การวิเคราะห และ ... · mat foundation on ground ... discrete element...
Embed Size (px)
TRANSCRIPT
-
Mat foundation on Ground
..
-
2
(Mat foundation
or Raft foundation)
2
-
3
(Mat foundation or Raft foundation)
-
4
(Mat foundation or Raft foundation)
-
5
4
A-A
A A
B-B
B B
1. Flat plate 2. Flat plate thickened
under column
-
6
4
C-C
C C
D-D
D D
3. Beam and slab 4. Slab with basement
walls as a part of the mat
-
7
1.
( )qqq ultnet =
Meyerhof 1963
disBNdisqNdiScNq qqqqccccult 21
++= (1)
Bq
1
D
D1
(surcharge pressure) =
(S.F.) safety factor = 2 cohesionless
= 3 cohesive soil
../ FSqq neta =
1
-
8
1.
1 Meyerhof 1963
0 5.14 1.0 0.0
5 6.49 1.6 0.1
10 8.34 2.5 0.4
15 10.97 3.9 1.1
20 14.83 6.4 2.9
25 20.71 10.7 6.8
26 22.25 11.8 8.0
28 25.79 14.7 11.2
cN qN N30 30.13 18.4 15.7
32 35.47 23.2 22.0
34 42.14 29.4 31.1
36 50.55 37.7 44.4
38 61.31 48.9 64.0
40 75.25 64.1 93.6
45 133.73 134.7 262.3
50 266.50 318.5 871.7
cN qN N
-
9
-
10
1.
0=
> 10
Factor Value For
(Shape)
(Depth)
(Inclination)
2
LBK2.01s pc +=
LBK1.01ss pq +==
1ssq ==
BDK2.01d pc +=
BDK1.01dd pq +==
1ddq == 2
qc 901ii
==
o
o
2
1i
= oo
0i = 0>for
Any
> 10
0=
Any
> 10
0=
Any
( )2/45tan2 +=pK
H
R V
-
11
2.
3
1. Conventional rigid method
strip < 1.75/
2. Approximate flexible method
strip > 1.75/
3. Discrete element method - Finite difference method
- Finite element method (FEM)
- Finite grid method (FGM)
44 FF IEk
=
k = modulus of subgrade reaction
EF = modulus of elasticity
IF = moment of inertia
PresenterPresentation Notes conventional rigid method Flexible method slide 47 slide 69
-
12
Q1
Q 2R = Q1+Q2
Q1 Q 2
q
q
-
13
3.
(Conventional rigid method)
1
nQQQQQ ....321 +++=
n
Q1, Q2, Q3
(5)
L
B
Q9 Q10 Q11 Q12
Q5 Q6 Q7 Q8
Q1 Q2 Q3 Q4
ey
ex
B7 B6 B5
B3
B2
B1X
Y
x
y
A B C D
J E
FGHIx'
y'
B4
PresenterPresentation Notes Q dimension B4 x y
-
14
2
y
y
x
xIxM
IyM
AQq ++= (6)
Q A ( )LBA =
xI x 3)12/1( BL
yI 3)12/1( LB y
xM yx eQM = x
yM xy eQM = y
-
15
xe
ye
x ( )
y ( )
QxQ...xQxQxQx nn332211++++
= (7)
2Bxex = (8)
QyQyQyQyQy nn ...332211++++
= (9)
2Lyey = (10)
2
L
B
Q9 Q10 Q11 Q12
Q5 Q6 Q7 Q8
Q1 Q2 Q3 Q4
ey
ex
B7 B6 B5
B3
B2
B1X
Y
x
y
A B C D
J E
FGHIx'
y'
B4
-
16
aqq
3
x y
B1, B2, B3,...Bn
4 (strip)
L
B
Q9 Q10 Q11 Q12
Q5 Q6 Q7 Q8
Q1 Q2 Q3 Q4
ey
ex
B7 B6 B5
B3
B2
B1X
Y
x
y
A B C D
J E
FGHIx'
y'
B4
-
17
5
dbfV cc 006.1 = (11)
cV (kg)
0.85
d (cm)
-
18
5
0b (cm)
(d/2)
(11) (Factored load)
(d)
) ) )
-
19
6 (shear force diagram)
(moment diagram)
1 I
F B1 B x
2FI
avqqq +=
Iq Fq I F
(12)
B
Q1
Q2
Q3
Q4
B1X
FGHI
y'
-
20
6 (shear force diagram)
(moment diagram)
BBqav 1
=Q 4321 QQQQ +++ QBBqav 1
avq
=
4
( )2
43211 QQQQBBqloadAverage av ++++= (13)
(14)
=
BBloadAverageqav
1
-
21
6 (shear force diagram)
(moment diagram)
4321 QQQQloadAverageF+++
= (15)
321 ,, FQFQFQ 4FQ- factor F
-
-
- x y
avq
PresenterPresentation Notes Unit length B
-
22
7
2bdMR uu
=
bc
u
y
cf
Rff 75.0
85.021185.0min
=
(16)
bdAs =
(17)
(18)
uM
1 . (kg-m)
0.90
b 1 . (b = 100 cm)
-
23
cf (ksc)
(ksc)yf
min yf14
min =
yy
cb ff
f+
=
120,6120,685.0 1
( )
>
10
Factor Value For
(Shape)
(Depth)
(Inclination)
2
LBK2.01s pc +=
LBK1.01ss pq +==
1ssq ==
BDK2.01d pc +=
BDK1.01dd pq +==
1ddq == 2
qc 901ii
==
o
o
2
1i
= oo
0i = 0>for
Any
> 10
0=
Any
> 10
0=
Any
( )2/45tan2 +=pK
H
R V
-
28
2
BDK2.01d pc += 2.22
5.112.01+= 014.1= ( 2)
Dq = 635.19.0)175.1(6.06.1 =+= ton/m2 ( effective pressure
) 1ssq ==
0=i( 2)
1ddq ==
( 2)( 2)
++= disBN21disqNdiScNq qqqqccccult
00.10.10.10.1635.1014.10.1154.114.55.3qult ++=
686.22qult = ton/m2
qqq ultnet =
635.1686.22 =
051.21qnet = ton/m2
(safety factor = 3.0) 017.73/051.21qa == ton/m2
-
29
x,
2
193,448.282.22121BL
121I 33x =
=
= 4m
y, 259,262.228.28121LB
121I 33y =
=
=
4m
x (7) = 0yM
QxQxQxQxQx 1616332211 ..+++
=
( )( ){ 32545986548227456.0x +++++++=
( )( )54821091819116354826.7 ++++++++
( )( )548213620011318154866.14 ++++++++( )( ) } 619,2/32545491549132506.21 ++++++++
296.11x = m
xe (8)
2Bxex = 2
2.22296.11 = 196.0= m
L = 28.8 m
B= 22.2 m
X
Y
x
y
-
30
y = 0xM (9) 2
QyQ...yQyQyQy 166332211+++
=
{ ( )( 3254548254823254)9.0y +++++++=( )( )549113620010918159869.9 ++++++++( )( )54911131819116354829.18 ++++++++( )( ) } 619,2/32505486548227459.27 ++++++++
178.14y = m
ye (10) 2Lyey = 2
8.28178.14 = 222.0= m
L = 28.8 m
B= 22.2 m
X
Y
ey= 0.222
ex= 0.196
meme
y
x222.0196.0
==
x
y
PresenterPresentation NotesSlide Q Q allowable soil pressure Q 2619 Mx My Q slide Q
-
31
yx eQM = 42.581)222.0(2619 == ton-m
xy eQM = 32.513196.02619 == ton-m
y
y
x
x
IxM
IyM
AQq ++=
259,2632.513
193,4442.581
8.282.222619 xyq ++
=
xyq 0195.00132.0096.4 +=
(5)
ton/m2
ton/m2
(service load)
-
32
-
33
Point (ton/m2) x (m) 0.0195x y (m) -0.0132y q (ton/m2)
A 4.096 -11.1 -0.216 14.4 -0.190 3.690
B 4.096 -3.5 -0.068 14.4 -0.190 3.838
C 4.096 3.5 0.068 14.4 -0.190 3.974
D 4.096 11.1 0.216 14.4 -0.190 4.122
E 4.096 11.1 0.216 -14.4 0.190 4.502
F 4.096 3.5 0.068 -14.4 0.190 4.354
G 4.096 -3.5 -0.068 -14.4 0.190 4.218
H 4.096 -11.1 -0.216 -14.4 0.190 4.070
1 4.096 -11.1 -0.216 4.5 -0.059 3.821
2 4.096 11.1 0.216 4.5 -0.059 4.253
3 4.096 -11.1 -0.216 -4.5 0.059 3.939
4 4.096 11.1 0.216 -4.5 0.059 4.371
4.096
4.502
AQ
2 3
PresenterPresentation Notes slide Slide -0.0199y -0.0199x 0.0296x 0.0296y
-
34
yx eQM = 18.881)222.0(3.3969 == ton-m
xy eQM = 98.777196.03.3969 == ton-m
y
y
x
x
IxM
IyM
AQq ++=
259,2698.777
193,44)18.881(
8.282.223.3969 xyq ++
=
xyq 0296.00199.0208.6 +=
(5)
ton/m2
ton/m2
(ultimate load)
-
35
Point (ton/m2) x (m) 0.0296x y (m) -0.0199y q (ton/m2)
A 6.208 -11.1 -0.329 14.4 -0.287 5.592
B 6.208 -3.5 -0.104 14.4 -0.287 5.817
C 6.208 3.5 0.104 14.4 -0.287 6.025
D 6.208 11.1 0.329 14.4 -0.287 6.250
E 6.208 11.1 0.329 -14.4 0.287 6.824
F 6.208 3.5 0.104 -14.4 0.287 6.599
G 6.208 -3.5 -0.104 -14.4 0.287 6.391
H 6.208 -11.1 -0.329 -14.4 0.287 6.166
1 6.208 -11.1 -0.329 4.5 -0.090 5.789
2 6.208 11.1 0.329 4.5 -0.090 6.447
3 6.208 -11.1 -0.329 -4.5 0.090 5.969
4 6.208 11.1 0.329 -4.5 0.090 6.627
6.208
6.824
AQ
2 4
-
36
q 017.7=aq
3
= 4.502 ton/m2 <
***
****
ton/m2 OK
4 (strip)
y 4 A-
H, B-G, C-F D-E
x 4
EFGH, 3-4, 1-2 ABCD
051.21=aq = 6.824 ton/m2 < ton/m2 OKq
PresenterPresentation Notes pressure slide
-
37
5
2
2.219547.1914.1Q =+= ton ( ) ( ) d2240d602/d30602b0 +=++++=
ACI dbfV cc 006.1 =
200,219=QVc kg
85.0=
240=cf kg/cm2
( ) 200,219224024006.185.0 + dd
( ) 99.157032240 + dd
078521202 =+ dd
47d cm
d/2
d/2
d/2
b0=2(0.6+0.3+d/2)+(0.6+d)
edge of mat
0.6
0.6
0.60.6+0.3+d/2
0.6+d
DL=91 ton , LL= 54 ton
2
cm
-
38
5
000,130=QVc kg
( ) 000,13021024006.185.0 + dd
5.9313)210( + dd
05.93132102 =+ dd
6.37d cm
H E
130327.1544.1 =+=Q ton
( ) ( ) dddb +=+++++= 2102/30902/30600
d/2
d/2
b0=(0.6+0.3+d/2)+(0.9+0.3+d/2)
edge of mat
edge of mat
0.9 0.6
0.6
0.6+0.3+d/2
0.9+0.3+d/2
DL=54 ton , LL= 32 ton
E,H
-
39
C-F 3-4
2.5111367.12004.1 =+=Q
5
ton
( ) ddb 42406040 +=+=
200,511= QVc
( ) 200,511424024006.185.0 + dd
( ) 5.366234240 + dd
09.9155602 =+ dd
3.70d cm
d/2
d/2
d/2
b0=4(0.6+d)
d/2
0.6+d
0.6+d
DL=200 ton , LL= 136 ton
C-F 2-3
80 . d = 80-7.5-2.5/2 = 71.25 cm > 70.3 cm
DB 25 mm
-
40
6 (shear force diagram)
(moment diagram)
C-F
factor (F)
LBq 1av C-F 312.62599.6025.6
=+
=avq ton/m2
50.272,18.280.7312.61 ==LBqav ton
( )( ) ( )( ) 20.212547.1864.1Q1 =+= ton
( )( ) ( )( ) 50.4451137.11814.1Q2 =+= ton
( )( ) ( )( ) 20.5111367.12004.1Q3 =+= ton
( )( ) ( )( ) 60.206547.1824.1Q4 =+= ton
=+++= 50.375,160.20620.51150.44520.212Q ton 1,272.50 ton
-
41
q = 6.025
q = 6.599
7 m
-
42
( )2
QQQQLBqloadAverage 43211av ++++=
6 (shear force diagram)
(moment diagram)
250.137550.1272 +
=
324,1=loadAverage ton
LBloadAverageq
1av = 567.68.287
324,1=
= ton/m2
4321 QQQQloadAverageF+++
= 963.050.375,1
324,1==
35.2042.212963.01 ==FQ ton
02.4295.445963.02 ==FQ ton
29.4922.511963.03 ==FQ ton
96.1986.206963.04 ==FQ ton
-
43
0.16 m
6 (shear force diagram)
(moment diagram)
avq
Ix
ARq Re+=
R 62.324,196.19829.49202.42935.204 =+++ ton
6.2018.280.7 ==A m2
16.0=e m
R
9.2796.1989.1829.4929.902.4299.035.204)4.14(62.1324 +++=+ e
-
44
( ) 352.659.934,13
)4.14(16.062.324,16.20162.324,1
1 =
+=q ton/m2
( ) 790.659.934,13
)4.14(16.062.324,16.20162.324,1
2 =
+=q ton/m2
321 ,, FQFQFQ 4,FQ avq
shear force diagram bending moment diagram
Load diagram
( )( ) 59.934,138.287121 3 =
=I m3
-
45
6 (shear force diagram)
(moment diagram)
Shear diagram
(ton)
Moment diagram
(ton-m)
6.790x7 =
-
46
6 (shear force diagram)
(moment diagram)
5 y
(strip)
(m)
(ton/m2) (ton) (ton)Average load
(ton) (ton/m2)
Factor F
A-H 4.1 5.879 694.19 666.20 680.20 5.761 1.021
B-G 7.0 6.104 1230.57 1234.80 1232.69 6.115 0.998
C-F 7.0 6.312 1272.50 1375.50 1324.00 6.567 0.963
D-E 4.1 6.537 771.89 692.80 732.35 6.202 1.057
3969.15 3969.30 3969.24
avq LBqav 1 Q avq
-
47
6 y
6 (shear force diagram)
(moment diagram)
1q
2q
(strip) A-H B-G C-F D-E
Q1 (ton) 108.90 206.60 212.20 124.40
Q2 (ton) 206.60 382.90 445.50 219.20
Q3 (ton) 220.70 438.70 511.20 219.20
Q4 (ton) 130.00 206.60 206.60 130.00
FQ1 (ton) 111.19 206.19 204.35 131.49
FQ2 (ton) 210.94 382.13 429.02 231.69
FQ3 (ton) 225.33 437.82 492.29 231.69
FQ4 (ton) 132.73 206.19 198.96 137.41
e (m) 0.52 0.20 0.16 0.11
A (m2) 118.08 201.60 201.60 118.08
I (m4) 8161.69 13934.59 13934.59 8161.69
5.136 5.858 6.352 6.059
6.384 6.367 6.790 6.344
Maximum positive moment (t-m/m) 14.69 44.64 74.54 9.89
Maximum negative moment (t-m/m) 53.62 47.15 40.47 58.80
Maximum Shear (ton)/m 28.73 32.72 38.04 28.81
-
48
6 (shear force diagram)
(moment diagram)
(strip)
(m)
(ton/m2) (ton) (ton)Average load
(ton) (ton/m2)
Factor F
ABCD 5.4 5.921 709.81 652.10 680.96 5.680 1.044
1-2 9.0 6.118 1222.38 1254.20 1238.29 6.198 0.987
3-4 9.0 6.298 1258.34 1389.80 1324.07 6.627 0.953
HGFE 5.4 6.495 778.62 673.20 725.91 6.055 1.078
3969.15 3969.30 3969.23
avq LBqav 1 Q avq
7 x
-
49
6 (shear force diagram)
(moment diagram) 8 strip x
(strip) ABCD 1-2 3-4 HGFE
Q1 (ton) 108.90 206.60 220.70 130.00
Q2 (ton) 206.60 382.90 438.70 206.60
Q3 (ton) 212.20 445.50 511.20 206.60
Q4 (ton) 124.40 219.20 219.20 130.00
FQ1 (ton) 113.69 203.91 210.33 140.14
FQ2 (ton) 215.69 377.92 418.08 222.71
FQ3 (ton) 221.54 439.71 487.17 222.71
FQ4 (ton) 129.87 216.35 208.90 140.14
e (m) 0.28 0.28 0.17 0.00
A (m2) 119.88 199.80 199.80 119.88
I (m4) 4923.47 8205.79 8205.79 4923.47
5.249 5.727 6.324 6.054
6.109 6.665 6.934 6.054
Maximum positive moment/1 m (t-m/m) 6.77 20.55 35.29 1.09
Maximum negative moment/1 m (t-m/m) 21.94 30.72 28.95 44.47
Maximum Shear (ton)/m 21.40 25.47 28.78 22.33
1q
2q
-
50
7
y
+uM
() = 74.54 ton-m/m ( CF)
54.74= ton-m/m
9.0= cmb 100= 2/240 cmkgfc =2/000,4 cmkgfy =
0035.04000/14min ==
, ,
2bdM
R uu
= 31.1625.711009.0100000,154.742 =
= kg/cm2
0043.024085.031.16211
000,424085.0
85.021185.0 =
=
=
c
u
y
cf
Rff
-
51
0197.0000,4120,6
120,6000,424085.085.075.0
120,6120,685.075.075.0 1
=+
=
+
=yy
cb ff
f
)0043.0()0035.0(min
mcmbdAs /94.2425.711000035.02===
DB25 @ 0.15 . y
mcmAs /72.3215.0/5.2422 ==
OK
-
53
x
7
35.29 ton-m/m
2bdMR uu
= 30.875.681009.0100000,129.352 =
= kg/cm2
002.024085.030.8211
000,424085.0
85.021185.0 =
=
=
c
u
y
cf
Rff
9.0= cmb 100= 2/240 cmkgfc = 2/000,4 cmkgfy =
0035.04000/14min ==
, , ,
cmd 75.685.225.71 ==
-
54
0197.0000,4120,6
120,6000,424085.085.075.0
120,6120,685.075.075.0 1
=+
=
+
=yy
cb ff
f
)002.0()0035.0(min >
ACI 0027.0002.033.133.1 === cal
mcmbdAs /6.1875.681000027.02===
DB25 @ 0.25 . x
mcmAs /6.1925.0/5.2422 ==
OK
x
-
55
x
7
44.47 ton-m/m
9.0= cmb 100= 2/240 cmkgfc =2/000,4 cmkgfy =
0035.04000/14min ==
, , ,
2bdMR uu
= 45.1075.681009.0100000,147.442 =
= kg/cm2
0027.024085.045.10211
000,424085.0
85.021185.0 =
=
=
c
u
y
cf
Rff
cmd 75.685.225.71 ==
-
56
0197.0000,4120,6
120,6000,424085.085.075.0
120,6120,685.075.075.0 1
=+
=
+
=yy
cb ff
f
)0027.0()0035.0(min >
mcmbdAs /06.2475.681000035.02===
DB25 @ 0.20 . x
mcmAs /5.2420.0/5.2422 ==
OK
-
57
y, Vu = 38.04 Ton/m
x, Vu = 28.78 Ton/m
7.49000,1/25.7110024053.085.053.0 === bdfV cc Ton/m
> Vu
98.47000,1/75.6810024053.085.053.0 === bdfV cc Ton/m
> Vu
-
58
Mat foundation on Ground (Mat foundationor Raft foundation) (Mat foundation or Raft foundation) (Mat foundation or Raft foundation) 4 Slide Number 61. 1. Slide Number 91. 2. Slide Number 123. (Conventional rigid method)Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44Slide Number 45Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51Slide Number 52Slide Number 53Slide Number 54Slide Number 55Slide Number 56Slide Number 57Slide Number 58