ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ -...

11
7 @ A , B & A 3C D 3 ........ dx.doi.org/10.22093/wwj.2017.45875 1 ! !"# #$% &’( ) * !+" ! ),- ’- . / 0%)") 1 2) E > . (7) ; 2 @# H .;’ 7@ .#I ;’ ;-’J # . .;K- C 7) L > . (7) ; 2 @# H .;’ 7@ .#I ;’ # . .;K- C 7) (456 76#) MMLLNLOO ) OLP ( [email protected] ) / / / / ( 1’5 9 E5 >7 9 7 0;* 7 65 - ( $ B ) ,* B ) L .D O *9 7 .H ,4!L H4! 7 * 7 PQB ) 0;* 17 6 9 E5 ! $& @ 7 1Q < RS T!*F E5 $& 99 $& 47 K5 9 1 % U 7 VW X1 /5 E5 9 0 E5 >7 9 & $ 9 9 B ) 01/ 1’5 Y75 $ 9 9 4 47 ;4* 1’5 Y75 $ /5 7 H/1 &S ,<1 . ) 1’5 Z / ’= 9 H & $ 9D% $ EIJ Z >1 H& 9 H 7 1 $ [& .H / , 1 ) (LB 0\ 9 $ 1 ;* 2 & $ 4L O 9 *4 ] 9 1@*4 47 /*’ 2 H^1 7 H 67 7 7 % $ U / )7% 1*’ D $ G 7 / _IX 4 9‘% 4 H 9 .4D* % ) ’!/ + ( ;b (NC/GO-GCE-Ag) /7 . 1*’ / _IX NC/GO-GCE –Ag YB 9 34G 4 7 9‘% " * $7 9 $ ’B%*’ * ;* c 9 \ ] **’ $ 4d .H4 4^ 1@* 1 S7 9 ) H 2& &*G eW B eeW ! H’ d 7 0 pH 9 f B gW Hh!C & $ @!*F 9 ;* 14( 47 WWe / W B gW ! 7 6 / . / 9‘% H U2% 7 i $ D7 (SEM) =4/ ]4G 0 34 (XRD) /*’ 3‘ 2 (EIS) 1 7 FDB .H ^ j 4kS 4k7 7 -B 7 / *S " 1L 1 Hh!C WWe / W B gW ! 7 77 6 Wgl / W 6 (S/N=3) =B ) / " . NC/GO-GCE-Ag 4 U m& d % ) n 1 ’B% ’! H 9 HY- 1 ( $ **’ $ ;4* 11 4D . o4* 9 .X ) (LB \ 67 HLX H^1 $1 p ] 11 D 17 G 7 / *S " $ 6c 1^ ; ,!L 1 1- ;* H & $ 75 !S . hI .7^ H’S1 7 2 ( )=B / . G! B E B : I F (! FJ"$ B F "+ ; F IK F(& ! " # $% # & ()* +, $ - .-* / 012 ,- $ $% +3 - $ 4.-* 5 26* 7 !2 2 1 $ .,- * 9* 2:; - !2 4 < 2 = $ 2- $ # +% * > , , * ? , . 25 .-2* @5 =2A: 2- $ # B?) - C $? # " $ 2- !2 2 +2?" .(Korostynska & Moson 2012) 2 = D 2 . +,% +5 > " # @5 " # * 2 2 E2- !2FBG 2% !2 H2?I J2% # 2- K5 2- L2-* +,2?I $2 ! 2" # $2% # 32M @2N (2* 2" # O2&< & =P:$% !2 1P . 2 25 2* 2 4Q2: $ # "% # ? ! " # $% # 2 =E9 4 < @RS 2" # ’2: 2 # 32M +,2 .-2* B& * = - .,- 2- (2T > 4= K- UB6* !BI

Upload: phungcong

Post on 16-Feb-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ - wwjournal.irwwjournal.ir/article_45875_41f8ea0ab44a57214f13c83b54953dbd.pdf · (Casella & Contursi 2014)!222

7 @A, B &A3CD3........ dx.doi.org/10.22093/wwj.2017.45875

1

!!"# #$% &'( )* !+"!),-'- . /0%)") 1 2)

E>. ' (7) ; 2 @ # H .;' 7@ .#I ;' ' ;-'J # . .;K- C 7)

L>. ' (7) ; 2 @ # H .;' 7@ .#I ;' # . .;K- C 7)

(4 56 76# )MMLLNLOO )OLP ([email protected]

)////(

1'59 E5 >7970; * 765 - ($B), * B)L .DO*9 7 .H ,4!L H4!

7 * 7 PQB ) 0; * 17 6 9 E5 ! $&@ 7 1Q < RS T!*F E5 $& 99 $& 47K5 9 1 %U7VWX1 /5 E5 9 0E5 >7 9 &$99B)01/ 1'5Y75$994 47; 4* 1'5Y75$/5 7H/ 1 & S ,<1. )1'5 Z/'= 9 H&$9D%$EIJ Z >1 H&

9 H 71$ [& .H / , 1)(LB0\9 $1 ; * 2 &$4LO9*4] 9 1@*4 47/*' 2 H^1 7 H67 7 7 %$U/ )7% 1*' D $G 7 / _IX 49`% 4H9 .4D*

% ) '!/+( ; b (NC/GO-GCE-Ag) /7.1*' / _IX NC/GO-GCE –Ag YB 9 34G 47 9`% " *$ 7 9 $'B%*' *; * c 9 \] **'$4d .H4 4^ 1@* 1S79 ) H 2& &* GeWBeeW !H' d 70pH 9 fBgWHh!C &$@!*F 9 ; * 14( 47WWe/WBgW!7 6/./9`%H U2% 7i $D7(SEM) =4/ ] 4G 034

(XRD) /*' 3 ` 2(EIS) 17FDB .H ^j4kS 4k7 7 -B 7 / *S "1L 1 Hh!CWWe/WBgW!7 7 7 6Wgl/W 6 (S/N=3) =B)/" . NC/GO-GCE-Ag 4U

m& d % ) n 1'B% '! H9 HY- 1 ( $**'$; 4* 1 1 4D .o4* 9 .X)(LB\67 HLX H^1 $ 1 p ] 1 1 D 17 G 7 / *S " $6c1^ ;

,!L 1 1- ; * H &$75!S . hI .7^ H'S1 7 2 ( )=B / .

G! BEB: IF(! FJ"$ BF"+ ;F' IK F (&

!"#$%#

& '()* +, $ - .-* /012 ,- $$% +3 -$4.-* 5 26*7!2 21

$ .,- * 9* 2:; - !2 4<2=$2- $#+% *>,,*?,. 25.-2* @5 =2A: 2-$#

B?) - C$?#"$2- !2 2 +2?".(Korostynska & Moson 2012)

2=D2 .+,% +5 >"#@5"#*22E22- !22FBG 22% !22 H22?I J22%#22- K5 22- L22-* +,22?I $22

!2"#$2%#32M @2N (2* 2"# O2&<& =P:$%!21P . 2 25 2* 2 4Q2: $#

"%#? !"#$%#2 =E9 4< @RS 2"#'2:2 #32M+,2 .-2* B&* =- .,- 2- (2T > 4= K- UB6* !BI

Page 2: ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ - wwjournal.irwwjournal.ir/article_45875_41f8ea0ab44a57214f13c83b54953dbd.pdf · (Casella & Contursi 2014)!222

7 @A, B &A3CD3........ dx.doi.org/10.22093/wwj.2017.45875

2

2- <$ 2E @5 B2 2- +2T $2/I V2: 2BW* #2"+3 @5 #" * +$ * #" 2P5 ,-2% ,2<XY

,&$ *25 @5 ,4H2 @5 !2- 2"#*2!22 225 4@522"#*22 22-=224 225@522"#*25, $ 2 !2 ,2": U2/ 2- 1.(Salem et al. 2011;

Zapata et. 2014; Badeenejad et al. 2012) $ 2"#2B 22&I 2)* $ @5 Z,2?I

$ "#*5"'![ #," % -+3 *

?*5 K%$% +,,$.\D2 +*#$22"-$%#'22<#2222 +32222#22*.22"$* - $ %#+, : < ,!E-

-W DB?I ,$$:- .,$ $ "$ >. 2+ Z/ #- $#]=% $322& @R2S @5 !

* J" 2 .,$52-#12 $2% 02N 4"$2- 4* - 5 K% ^A OE- +_#`2: =$a2

D?N D4U $ "#:$2[ Kbb6* ) $* !222 222 (Casella & Contursi 2014)."'222< #

D?$#$ "#BW* +, #B?) $

22N*#4*22#,22"!P22,22" !22) 22% +,2 2# 25@5+32 2*,2.(Mattarozzi et al.

2013; Stortini et al. 2015) >"'< `: : $ $ c O =E3 dP +,

$ e? - O-[ 3f* +, #]* .," ,2%00"% dP +, $ 2D 2- 2P* 2,2U' 2"#O2-[

+, #*2(Velusamy & Arshak 2010) . 2"D#% 222- +,222 gR222&!222 222"#222h?" K$ (222*>

$$:-# -- 4K5 ! 1 KI"#$ (*$ "#*#WE5 i+, * ",-.(Motahar et al.

2013) gR& -"D >4$2%2< 412 !0j2N#

12 "'2< >2* 0,2-.(Mirmoghtadaei et al. 2013; Remes et al. 2009)

$ 0"_222N 222- 222S<#1222 222< 0!222D4k*%% > OD*4+2b =$a 1B 4,

- , 1 >-% D K5 ?%2 #gR2& ,2 $2F .

* * '< $ $2% +,22F<R* O2-[ #!2) $+, #*#6* $ =7"#-5.,-

! "! #$% ! &

2 2- !`2B:ll/mm ,2&$ !:2 2:$% 2?'n

32+ ., h?">NJ4=B% $34,24,"B%$, 4,, ! 4U 4J* 4+b = 2 O#%*212B .2B[ $2N 4KR#*5 422% d4,,2J

= 4N =J!: !% Q*o+3 K?5 ., OD - 1B B: !T /BN > ?,> $ .

0*5 2" J2 p2 2 O2*T 2q O*2 #2q- 2- >RN q 4.)* q KI 2D?% 2q K2I>-2% 2D 2 #N 2- +,2 gR2& 2k*% 2!

% > 22 OD22*1B22/,s+22b =$a2222- K22I +3 $T q,- . $F*$- 4A* `B:

\ $*#% 1) 2k*% (24!251XRD +32 2- +'Shimadzu XD-3A =2 72 E2- g2S - 4

Cu kα$mt/n22'5$ dθo4t22lu.!22 d22P

22222222M$-#22222222- $SEM +'22222222 722222222JEOL2011microscope >N\ $% !: =$&! .

'(% "! &)* + # ,- !

,- % > ,-+3 $ K2 2*v12 .,2w*B ,xy*$5 - ,&$#* $ Y2z2)$

e22B $ 22- O22:,22 22Wk22 . |*22B22 22,$3w'"5 - ,&$6* - 2 +12 2- K$ =

, *~)$eB , '. d? $ 2 O2<* >$ - UB6*z~Y [ -., + J" b| d ! N 2

J !I ||N d =B% J~K2?" K$ !I$ - ., W% >- (=,2*y!I2 2- $ z~Y 2- $

[$,2b* dE K2* =,2* ,2- .,2 + J2" 2b# @522+1

1 Sigma 2 Merck 3 Steden, Mayer

Page 3: ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ - wwjournal.irwwjournal.ir/article_45875_41f8ea0ab44a57214f13c83b54953dbd.pdf · (Casella & Contursi 2014)!222

7 @A, B &A3CD3........ dx.doi.org/10.22093/wwj.2017.45875

3

)|YY*B% - (=,2* ,2 S (|~[K2* 2b + k .$W- J" , (T $ "#3$ \W ,2

$ 2- +' $XYYY K2* ~[.,2 2j 2b K5 2N ~/|*B" ,B%$,yJP< - ,&$|YY +,2$

, * , + K5 -2 +'2 O: ,P*3\k ., j $ $ ,W , dP @5 -pH

-y2$ .,2 +, k2 (2T 2* 2- R2: K5$#xY2)$eB ., :-$2F* $2N +2b =$a2 12 .2B[

+b = 4#1B 0N KR2 T* # O* +*MTMS * p - #1B .B[ $N d p ,- ., +-B02N 2

22N L22BW* +22* $ (22T K,22 p22: 4322? 722$,b*yYB* 2S (T - *$5 - $E* p +b =

2N .,2 + J2" 2 #2* $ 2b[ + =,2* - x!I2 Z,22P* ,22 1$22 @22$ #$ 322 .22* 4!<22 yY

B* UB6* K5 >1') +b = 2 2 2 O2?I >2 ., N .! jN =$& B<* 1$2 =-2$ O2*T 2

- O&< * 4K5 6A .* K? =,*zX72 $ !IM: K? $: #- ., p: 3? 2" $2N 4726*

, Ab* @5 7 O&< (Musur & Betondi 2012).

./0% 102 34 56)& "! 7 #8%

3!GCE (* !:; 3!)

$>0"_N 2-#$ "$:2 K,2#2R 2D $ >-% $ .,2 +3 ek 2 2b* $ >YYX/Y% > d 4,YYz/Y 1B d YYz/Y=$a d

$ +b* - , LBW* ;% - K1|*2B2- @5 2% ., S K5- (- +,*5 ! =,*|~zY[d?< $ b

- Bk? +3 - ., +$[ * K,- *K1yY*Dk*% 1) !$#) $2% 2DGCE $2[ 4(

K* =,* ., +YXY[W/ UR2< ,2 + +) b 2 % JBk*% $ !#D2 D ^AO>2 .2

q-#* 0P#.! $[ +3 $*

=# ,- 1* >&7?

2- $F*b* N 4- +b =$a K% !&2=$

D?2) -#2- 4,2 +32 K5 ek2 $2F*% > K, ,- +b =$a K%$ 1B2 ,#

GCE 22D 422 22< U22B6* $ +,22 #|/Y22 $E22*,4|*B +b $E*Y~/Y*B U*2N =2 J

* ., +-#2:; #2N 2-2- O>w/|2|!I2 >D|YY*Bc - !k2 .,2 dP :; !3" , -

D @5 2- +,2 2,2 + 2 +1 .(Chen et al. 2012)

@#700 "! 300;! 7 #800% 004 ,00 300+

/A 3

:; #* !2 2 A: 0-$ - #* 4#.$* +,-$ !) $ $% D ON ,- 4$ > 2

@$) DI !) $ k* *2 .#2:; #2$- 2% !2$ $ $ -$2% >% =2IR !2 23+$2-$

022% 22"#22D? .!22$22b $ >?" Z22/22- KI-W $ -#J2 2"2- 2%#2$2- >

* A*- 4, * $%h?" .$- >=,2 K- (* O) 2 *5 2 !22FBG 2- 2G* K2 $ 2*22 4$ >#

:; # >C* 2>$ 2D?1P 2# A* #- 2* U2 D #2"2A .,2- j2N#2>

+,2 !2 2- +?" $ 22 #2"-$% 4##*2 .22:; $ # +22< 22D K 22 #22"?%,22* =22/4

%5 =/- ?.! +, ()* $ 2>$ 2$2- >U $zYY~ C,2- 2,(Golabi 2005).$*2 $#

D +3 *:D 2D 4$2% 2D 4.2)*

D?%.NO->D $% D $ U?I 2* 2

)K->D $% D D?%+,2 2#2*2 (Bourgeois et al. 2001).

$ 2 >+,2 gR22& 2D J2)$2%(22RN 2D 4>)D?%(O*% D ),"(O2& =2 +'2 2-

,, UB6* ., =J|Y*B 2- 2- 2% $E2*XJ2P< 2- 2- 42- +,2 +,$ D K2I 2 2- !+,26* .,2 +2- $2%

NB-- +, +- $%#<#2- =>Y2y/|s!2 >D !I , F $- --|YY *Bc - !.-

Page 4: ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ - wwjournal.irwwjournal.ir/article_45875_41f8ea0ab44a57214f13c83b54953dbd.pdf · (Casella & Contursi 2014)!222

7 @A, B &A3CD3........ dx.doi.org/10.22093/wwj.2017.45875

4

Fig. 1. XRD patterns of a) graphene oxide, and b) silver nanoparticles B:DN N #'(XRD) (a ,% > (b 1B +b =$a

CB %4 DE0 04 3! 0(& &0!:;

#7 , 3+

-#$ Kbb6* $$* DB?I D1$j2< =2 @5 *5,b6H +? )* ,, % *K1 j< =2

- !FBG 4= )D KD4=,* K* D12)

D '-$ (Duca et al. 2002) .--!FBG >2"2-b*YY~/Y|Y*B U2B6* $E* =2 2 72

* J#:; #5 $*.!2 $2[ 12h?">$ <#= - -pH -2- !>$*2#2:; 4#

+, #= $ pH 2"#o2nu>D2 !I2 2- nuu *B!$- $*- .! $[ $- $F*$ !?<1* c

+, #*k*5#=4 ,2 +3 =3 =3 D N?K5^A $ " >-% D2 #gR2&

+,22 22*k*5 $ 22-#22$-22.,,22k* +322 22-D?*IR K2"D 2- A-$ $# ,2*)

+ "#- UB6* $5 !2:4K2D U2b 2B?) !2*b*D.ED D^A2 2- K2D Ub !*b* D.h?" $ >b6 >H-$2F* 2 +,"2*c$ ,2

*N $ >$,#< ,$ D#* 4=#2:; #D ^A $ NC/GO-GCE sAg dP.,

.F4 ! G& $ ,2- 2M +322 2-XRD > 22 =632& 22 2)

% $* ,$[! 2- A-$ $ . 2 XRD > 2

%* +, 1 ,% !3 KN 22- =,2 2- E2- $ 22% > 22 22- L22-*< $ ,22ol/noθ=o229 22-#

->E#nl/d'5 N 2- 2S $< $ 2 /oθ=o29 2-#2->E2#on/d2'5 %2< 2%

- $,b* )%, $ % !6* $ +, ,* 74,- 2* +,"* .2 2 >2OD2 $ nsa!2 +,2 + K2

.(Wang et al. 2009, Qin et al. 2012) h?">5N N 1- D $F* % =2/c2'

, dP +b =$a OD)|sb(.b* 2 XRD 2-* 22-22 d22 22- +,22 122 =$a 22% K22 +22b $,22

%* UN .,-"< $2θ2-- z/4XX/X4x/xX4~/yyy/| % , "N >- " 2- L-* (

@22- 22"#) =6322& 22-|||) 4(zYY) 4(zzY) 4 (|| ()zzz* i: +b ( ,- K 2 ,2 +," 2- +2b =$a

$:/q* !.\222 $*#222% > 222 1B222 4+222b =$a222 4,k*%M +3 - !2-$ q qq*n

W) - ., + iOD) - zsa% > (+,2 12 ,$#$:#EE ! ,* 63& 2?% K5 !*W2S

~Y* *2h?" .,2- $:2 >2- 1B2 ,2* 2/ 7* +,z~* OD2) !2 +,"* O-[ OD $zsb.(

M- +2b =$a2 O&< 2=$a 2) ' 2%#OD2$ % !#E- OWBWOD) ," zsc$ .($29< !

"2 2 2 2:22% $ $22$D2,'2-: - -D 'O

1 Scanning Elctron Microscop (SEM)

a b

Page 5: ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ - wwjournal.irwwjournal.ir/article_45875_41f8ea0ab44a57214f13c83b54953dbd.pdf · (Casella & Contursi 2014)!222

7 @A, B &A3CD3........ dx.doi.org/10.22093/wwj.2017.45875

5

Fig. 2. SEM images of a) grapheme oxide, b) nanocellulose, c) silver nanoparticles, d) graphene oxide/nanocellulose – silver nanoparticle composite, and e) TEM impage of the synthesized silver nanoparticles

B:M SEM a(4,% > (b 41B (c 4+b =$a (d 1B /,% > sb =$a+

(e MTEM +, 1 +b =$a

Fig. 3. a) Cyclic voltammetry of nitrate 10 mM solution in the presence of a 0.2 molar buffer (pH = 4) at the surface of the modified Ag-NC/GO-GCE electrode, and b) unmodified GCE electrode (Scan rate = 100 mV/s)

B:.a(:; #* UB6* #mM|Y - UB6* $9< $ =z/Y) $E*X=pHD ^A $ ( +, gR&NC/GO-GCEs

Ag b(+, gR& DGCE) >D !I .mV/s|YY(

k*%!1)% > OD*+2b =$a2 4, * 1B$ % ,-#- OWBWE- $! OD)zsd.(

BW* $:W1 I- D O5 $ 02$ !#$ K51 P% c 0$1#* K5.

-#NK- - 4+, !W$ 0TN +b =$a* +, 1D DD$/I#n+3,TEM

1 Transmission Electron Microscope (TEM)

"$- >?A*#!2 =$a2 OD2 +,2 >.-2$M TEM =$a +,2 2% K2 +b =$a +, !/c

- +, 1$ $,< $ 1|Y* !OD)zse(.

.#7 , &!:; 3+

+, #*#2D 72 =2NC/GO-GCEsAg 2? d *2 ., dP+ 0.,2 OD2saN22)-

<2#%2,#N $ =2Z,< O|Y/|s) - !22K

a b c

d e

a b

Page 6: ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ - wwjournal.irwwjournal.ir/article_45875_41f8ea0ab44a57214f13c83b54953dbd.pdf · (Casella & Contursi 2014)!222

7 @A, B &A3CD3........ dx.doi.org/10.22093/wwj.2017.45875

6

,<|Y *k*% D ^A $ k*5D* K $ ," .2 $) >22- K'2<2# H *- KD Ub O

N S O+,2 gR2& d2: 2D - !/ ?%GCE OD)sbk*% 7 ( * !* +,2 2) .,-

%!22Ag 22D $NC/GO-GCEsAg 22* ,2222 >N0-? $M* $ % ,%D ,22<2#NO3

-

7!"#* dP +b U (Bonyani et al. 2016) .&: >% !*) - $!<2* 2- (2 E2- ^A2#

% > 7 +, J" b 41B2 ,22 !2 +, 222 j22c 22221 J22" 22 $ $22 >%D ,2222 (22)**N ) d,I . 2 2% 2 $ 0d *2 !2 - OD

22h?"- >22 ',22 %D22G22 -0"22% $K"#= !(Bonyani et al. 2016).

.D %4pH P5 %pH UB6*D]* "- % ! $2 2#

!6 $ d * ODc* $[ $- 4,"* $ K5#=$S $(Yang et al. 2003).*#:; #+, #

= $pH"#>D2 !I2 - BW*nuu*2B!2$ODX* F<R* O-[,- 2- 2) 2- . 2 26* OD2 >72"#

B[2-2#<2#2* =2? (22 - ,-20"% pH4

Fig. 4. Effect of pH on the cyclic voltammetry of nitrate 10 mM solution using the modified Ag-NC/GO-GCE

electrode at pH values of a) 10, b) 9, c) 8, d) 7, e) 6, f) 5, g) 4, h) 3, and i) 2. (Scan rate = 100 mV/s(

B:=c $-pH :; #* $ #mM|Y 7 =

!k*% DNC/GO-GCE sAg $pH ( - #"ai

(10(a(w)b()c(y)d(x)e(~)f(z)g()h(X)i((.!I)>DmV/s|YY(

Fig. 5. Relationship between pH and absolute value of cathodic current through the Ag-NC/GO-GCE electrode

at a nitrate concentration of 10 mM and a scan rate of 100 mV/s

B:@>- A-$pH D 7 #,% K) HBA* $,[

NC/GO-GCE sAg !FBGmM|Y >D !I = )mV/s|YY(

),% K#1 * 0.,-pH"#zK2- !W - ) - $ U22B6* U22%22>pH22"422-#+,22 22#,22 (22*

- $#N =, %< #$ =pH --Xb- - !/ 4--22- .!22 22>pH 22--X22- K22IpH N2222- #22

$-., F $ " +,2 +$ /* =Eb* $ D5 >?S dP % !6* $ 0% > 7,#- ! -#dP

* (Ghanbari 2013) . OD~212- 2A-$>pH ) 2K,%#* K $) B[ K5 $ % ," 2 2- L2-* K pH 2--X!.

..:% > % D %4

22- 22$- $22F*+,22 4>D22 !I22 22c 22#$ =22!I22 22"#>D22~Y4|YY4|~Y4zYY4z~Y4YY4~Y 4XYY4

X~Y 4~YY ~~Y *Bc - !N % , dP "#-* -2 22 (a22kD $22Ox222 + K22+, .,2 222

*50#" 1 - % K -*=,2 4>D2 !I2 0N,% #1 1* 0h?" .,-1 - >>D2 !I2 04N,% #-ON !? "#3*2 2* !3+,"2* ,2%*T$!IX~Y 2~~Y4N2$2: 2B[ !2< 2"

* - ,,2N $ ,2$ >O2"#E2-4N22" 2&G*2(2,, %2 2B* >2! - d,I +," K jN#

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12

µA

pH

Page 7: ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ - wwjournal.irwwjournal.ir/article_45875_41f8ea0ab44a57214f13c83b54953dbd.pdf · (Casella & Contursi 2014)!222

7 @A, B &A3CD3........ dx.doi.org/10.22093/wwj.2017.45875

7

Fig. 6. Effects of scan rate on the cyclic voltammetry of nitrate 10 mM using the modified Ag-NC/GO-GCE

electrode in the presence of a 0.2 molar buffer (pH = 4) at scan rates of a) 50, b) 100, c) 150, d) 200, e) 250, f)

300, g) 350, h) 400, i) 450, j) 500, and k) 550 mV/s B:C>D !I c $- :; #* $ #mM|Y =

!k*% D 7NC/GO-GCEsAg - UB6* $9< $z/Y) $E*X=pH ( - >D !I (ak)~Y)a(|YY)b(

|~Y)c (zYY)d (z~Y)e (YY)f (~Y)g (XYY)h (X~Y)i (~YY )j (~~Y)k) ((mV/s(

!2 0% (Thinh et al. 2007). 2 2- $ >2- !I2 >=,"2* 2- )|YY *2Bc 2- !2 2 ,2 2 2F $

.(Yang et al. 2003)

.=>0HI 0D %4 0(() ,0 7 J0K 30

(1%L;*

22- 22$- $22F*!22FBG 22c 22"# 22BW** $ =2222 K1!FBG 4K5 "2b* -YY~/Y2|Y*2B $E2*

UB6* =2.,, 22 7J 1 4>D2 !I2 0N =,,25 #,2% #12 0.!2 )2N K 2 ,2% #

- A: =$&$ -12 >D !I d 0.!2 OD2y* K," T< 0% 2# U2% !26 =2a23 ,2

*,-.*#:; #25 $2*2- 2) 2- .!2 $2[ 1- +,*5 ! $ OD !FBG 0"% - 4N =, 4=

,%#0"% 1! -$#- %#!2FBG - UB6*YY~/Y*2B =,2 $E22*22N >222S ,2 $22P Oq22 >2N222$,#222 k*222% JB222- +,222 1222#222"-$%#

%DD5 5 $ %- ! 2S d,* =$& 2*2 $* K," (Keyvani et al. 2009).

-2 21 !FBG 022=42N =,2% 222,#2 1210

Fig. 7. Diagram of increasing cathodic peak current relative to the square root of the scan rate

B:M1 $?) 0N K,% #$ -!I d

>D

Fig. 8. Effect of nitrate concentration on its cyclic voltammetry by the modified Ag-NC/GO-GCE electrode at nitrate concentrations of a) 0.005, b) 0.01, c) 0.05, d) 0.1, e) 0.5, f) 1, g) 2, h) 3, i) 4, j) 5, k) 6, l) 7, m) 8, n) 9, and O) 10 mM in a 0.2 molar buffer (pH = 4) at a scan

rate of 100 mV/s B:N:; #* $ = !FBG c $- 7 K5 #

!k*% DNC/GO-GCE sAg !FBG - #")YY~/Y)a(Y|/Y)b(Y~/Y)c(|/Y)d(~/Y)e(|)f(z)g(

)h(X)i(~)j(x)k(y)l()m(w)n(|Y)o$$E* B* (( - UB6*z/Y)$E*X=pH) >D !I (mV/s|YY(

* % ,- B* >%D 02% 2,2!D< 7 +, O#D?= !2.(De et al.

2000) 6*%/OD $ Kw2* K2- 2% ,2"!2FBG >

) =,% K#b* A-$'2' J $ 2) 2- - ) (6* >W ,< $,b*+,2 gR2& 2D i* /6*.

y = 0.0034x + 0.0907R² = 0.9949

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

6 11 16 21 26

mA

V1/2 ((mV/s)1/2)

Page 8: ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ - wwjournal.irwwjournal.ir/article_45875_41f8ea0ab44a57214f13c83b54953dbd.pdf · (Casella & Contursi 2014)!222

7 @A, B &A3CD3........ dx.doi.org/10.22093/wwj.2017.45875

8

Fig. 9. Calibration curve showing the relationship between nitrate concentration and cathodic current

through the modified Ag-NC/GO-GCE electrode in a 0.2 molar buffer (pH = 4) at a scan rate of 100 mV/s

B:O6*%/K$-) !FBG A-$,% K#

k*% D 7!NC/GO-GCE sAg - UB6* $z/Y)$E*X=pH () >D !ImV/s|YY(

.@>&76* !:; PK2 Q L%

-#W ,< > i*|, +3

)|(m/LOD =3SbD

K5 $ % SbD* 6 4UB6* $blank m 426* (%2/K

*W ,< .,-- i+,*5 !Y|x/Y*/26* $E2* 2D .,

.C>Q' D %4

$>0"_N $ 4=32 =3 !?<1* c#+,2 2#*k*5#$- $* =- % ! $[ 2< - (b

cOD $|Y+,2 + K2 $2F* .,2a OD2 $=2 *- ) - .,- > N 4OD=32 =32 2- L2-*

N 1P* ZR*% K2* $ 2% +2- =2 2"#"2 2 ,)* 25 =,2 2 2- 12?% $ !2 -2- .2$- $ >B:,* = #2? P2P5 .,2%$ 2%~Yc 2 U

=322 =322 22"<22+,22 -22- 4,22>xYc22 U - - (* K* =,* KI#+, #., @W =

Fig. 10. Amperometric response at the surface of the Ag-NC/GO-GCE electrode in the presence of a) nitrate, b)

sulfate, c) phosphate 10 mM in a 0.2 molar buffer solution (pH = 4) and at an applied potential of –1.17 v

relative to SCE B:RD ^A $ #*k*5 NNC/GO-GCEsAg $

$9<a= (b=3 (c=3 (mM |Y - UB6* $z/Y)$E*X=pH+, U?I ON (V|/|s- !/SCE

.MS6 %4&!:;

$-2D ,k*?2- * 2A* $2F* 2 !2*b* K1"D ^A $ $- Ub#+,2 gR2&GCE 2"D #

k*% +, gR&1) NC/GO-GCE 1) 2 2Ag-

NC/GO-GCE UB6*$|*B$E*K4Fe(CN)6% $kHz |YY OD) ! dP|| .(* K 2- 2) - ,"

$1- A[ J6* $ +DD !GCE 26*)a

OD $||sa* 4() $- Ub K1Rct !/ - (02W- +- *"*6*1 $,b50 $ 2D 2% !2 2 !2<

K: +,+% $: U5 .! < $ ^A2 $ !2*b* 2%1) +, gR& DNC/GO-GCE 0"%#!/2

-GCE 6*) ! b4(2 $2 +,2 gR2& 2D221)Ag-NC/GO-GCE 226*)c22* +,"22* 4( 22% 2222 >

$ D#?%*2"* 02W- $,b* >* +2- 2 K1Rct - !/1) +, gR& +, gR& D$,2b* - 4

J; #0"%U,2)) !2 |J2$ 2- ,2- 2B<* $ .(6*"#D2* ! $ K5 O2&< U2* $,2* K2 2 1

OD22) 22? J22$||sb (22 U22b !I22 !22-c K5 H" KD#)kapp $ ( +3 - 1* z? /6*

)z(K=RT/F2RctC

y = 0.0051x + 0.0792R² = 0.9992

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 2 4 6 8 10 12C/mM

I/mA

Page 9: ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ - wwjournal.irwwjournal.ir/article_45875_41f8ea0ab44a57214f13c83b54953dbd.pdf · (Casella & Contursi 2014)!222

7 @A, B &A3CD3........ dx.doi.org/10.22093/wwj.2017.45875

9

Fig. 11. A) Nayquist curves of: a) unmodified GCE electrode, B) modified two-part NC/GO-GCE electrode, and c) modified three-part Ag-NC/GO-GCE electrode, B) Equivalent circuit resulting from the Nayquist curve.

B:(A ) !D #" 6*a+, gR& D (GCE) 4b1) +, gR& D (NC/GO-GCE ) c!k*% D (

1) +, gR&NC/GO-GCE sAg.b) !D 6* O&< U* $,* (

$4A-$ >R-22" !I2 !2-c ' )J/molk|X/4(T

22*# H22BA*) J22kzw 4(F$22 !22-c +,22" K22#)C/molwxX~ (C>22"5 U22B6* !22FBG!22.(Sun et al.

2011) 22U,22) $ $,22* |22* K224,22" kapp 22D $

NC/GO-GCEsAg b* $2"D 2- #GCE NC/GO-

GCE E- $,b* #$$:-4! j%D ,2<#K"# ^A $ ='< >OD -

'?;#O E- !I -* dP .

.N#7 Q 3;! "! 4 , 3+

+, # K* $ +3 - =#$$; 2?b<b,* @5)2 @5 K$2- @5 4+2; @5 4#,2 d2P (

U,))z(.K?" % $* K D ,"- $%j* -:+,2 2- $2[ E2- $ !2[ - 2#=2 2: ^A2 $

*.,-

T!U?D ,k* NDDk $- $ "*$N b* Table 1. Values the parameters used in EIS investigations

Electrode )Ωk(Rs )cmµF/2 (CPE )Ωk(Rct Zw Kapp

GCE 4.541750 1.635610 2.758980 1.128290 9 ∗ 10NC/GO-GCE 3.627930 1.999999 1.502096 1.78450 1.7 ∗ 10

NC/GO-GCE -Ag 1.784060 9.946780 1.256890 1.029400 2.11 ∗ 10

T!U+, ? $ = # / #" Table 2. Measured values of nitrate concentration in natural samples

Accuracy(%)

RSD(%)

Nitrate Concentration)(Proposed Method

ppm

RSD(%)

Nitrate Concentration(Spectrophotometry)

ppm

Samples

102.4 3.92 523.0 3.84 510.3 Water well 102.2 3.87 436.4 3.81 426.9 Rain's water 97.6 2.11 25.3 4.12 25.9 Mineral water 99.4 2.65 37.9 3.69 38.1 Urban water

B

A

Page 10: ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ - wwjournal.irwwjournal.ir/article_45875_41f8ea0ab44a57214f13c83b54953dbd.pdf · (Casella & Contursi 2014)!222

7 @A, B &A3CD3........ dx.doi.org/10.22093/wwj.2017.45875

10

Fig. 12. Diagram of reducing current peaks of the cyclic voltamograms for the modified Ag-NC/GO-GCE

electrode in a nitrate 10 mM solution at a scan rate of 100 mV/s after 5 days

B: B[ K) 0"% $?"% # :; d *

+, gR& DNC/GO-GCE sAg = UB6* $mMnu - UB6* $9< $z/Y$E*t=pH>D !I)mV/s|YY(

!j ,-m$

.O !:; , 7 3&?GCEsGO/NCsAg

- $F* +,"*c* $ , N $ >$,#,2$ 2D<#* 4=#2:; #+,2 gR2& 2D ^A2 $

6* ! dP)J2$ $ ,2 - !/ K 2 ,)OD2|z(.* K;2 0"% % ,"1#) $ 2 * 2- K 2 K1

,22&$ 22% $ 22)2222* $D225 C22S* >22D 22% ,22%NC/GO-GCE sAg 22 +322 22N +,22 ~K22h?" $

N ,- +- $,%$% - $ , >z I,P - 2 , / .$ D ^A $ ,P* ek 2- K K2 $2F*

* 0"%) =,2 K1 2 2b* 4K) 22- K HBA*$,2[ =$2&.! +, +$5

= 3+ $2222- +\22N >#22$22- >'22<NC/GO-GCEsAg

- $F* +, #*# K * =^A gR& .,D >-%#-k*% ?%- !N2% > ,

- _"# - M6* 2$ E2- ^A2 !<2* F % 2 1B2 +2?" 2- E-4+,2 2N +2b =$a !2

$22%022% d22P 22"#22D?22% =$,22[$1# - $ DP1 J" c -'?2; $2#2- $2F*

+, 2#2 K=2 12 . 02,2k* DNC/GO-GCEsAg 2 * '< % K+,24

?% $- Ub !*b*#+,2 gR2& 2D 2- !/2GCE j 4$%D ,<#K2"#^A2 $ =2

DOD - 2F<R* O-[ #22* O.2 2- e b6 >* H2- K $2%#'2< NC/GO-

GCEsAg+, !) $ # K=2 2< 2-!2[ !N E-$,#? $ (* "#-5 BW*N.?

References Badeenejad, A., Gholami, M., Joneydi Jafari, A. & Ameri, A., 2012, "Investigation of effective parameters in nitrate

concentration of Shiraz groundwater with geographical information system", Journal of Tolooe Behdasht, 2, 47-56. (In Persian)

Bonyani, M., Mirzaei, A., Leonardi, S.G. & Neri, G., 2016, "Silver nanoparticles/polymethacrylic acid (AgNPs/PMA) hybrid nanocomposites-modified electrodes for the electrochemical detection of nitrate ions", Meas, 84, 83-90.

Bourgeois, W., Burgess, J. E. & Stuetz, R. M., 2001, "On-line monitoring of wastewater quality: A review", Chemical Technology and Biotechnology, 76, 337-348.

Casella, I. & Contursi, M., 2014, "Highly dispersed rhodium particles on multi-walled carbonnanotubes for the electrochemical reduction of nitrate and nitrite ions in acid medium", Electrochimical Acta, 138, 447-453.

Chen, M., Li, X. & Ma, X., 2012, "Selective determination of catechol in wastewater at silver doped polyglycine modified film electrode", International Journal of Electrochemical Science, 7, 2616-2622.

De, D., Englehardt, J.D. & Kalu, E.E., 2000, "Cyclic voltammetric studies of nitrate and nitrite ion reduction at the surface of iridium‐modified carbon fiber electrode", Journal of Electrochemical Society, 147, 4224-4228.

50

70

90

110

130

150

170

190

0 1 2 3 4 5 6

Cur

rent

(µA

)

Days

Page 11: ˇ ˚˛ ˙ ˝ ˘ˆ ˇ˘ - wwjournal.irwwjournal.ir/article_45875_41f8ea0ab44a57214f13c83b54953dbd.pdf · (Casella & Contursi 2014)!222

7 @A, B &A3CD3........ dx.doi.org/10.22093/wwj.2017.45875

11

Duca, G., Gonta, M., Matveevici, V. & Iambartev, V., 2002, "The mechanism of nitrate transformation on the processes of electrochemical treatment of natural waters", Environmental Engineering and Management Journal, 1, 341-346.

Ghanbari, K., 2013, "Silver nanoparticles dispersed in polypyrrole matrixes coated on glassy carbon electrode as a nitrate sensor", Analytical and Bioanalytical Electrochemistry, 5, 46-58.

Golabi, M., 2005, Introduction to electrochemistry analysis, principles and applications, Entesharate Sutude, Tabriz, Iran. (In Persian)

Korostynska, O. & Mason, A., 2012, "Monitoring of nitrate and phosphates in wastewater: Current technologies and further challenges", Smart Sensing and Intelligent Systems, 5, 149-176.

Keyvani, M., Aghaeai, M., Zare, K., Aghaeai, H. & Ansari, R., 2009, "Synthesis of electroactive nanopolymers and nanocomposites based on polyaniline and investigation of their mechanical, electrical conductivity and thermal stability properties", J. Basic Sci. Islamic Azad Univ., 72, 1-16. (In Persian)

Mattarozzi, L., Cattarin, S., Comisso, N., Guerriero, P., Musiani, M., Vazquez-Gomez, L. & Verlato, E., 2013, "Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes", Electrochimical Acta,89, 488-498.

Mir Moghtadaeai, L. Mirza Nasiri, N. & Kadivar, M., 2013, "Measurement of folic acid in foods using a biosensor based on DNA", Journal of Nutritional Science and Food Technology, 4,189-198.

Mnsur, F. & Betondi, M., 2012, "Synthesis of silver nanoparticles by controlling its particle size", Iranian Journal of Physics Research, 1, 77-83.

Motahar, H., Kou, N., Toshikazu, K. & Katsuaki, S., 2013, "Reduction of nitrate on electrochemically pre-reduced tin-modified palladium electrodes", Journal of Electroanalytical Chemistry, 707, 59-65.

Qin, Y., Vu, A., Smyl, W. & Stein, A., 2012, "Facile preparation and electrochemical properties of V2O5-graphene composite films as free-standing cathodes for rechargeable lithium batteries", Journal of Electrochemical Society,159, 1135-1140.

Remes, A., Manea, F., Sonea, D., Burtica, G., Picken, S.J. & Schoonman, J., 2009, "Electrochemical determination of nitrate from water sample using Ag-doped zeolite-modified", Ovidius University Anal. Chem., 20(1),61-65.

Saleem, M., Chakrabarti, H.M. & Basheer Hassn, D., 2011, "Electrochemical removal of nitrite in simulated aquaculture wastewater", African Journal of Bioethanology, 10(73), 16566-16576.

Stortini, A.M., Moretto, L.M., Mardegan, A., Ongaro, M. & Ugo, P., 2015, "Arrays of copper nanowire electrodes: Preparation, characterizationand application as nitrate sensor", Sens. Actuators B, 207,186-192.

Sun, F., Li, L., Liu, P. & Lian,Y., 2011, "Nonenzymatic electrochemical glucose sensor based on novel copper film", Electroanalysis, 23, 359-401.

Thinh, N.V., Thoa, N.T.P. & Hung, L.Q., 2007, "Cyclic voltammetry study on the reduction of nitrate and nitrite on a copper electrod", Journal of Chemistry, 45, 213-218.

Velusamy, V. & Arshak, K., 2010, "An overview of foodborne pathogen detection: In the perspective of biosensors", Biotechnology Advances, 28, 232-254.

Wang, S., Zhang, Y., Abidi, N. & Cabrales, L., 2009, "Wettability and surface free energy of graphene films", Langmuir, 25 (18), 11078-11081.

Yang, Y., Peng, Y., Zhao, F. & Zang, B., 2003, “Voltammetric determination of prochlorperazine and ethopropazine using a gold electrode modified with decanethiol SAM", Sensors, 3, 524-533.

Zapata, E.P., Ruiz, R.L., Harter, T., Ramirez, A.I. & Mahlknecht, J., 2014, "Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach", Science of the Total Environment,470-471, 855-864.