LQRFSCPID

LQRFSCPID

0 2 4 6-15

-10

-5

0

5

t (s)

Z (

m)

0 2 4 6-20

0

20

40

60

t (s)

(

rad)

0 2 4 6-20

0

20

40

60

t (s)

(r

ad)

0 2 4 6-4

-2

0

2

4x 105

t (s)

(r

ad)

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021

Page 8: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

8 139415 5

4-6- -

) )28((

)28(

1

xx 2

yy 3

zz 4

mz mg U

I U

I U

I U)28(

)29( .zna mxxI

yyI zzI

)29( ( ) ( 1)1 0

n nn na y a y a y u

.

)30(

)30( ( ) ( 1)

1 0 ( )n n

n m n m my y y r t( )r t .( )z t )31(

:

)31( ( ) ( 1)

1 0( )n n

m nz t y e e )32(

. 0 n

)32( 1

1 0n n

ns s)33(

)34(

)33(

( 1) T1 0

( 1) T

T1 1 0

ˆ ˆ ˆ ˆ...

( ) [ ... ]ˆ ˆ ˆ ˆ( ) [ ... ]

nn n

n

n n

u a z a y a y v a

V t z y y y

a t a a a a

)34(

T1[ ]n

x Ax b v aa

y cx :

0 1

0 1 0A= b=

- - 1c=[1 0]

)35( G P

P+ = -TPA A P Q = T 0Q Q

)35( T T 1( ,a)V x x Px a a

)36( ]17[.)36( Ta vb Px

m xxI yyI zzI )37(

)37(

T1 0

Txx 1 0

Tyy 1 0

Tzz 1 0

ˆ [0 1]P[z z] , v=

ˆ [0 1]P[ ] , v=

ˆ [0 1]P[ ] , v=

ˆ [0 1]P[ ] , v=

m

m

m

m

m v z e e

I v e e

I v e e

I v e e 16

. 17

. . 18

. 19 .

20 .

4-7 - -

)21( .8 8A R 8 4B R

( , )A B

16 -

17

0 5 10

0

5

10

t (s)

Z (m

)

0 5 10-20

0

20

40

60

t (s)

(

deg)

0 5 10-20

0

20

40

60

t (s)

(

deg)

0 5 10-20

0

20

40

60

t (s)

(

deg)

ZmZ

m

m m

0 5 10-10

0

10

20

t (s)

m (

kg)

0 5 10-0.02

0

0.02

0.04

0.06

t (s)

I xx (

kg.m

2 )

0 5 10-0.02

0

0.02

0.04

0.06

t (s)

I yy (

kg.m

2 )

0 5 10-2

0

2

4

6

8x 10-3

t (s)

I zz (

kg.m

2 )

mm ^I x

I x

I y

I y

I zI z

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021

Page 9: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

139415 5 9

18

19 -

20

T1 2 3 4 ]u U U U U

x

Î 8mx R )38(

)38( m m m mx A x B r .

)39(

)39( * *u K x L r ) A

B )40( : )40( ( ) ( )u K t x L t r

( )k t ( )L t *K *L .me x x= -

)41(

)41( ( )( )

m

m m m

m m m

m

e x xAx Bu A x B rAx B Kx Lr A x B rA e B Kx Lr

)42( )42( T T T( , , ) ( )V e K L e Pe tr K K L L

P .

)43( ]18[.

)43(

T T

T T

sgn( )

sgn( )m

m

K K B Pex l

L L B Per l

) 21 .(

22

4-8- TQ

.)44(

)44(

xx yy zz r r 2

yy zz xx r r 3

zz xx yy r r 4

1

1

1

( )

( )

( )(c c )

(s s c s c )( c s s s c )

I I I J U

I I I J U

I I I J U

mz m g Umx Umy U

)45( )45( * *( ) ( , )H x x C x x x F

21

0 2 4 6-1

0

1

2

3

4x 106

t (s)

2 1

(rad

2 /s2 )

0 2 4 6-1

0

1

2

3

4x 106

t (s)

2 2

(rad

2 /s2 )

0 2 4 6-1

0

1

2

3

4x 106

t (s)

2 3

(rad

2 /s2 )

0 2 4 6-1

0

1

2

3

4x 106

t (s)

2 4

(rad

2 /s2 )

0 50 100-2

-1

0

1

2

3

t (s)

Z (m

)

0 50 100

-50

0

50

100

150

t (s)

(

deg)

0 50 100

-50

0

50

100

150

t (s)

(

deg)

0 50 100

-50

0

50

100

150

t (s)

(de

g)

ZmZ

m

m m

0 50 1000

0.2

0.4

0.6

0.8

t (s)

m (

kg)

mm

0 50 1000

0.005

0.01

0.015

t (s)

I xx (

kg.m

2 )

^I xI x

0 50 1000

0.005

0.01

0.015

t (s)

I yy (

kg.m

2 )

I y

I y

0 50 1000

0.5

1

1.5x 10-3

t (s)

I zz (

kg.m

2 )

I zI z

0 5 10-10

-5

0

t (s)

Z (m

)

0 5 100

20

40

60

t (s)

(

deg)

0 5 100

20

40

60

t (s)

(

deg)

0 5 100

20

40

60

t (s)

(

deg)

ZZm m

m m

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021

Page 10: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

10 139415 5

22 -

23 50

F *H *C

. .a

)46( ˆa a a

dx x x )dx ( .)47(

)46( xx yy zzˆ ˆ ˆˆ ˆ ]a m I I I

)47( T * T 11( ) [ ]

2V t s H s a a

s )48( )48( s x x

.

) )49(.()49( * * *( ) ( , ) ( , , , )r r r rH x x C x x x Y x x x x a

rx dx x

)50( r dx x x)51( DK

)52( )51( *

Dˆ( , , , )r rF Y x x x x a K s

)52(

T * T 1D

T T *T 1D

ˆ( ) ( ( ) )

s

V t s Y a a K s a a

s K a Y s a

)53( ]17[.)53( * Tˆ ( )a Y s

23

24 5/1 ) 25 . (

. 26

4 -9 -

30 ) ( ) 0.5sin(20 )d t t (

.27

.

.

]19 20[.

5 -

. -

. .

24

0 5 100

1

2

3

4x 105

t (s)

2 1

(ra

d2 /s2 )

0 5 100

2

4

6

8x 105

t (s)

2 2

(ra

d2 /s2 )

0 5 100

1

2

3

4x 105

t (s)

2 3

(ra

d2 /s2 )

0 5 100

2

4

6x 105

t (s)

2 4

(ra

d2 /s2 )

0 10 20 30-50

0

50

t (s)

(

deg)

0 10 20 30-50

0

50

t (s)

(

deg)

0 10 20 30-50

0

50

t (s)

(

deg)

0 10 20 30-2

-1

0

1

2

t (s) z

(m)

d d

d

zzd

0 100 200 300-5

0

5

10x 10-3

t (s)

I x (kg

.m2 )

0 100 200 300-5

0

5

10x 10-3

t (s)

I y (kg

.m2 )

0 100 200 300-1

0

1

2x 10-3

t (s)

I z (kg

.m2 )

0 100 200 300-0.5

0

0.5

1

1.5

t (s)

m (

kg)

^I xI x

I y

I y

I zI z

mm

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021

Page 11: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

139415 5 11

25 5/1

26

27 LQR FSC

.

.

.

.

.

6 - 2(m ) A

a

2(N s ) b

70 DC dC

HC

QC

TC RC

(m) c

2(N s ) d e

(N) F -2(ms ) g

2(kg m ) xx yy zz, ,I I I

2(kg m ) rJ

(m) L (kg) m

M (m) radR

(rad) 0

(rad) qtw

-3(kg m )

1(rad s )

B

E

7 - 4 -2

0 100 200 3006

8

10

12x 10-3

t (s)

I x (kg

.m2 )

^I xI x

0 100 200 3006

8

10

12x 10-3

t (s)

I y (kg

.m2 )

I y

I y

0 100 200 3001.2

1.4

1.6

1.8

2x 10-3

t (s)

I z (kg

.m2 )

I zI z

0 100 200 300-0.5

0

0.5

1

1.5

t (s)

m (

kg)

mm

0 10 20 30-30

-20

-10

0

10

20

t (s)

u (N

.m)

0 10 20 30-20

-10

0

10

20

30

t (s)

u (N

.m)

0 10 20 30-40

-20

0

20

40

t (s)

u (N

.m)

0 10 20 30-5

0

5

10

t (s) u

z (N)

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021

Page 12: Ê ÅÁ aʼ¸ Ä»ZÀÅZ» |» ®Ì¿Z°»Ê |ÀÆ» · M. Navabi, H.R. Mirzaei, Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight, Modares Mechanical Engineering

12 139415 5

0000

A

01

0010

m

Bxx

yy

zz

0

01 0

01 0

01

I

I

I

C

0000

4-7 :

20 0

00

mA20 0

000

xw

20 0

20 0

20

20

20

20

0000000

mB

0

8 - [1] K. Valavanis, Advances in unmanned aerial vehicles: State of the art and

the road to autonomy, ser. Microprocessor-based and intelligent systemsengineering, Springer-Verlag, Berlin, 2007.

[2] K. Alexis, G. Nikolakopoulos, A. Tzea, Constrained optimal attitude controlof quadrotor helicopter subject to wind-gusts: experimental studies,American Control Conference Baltimore, pp. 4451 4455, 30 June- July2010.

[3] E. Davoodi, M. Rezaei, Dynamic modeling, simulation and control ofquadrotor using MEMS sensors’ experimental data, Modares MechanicalEngineering Vol. 14, No. 3, pp. 176-184, 2014. (In Persian)

[4] S. Bouabdallah, P. Murrieri, R. Siegwart, design and control of an indoormicro quadrotor, Proceedings of the IEEE International Conference ofRobotic and Automatic, Vol.5, pp. 4393-4398, New Orleans, 26 April-May 2004.

[5] S. Agostino, M. Mammone, M. Nelson, T. Zhou, Classification of unmannedair vaehicles, Technical Academic Report, under the guidance of DrMaziar Arjomandi, Aeronautical Engineering Department, University ofAdelaide, Australia.

[6] S. Bouabdallah, A. Noth, R. Siegwart, PID vs LQ control techniques appliedto a indoor micro quadrotor, in proceedings of IEEE InternationalConference on Intelligent Robots and Systems IROS pp. 2451–2456, 2004.

[7] A. Benallegue, A. Mokhtari, L. Fridman, Feedback linearization and highorder sliding mode observer for quadrotor UAV, Proc. Of theInternational Workshop on Variable Structure Systems pp. 365-372, 2006.

[8] Miller, K.. Path tracking control for quadrotor helicopters. ComputingControl Engineering Journal, 2008.

[9] J. Friis, E. Nielsen, R. F. Andersen, J. Boending, A. Jochumsen, A. Friis, Autonomous landing on moving platform, control engineering, 8th

Semester Project, Aalborg University, Denmark, 2009.[10] C. Siyuan, Z. Ting, C. Yanchun, C. Jianliang, S. Junyi, L. Jin, research on

quadrotor attitude control based on Fuzzy-PI method, ControlConference (CCC) pp. 3548 3551 31st Chinese, 25-27 July 2012.

[11] S. Stevanovic, J. Kasac, J. Stepanic, Robust tracking control of quadrotorhelicopter without velocity measurment, Proceedings of the 23rd

International DAAAM Symposium Volume 23, No.1, 2012.[12] Z. Fang, W. Gao, Adaptive integral backstepping control of micro-

quadrotor. In international Conference on In Intelligent Control andInformation Processing (ICICIP) IEEE Vol. 2, pp. 910-915, July, 2011.

[13] G. Fay, Derivation of the aerodynamic forces for the mesicoptersimulation Stanford University, USA, 2001.

[14] S. Bouabdallah, R. Siegwart Full control of quadrotor. In internationalconference on Intelligent robots and systems IROS, IEEE/RSJ pp. 153-158, October, 2007.

[15] C. T. Chen, Linear System Theory and Design, Third ed, pp. 125-200,Oxford university, press 1999.

[16] D. E. Kirk, Optimal Control Theory An Introduction Second ed, pp. 184-230 dover publications 2004.

[17] K. J. Slotine, W. Li, Applied Nonlinear Control. Prentice Second ed HallEnglewood Cliffs, N.J. 1991.

[18] P. Ioannou, B. Fidan, Adaptive Control Tutorial Advances in Design andcontrol Third ed, SIAM, PA, 2006.

[19] B. C. Min, J. H. Hong, and E. T. Matson, Adaptive robust control (ARC)for an altitude control of quadrotor type UAV carrying an unknownpayloads. 11th International Conference on Control, Automation andSystems (ICCAS), IEEE pp. 1147-1151, October, 2011.

[20] C. Diao, B. Xian, Q. Yin, W. Zeng, H. Li, Y. Yang, Nonlinear adaptivecontrol approach for quadrotor UAVs. In 8th Control Conference (ASCC),IEEE, pp. 223-228, 2011.

Dow

nloa

ded

from

mm

e.m

odar

es.a

c.ir

at 1

:12

IRS

T o

n S

unda

y Ja

nuar

y 31

st 2

021