神戸製鋼技報 - kobelco.co.jp · "r&d" kobe steel engineering reports, vol. 53, no.3 (dec....

112
神戸製鋼技報 53 , / 2003 通巻205号 ページ 1 (巻頭言) 原子力特集号の発刊にあたって 青木克規 2 (解説) 当社におけるキャスク開発の現状 谷内廣明・吉村啓介・赤松博史 7 (論文) 耐熱性コンクリートを使用した新型コンクリートキャスク 下条 純・谷内廣明・萬谷健一・大脇英司・杉原 豊・畑 明仁 12 (論文) ボロン添加アルミニウム合金の製造技術 下条 純・谷内廣明・梶原 桂・有賀康博 18 (技術資料)高性能中性子遮へい体 kobesh 赤松博史・谷内廣明・萬谷健一 23 (解説) 濃縮ボロン製品の今後の展望 谷内廣明・下条 純・萬谷健一 26 (技術資料)使用済燃料輸送容器保守施設(f 3 施設) 古田尚行・山田 斉・仲谷雅光・小川圭一・白谷 誠・西木場 31 (技術資料)バーナブルポイズン棒(燃料集合体構成部材)の減容装置 北村義則・室尾洋二・浜中 36 (解説) コールドクルーシブル誘導溶融技術の原子力分野への適用 西尾隆志・和田本章・草道龍彦 41 (技術資料)第 2低レベル廃棄物貯蔵建屋(DB建屋)の無人搬送システム 北村義則・宮上秀敏 47 (技術資料)HIP 法による放射性ヨウ素含有廃棄物の岩石固化技術 和田隆太郎・西村 務・栗本宜孝・今北 56 (技術資料)低レベル放射性廃棄物の焼却処理技術 須鎗 護・中西良太・能浦 毅・藤冨昌志・阿野晋太郎 61 (技術資料)放射性雑固体廃棄物のプラズマ溶融技術 康夫・杉本雅彦・藤冨昌志・能浦 66 (技術資料)放射性液体廃棄物の処理技術 田中良明・岩田俊雄・和田本章 72 (論文) 低透水層用充填材「ベントボール 和田隆太郎・山口憲治・竹内靖典・隈元純二・小峯秀雄・中西 78 (論文) 地層処分場における金属腐食に伴う水素ガス発生量評価 西村 務・和田隆太郎・藤原 和雄 84 (論文) in situ レーザ誘起蛍光分光法による高圧下溶解度評価手法 山口憲治・山本誠一・増田 薫・清水孝浩・今北 毅・坂本 89 (技術資料)原子力施設事故時の情報遠隔収集ロボット 中山準平・杉本雅彦 92 (論文) 超臨界圧軽水炉用燃料被覆管材料 原田 誠・久保田修・穴田博之 98 (解説) 燃料チャンネルの機能及び製造方法 野高昌之・藤沢匡介 103 神戸製鋼技報掲載 原子力関連文献一覧(Vol.33, No.1 ~ Vol.53, No.2) 新製品・新技術 ――――――――――――――――――――――――――――――――――――― 105 新しい回旋誘導型人工膝関節 K-MAX EMK システム 高野恭寿・山脇 105 チタン製滑雪パネル 山本喜孝 106 PVD法によるαアルミナ皮膜形成技術 小原利光・玉垣 ――――――――――――――――――――――――――――――――――――――――――――― 107 編集後記・次号予告 特集:原子力 ――――――――――――――――――――――――――――――――――――――

Upload: lequynh

Post on 15-Apr-2018

243 views

Category:

Documents


3 download

TRANSCRIPT

  • , /

    1

    2

    7

    12

    18 kobesh

    23

    26 f 3

    31

    36

    41 2 DB

    47 HIP

    56

    61

    66

    72

    78

    84 in situ

    89

    92

    98

    103 Vol.33, No.1 Vol.53, No.2

    105 K-MAX EMK

    105

    106 PVD 107

  • "R&D" Kobe Steel Engineering Reports, Vol. 53, No.3 (Dec. 2003)

    FEATURE Nuclear Engineering

    1 Recent Trends in Nuclear Katsunori Aoki

    2 Status of Cask Development at Kobe Steel Dr. Hiroaki TaniuchiKeisuke YoshimuraHiroshi Akamatsu

    7 New Heat Resistant Concrete Casks Jun ShimojoDr. Hiroaki TaniuchiKenichi MantaniDr. Eiji OwakiYutaka SugiharaAkihito Hata

    12 Borated Aluminum Alloy Manufacturing Technology Jun ShimojoDr. Hiroaki TaniuchiKatsura KajiharaYasuhiro Aruga

    18 Kobe Steel's Highly Effective kobesh Neutron Shield Hiroshi AkamatsuDr. Hiroaki TaniuchiKenichi Mantani

    23 The Prospect of Enriched Boron Products Dr. Hiroaki TaniuchiJun ShimojoKenichi Mantani

    26 Nuclear Waste Storage Cask Maintenance Facility Naoyuki FurutaHitoshi YamadaMasamitsu NakataniKeiichi OgawaMakoto ShirataniAkira Nishikoba

    31 BP Volume Reduction Equipment Yoshinori KitamuraYoji MurooIsao Hamanaka

    36 The Applicability of Cold Crucible Induction Melting to Nuclear Engineering Takashi NishioAkira WadamotoTatsuhiko Kusamichi

    41 An Automatically Controlled System for Waste Transport in Low Level Nuclear Waste Storage Facilities Yoshinori KitamuraHidetoshi Miyaue

    47 HIP Rock Solidification Technology for Radioactive Iodine Contaminated Waste Ryutaro WadaTsutomu NishimuraYoshitaka KurimotoDr. Tsuyoshi Imakita

    56 An Incineration Technology for Low Level Radioactive Solid Waste Mamoru SuyariRyota NakanishiTsuyoshi NouraMasashi FujitomiShintaroh Ano

    61 A Plasma Melting System for Solid Radioactive Waste Dr. Yasuo HigashiMasahiko SugimotoMasashi FujitomiTsuyoshi Noura

    66 A Treatment Technology for Liquid Waste Generated from Nuclear Reprocessing Facilities Yoshiaki TanakaToshio IwataAkira Wadamoto

    72 Low Permeability Layer "BENTBALL" Ryutaro WadaKenji YamaguchiYasunori TakeuchiJunji KumamotoHideo KomineHiroshi Nakanishi

    78 Evaluation of Gas Generation Rates Caused by Metal Corrosion under the Geological Repository Conditions Tsutomu NishimuraRyutaro WadaKazuo Fujiwara

    84 Solubility Assessment Technology for High Pressure Environments by in situ Laser-induced Fluorescence Spectroscopy Kenji YamaguchiDr. Seiichi YamamotoDr. Kaoru MasudaTakahiro ShimizuDr. Tsuyoshi ImakitaShun Sakamoto

    89 Information Gathering Robots for Nuclear Accidents Jumpei NakayamaMasahiko Sugimoto

    92 Fuel Cladding Materials for Supercritical-water Cooled Power Reactors Makoto HaradaOsamu KubotaHiroyuki Anada

    98 Functions and Fabrication Technologies of Fuel Channel Masayuki NodakaKyosuke Fujisawa

    103 Papers on Advanced Processing Technologies for Nuclear Presented in R&D Kobe Steel Engineering Reports (Vol. 33, No.1 Vol. 53, No.2)

  • 1999

    2002

    RD

    1960

    1975

    1980

    60

    1989 4 Vol. 39No. 2

    1990 2000

    1/Vol. 53 No. 3Dec. 2003

    FEATURE : Nuclear Engineering

    Recent Trends in NuclearKatsunori Aoki

  • 1980 TN 1 150

    1

    1980 TNNFT

    11TN

    COGEMACOGEMA LOGISTICSACL TRANSNUCLEAIRE COGEMA2002 TN12 PWR 12 1 2.5m 6.5m 115 TN12 TN12APWR 12 TN12BBWR 32

    2 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    Status of Cask Development at Kobe Steel

    Kobe Steel has been involved in the design, safety analysis and fabrication of transport and/or storage casks for radioactive materials for more than 20 years. Transport casks were primarily developed early on, however, now production has largely shifted to storage casks. To make the casks as safe as possible, without huge added expense, the advanced types of casks have been and will be developed and new materials such as high performance neutron shields and neutron absorbing materials are being increasingly developed and used.

    FEATURE : Nuclear Engineering

    Dr. Hiroaki Taniuchi

    Keisuke Yoshimura

    Hiroshi Akamatsu

    No. of casksType of caskDelivery year

    68TN type transport cask1981-2003

    2JRC-80Y-20T transport cask1981

    61TN type transport/storage cask1985-2003

    19NFT type transport cask1997-2000

    25Cask for radioactive waste1988-2001

    12Others1988-1993

    187Total

    1 Casks fabricated by Kobe Steel

  • TN17 BWR 17 12

    TN 2JRC-80Y-20T20 9 m BU13NFT 1

    4 BWRNFT63NFT-38BNFT

    2

    TN24 TN24 TK69 21 TN24

    ACLTN1983 TN2/5 9 m 42R&D1985 TN24 TN24

    3/Vol. 53 No. 3Dec. 2003

    1 TN12 TN12 type transport cask

    3 NFT NFT type transport cask

    2 JRC-80Y-20T JRC-80Y-20T type transport cask

    4 TN24 2/5 TN24 2/5 scale model drop test

  • PWR 24 1 1 Idaho National Engineering and Environmental LaboratoryINEELINEEL 2 322 TN24

    1990 TN24 TN24 1995 9TN245 2ACLTN24 TN24

    TN24DTN24XL ACL TRANSNUCLEARTNY TN-32TN-40TN-68 TN-32TN-40 23TK

    TN24 1997 ACL TN24 TK2BWRTK-69BWR 69 TK 2TK-69 TK-69

    4 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    ConcreteKATSTKTN24

    BWR typePWR typeKATS-B69KATS-P24TK-69TK-PWRDomestictypePrototype

    BWRPWRBWRPWRBWRPWRBWRPWRFuel type45 00050 00033 00044 00033 00044 00033 00035 000Average burn-up (Mwd/tU)10101010101045Cooling time (years)165

    168

    132120

    131119

    132120

    132120

    115

    9488

    TransportStorage

    Total weight(ton)

    6.23.4

    6.23.4

    5.32.6

    5.22.7

    5.42.6

    5.12.6

    5.62.5

    5.12.3

    Axial (Main body)Diameter (Main body)

    Length(m)

    More than 52More than 21692469More than 265224No. of loaded fuels2020192119252824Total heat (kW)

    Under developmentUnderdevelopmentLicensedfor storageNote

    2 Major characteristics of casks designed by Kobe Steel

    5 TN24 TN24 type transport/storage cask

    1 TN24 Structure of TN24 type transport/storage cask

    Secondary lid

    Primary lid

    Upper trunnion

    Outer shell

    Copper fin

    Main body

    Basket eB-AL developed by KSL

    Neutron shielding e developed by KSL

    Lower trunnion

    kobesh

  • kobesh TK

    3

    TN 231KATS

    1990 KATS KATS 3KATS 32

    150 4 2

    4

    20

    5/Vol. 53 No. 3Dec. 2003

    2 TK69 Structure of TK69 type transport/storage cask

    Secondary lid

    Upper trunnion

    Main body

    Basket

    Outer shell

    Neutron shielding

    Lower trunnion

    Primary lidPressure monitoring

    Copper fin

    3 KATS Structure of KATS type transport/storage cask

    Secondary lid

    Primary lid

    Basket

    Outer shell

    Inner shell

    Neutron shielding

    Upper trunnion

    Pressure monitoring

    Lower trunnion

    Copper fin

  • kobesh 41 kobesh

    kobesh SREPRTHPP 4 SR TN24EPR TK

    SR TH42

    TN24 1995 4 5 11 A6061A3004 43

    ACL 1984 ACL TNT2002 TNT ACL TNT 1 S. ShimuraRAMTRANS, Vol.8, Nos3-41997, p.257. 2 J. M. Creer et al.Electric Power Research Institute, EPRI NP-

    51281987 3 M. A. McKinnon et al.Electric Power Research Institute,

    EPRI NP-61911989

    6 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    4 Structure of seal type concrete cask

    Concrete lid

    Canister lid

    Basket

    Heat resistant concrete

    Inner shell

    Copper fin

    Canister

    Pressure monitoring

    Outer shell

  • 2010 100 65 901SUS329J4L25Cr-6Ni-3Mo-0.2N-LC1150

    2

    1

    11

    10010012

    1 150 JIS R 2616 JIS A 1325JIS A 1108

    7/Vol. 53 No. 3Dec. 2003

    New Heat Resistant Concrete Casks

    Heat resistant concrete containing hydrogen has been developed in the design of a new type of cask that has been modeled on the same concept of metal cask technologies for use under high temperature conditions. The allowable temperature of conventional concrete is limited to 90 because most of its moisture is free water and therefore hydrogen, which is effective for neutron shielding, can be easily lost. Our newly developed concrete uses crystal water and as a result can be used under high temperatures.

    FEATURE : Nuclear Engineering

    Jun ShimojoDr. Hiroaki Taniuchi

    Kenichi MantaniDr. Eiji Owaki

    Yutaka Sugihara

    Akihito Hata

  • 150 30g 1 0006 2 3 150 5 5 15013

    140 60

    15030 3 5

    8 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    3 150

    Mass variation of heat resistant concrete during heated time (Heated temperature150)

    1.00

    0.98

    0.96

    0.94

    0.92

    0.901 10

    Heated time(h)100 1 000

    Relative mass variation

    Sample No.1 Sample No.2

    Compressivestrength(MPa)

    Specific heat(kJ/(kgK))

    Coefficient oflinear expansion

    (l/K)

    Heat conductivity(W/(mK))

    Moisture content(mass)

    Density(g/cm3)

    870.941.11052.016.62.3Heat resistant concreteat room temp.

    1.410.82.17Heat resistant concreteat 150

    184041.01.321.010512.62.834722.252.31Ordinary concreteat room temp.

    1 Properties of heat resistant concrete and ordinary concrete

    Note 1According to reference 2Note 2According to reference 3Note 3According to reference 4Note 4According to reference 5

    1 Conventional concrete cask

    Concrete lid

    Air outlet

    Basket

    Canister

    Steel bar

    Air inlet

    Canister secondary lid

    Ordinary concrete

    Steel liner

    Canister primary lid

    2 New type concrete cask

    Concrete lid

    No air inlet and outlet which is conventionally required

    Canister lid

    Basket

    Heat resistant concrete

    Inner shell

    Outer shell

    Pressure monitoring

    Canister

    Copper fin

  • 58015014

    1

    2

    21

    24 2

    1 m 100Sv/h 8ORIGEN2 9 ANISN 10DLC23/CASK 11 ICRP Publ.74 12 31502.17g/cm31 m 4 70 30

    3

    9/Vol. 53 No. 3Dec. 2003

    1 Cut sample of heat resistant concrete

    RemarksCondition

    BWR STEP 3.545 00055 00025101.3

    (1) Fuel specification Fuel type Initial enrichment () Average burnup (MWD/MTU) Maximum burnup (MWD/MTU) Specific power (MW/MTU) Cooling time (year) Peaking factor

    NoteAccordingto reference 7)

    522.152.17

    (2) Calculation condition Number of fuel assemblies Density of ordinary concrete (g/cm3) Density of heat resistant concrete (g/cm3)

    2 Specification and condition of shielding calculation

    Ordinary concrete

    (atoms/barncm)Heat resistant concrete(atoms/barncm)Element

    5.34 10 3

    4.11 10 2

    6.13 10 5

    2.14 10 4

    1.78 10 2

    2.22 10 3

    6.35 10 4

    1.6 10 2

    2.0 10 2

    6.9 10 4

    1.1 10 2

    8.1 10 3

    H

    C

    O

    Mg

    Al

    Si

    Ca

    Fe

    3 Atomic density of concrete material

    Dose equivalent rate (Sv/h)

    TotalNeutronGamma

    69

    100

    13

    42

    56

    58

    Heat resistant concrete

    Ordinary concrete

    4 1 mDose equivalent rate at 1m from surface of cask

    4 Shielding calculation model

    App. 75

    Fuel region

    Carbon steel (Canister)

    Air Carbon steel (Inner shell)

    ConcreteAir 100

    Detector(unit : cm)

    App. 80

    Carbon steel (Outer shell)

    Note According to refrence 7)

  • 1/3 2 3 5

    2.5

    4

    2 1 10041

    42

    43

    100

    10 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    1 2

    2 1/3 Outer view of 1/3 scaled model

    3 1/3 Cross section of 1/3 scaled model

    Measured data

    232.352.5

    Sampling numberAverage density (g/cm3 )

    Relative standard deviation ()

    5 Dispersion of concrete density

    Note Density data are measured at room temperature without heated.

  • 1 1

    2002

    2 2002p.29

    3 JAERI-M-86-0601986p.143.

    4 2002p.46

    5 JIS A 5308-1998 .

    6 2002 2002p.122.

    7 JAERI-Tech-96-0011996p.92.

    8 1992

    9 A.G.CroffORIGEN2 - A Revised and Updated Version of Oak Ridge Isotope Generation and Depletion Code, ORNL-56211980

    10 R.G.SolteszRevised WANAL ANISN Program Users Manual, WANL-TMI-19671969

    11 ORNL-RSIC, CASK-40 Group Coupled Neutron and Gamma-ray Cross-section Data, DLC-231973

    12 ICRP, Conversion Coefficients for use in Radiological Protection against External Radiation, Publication 741995

    11/Vol. 53 No. 3Dec. 2003

  • 1DC 4 5mass 1 2mass 10B

    13

    1

    11

    AlB21a 700 1mass B-A6061 1b 950Al-B Al 4 1bBMg EPMAElectron Probe Micro AnalyzerMgMg

    12 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    FEATURE : Nuclear Engineering

    Borated Aluminum Alloy Manufacturing Technology

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities.

    Jun ShimojoDr. Hiroaki Taniuchi

    Katsura Kajihara

    Yasuhiro Aruga

    10B 11B 20at.80at.10B 11B 10B

  • 12

    2 1 000

    1 2mass 800 2mass1 300 1 500 4DC

    2

    21

    21 000

    13/Vol. 53 No. 3Dec. 2003

    Mg EPMA

    B

    (a) Agglomeration of boron compounds (b) Giant boron compound

    100m200m

    Material bucket

    Vacuum pump

    Vacuum pump

    Casting room

    Melting roomVacuum induction furnace Handling

    container

    Casting mold

    1

    Coarse boron compounds in conventional melting process

    2 Vacuum induction melting equipment

    Secondary lid

    Primary lid

    Upper trunnion

    Inner shell

    Basket

    Outer shell

    Neutron shielding

    Copper fin

    Pressure monitoring

    Lower trunnion

    1 Transport and storage cask for spent fuel

  • 22

    1massB-A6061-T6511massB-A3004-H112 110mm T651 12mmt170mm 21000 3000 5000 6000 23

    3 1massB-A3004AlB224

    3a 1massB-A6061b 1massB-A3004 25

    1massB-A6061-T651 1massB-A3004-H112

    14 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    2 Trial product of borated aluminum alloy

    1 mass

    Chemical composition of structural borated aluminummass

    3 Macroscopic distribution of boron content

    Alloy B Si Fe Cu Mn Mg Zn Cr Ti

    1massB- A6061

    0.6 1.1

    0.6 1.3

    0.40 0.80

    0.30

    0.70

    0.7

    0.15 0.40

    0.25

    0.15

    1.0 1.5

    0.8 1.2

    0.8 1.3

    0.25

    0.25

    0.04 0.35

    0.15

    1massB- A3004

    Side

    Center

    Head (top of ingot)

    Head (top of ingot)

    Tolerance

    Center

    Center

    Side

    Side

    Result of chemical analysis (B)

    0.61.1mass 0.760.91mass (15 positions)

    Tail (bottom of ingot)

    Tail (bottom of ingot)

    thickness10mm, width900mm, length30 000mm(1 ingot)

    thickness12mm, 170mm, length26 000mm(1 ingot)

    (a) 1massB-A6061 rolled plate

    ToleranceResult of chemical analysis (B)

    0.61.3mass 0.821.03mass (10 positions)

    (b) 1massB-A3004 extruded pipe(b) 1massB-A3004 extruded pipe

    (a) 1massB-A6061 rolled plate

    100m

    3 1massB-A3004 Microstructure of 1massB-A3004 extruded material

    made by VIM process

  • 2.2 A6061 A3004

    251

    20.2 4 5 5 0.2

    15/Vol. 53 No. 3Dec. 2003

    4 1massB-A6061-T651A6061-T6

    Comparison of tensile properties at high temperatures of 1massB-A6061-T651 and A6061-T6

    2 Typical mechanical properties of structural

    borated aluminum alloy

    Alloy Condition Product form

    At room temperature Tensile strength 0.2Proof strength Elongation

    338 MPa 303 MPa 13

    (approximately)

    187 MPa 85 MPa 23

    (approximately)At 473K Tensile strength 0.2Proof strength Elongation

    Tensile direction (Plate) Transverse direction of the rolling direction (Pipe) Longitudinal direction of the extruding direction

    237 MPa 218 MPa 13

    (approximately)

    114 MPa 79 MPa 40

    (approximately)

    Borated A6061 T651

    Rolled plate

    Borated A3004 H112

    Extruded pipe

    350

    300

    250

    200

    150

    100

    50

    0300 350 400 450 500 550 600 650250

    Temperature (K)(a) Tensile strength

    Tensile strength (MPa)

    Borated A6061-T651A6061-T6

    350

    300

    250

    200

    150

    100

    50

    0300 350 400 450 500 550 600 650250

    Temperature (K)(b) 0.2Proof strength

    0.2 Proof strength (MPa)

    Borated A6061-T651A6061-T6

    30

    25

    20

    15

    10

    5

    0300 350 400 450 500 550 600 650250

    Temperature (K)(c) Elongation

    Elongation ()

    Borated A6061-T651A6061-T6

    200 180 160 140 120 100 80 60 40 20 0

    140

    120

    100

    80

    60

    40

    20

    0

    120

    100

    80

    60

    40

    20

    0

    300 350 400 450 500 550 600 650250Temperature (K)(a) Tensile strength

    300 350 400 450 500 550 600 650250

    Temperature (K)(c) Elongation

    300 350 400 450 500 550 600 650250Temperature (K)

    (b) 0.2 Proof strength

    Tensile strength (MPa)

    0.2 Proof strength (MPa)

    Elongation ()

    Borated A3004A3004

    Borated A3004A3004

    Borated A3004A3004

    5 1B-A3004-H112A3004-H112

    Comparison of tensile properties at high temperatures of 1B-A3004-H112 and A3004-H112

  • 252

    100300 10 98MPa6 51mass 6

    3

    31DC

    4 5mass12

    DC DC 32

    DC2massB-A6351339mm 4 510B

    16 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    0.1mm

    1 000

    1 000

    100

    10

    1

    100

    10

    1

    8 9 10 11 12 13

    473K, 100 000h

    473K, 100 000h

    14

    8 9 10 11 12 13 14

    Larson-Miller parameter PT20log t103

    Larson-Miller Parameter PT20log t103

    A6061-T6Borated A6061-T651

    Rupture stressMPa

    Rupture stressMPa

    (a) Comparison 1massB-A6061-T651 and A6061-T6

    (b) Comparison of 1B-A3004-H112 and A3004-H112

    A3004-H112Borated A3004-H112

    6 Larson-Miller Larson-Miller parameter on creep rupture stress properties

    4 DC 2massB-A6351 Microstructure of 2massB-A6351 ingot made by DC

    process

    5cm

    5 2mass-A6351 DC Neutron radiography of 2mass-A6351 ingot made by DC

    process

  • DC1mass1 000DC

    1 J. Shimojo et al.: Proceedings of 13th International Symposium on

    the Packaging and Transportation of Radioactive Material PATRAM2001.

    2 K. Kajihara et al.: Proceedings of 10TH International Conference on Nuclear EngineeringICONE102002.

    3 2002 2002p.300.

    4 M. Hansen et al.CONSTITUTION OF BINARY ALLOYS 1991p.71.

    5 J. Gilbert KaufmanProperties of Aluminum Alloys, Tensile, Creep and Fatigue Data at High and Low Temperatures, The Aluminum Association and ASM International1999.

    6 Vol.39No.31997p.237.

    17/Vol. 53 No. 3Dec. 2003

  • kobesh

    1kobesh

    kobesh Silicone rubber base Polypropylene base Ethylene propylene rubber baseTitanium hydride base4 1 kobesh 1kobesh 11Silicone rubber base kobesh

    4.04.5 1022atoms/cm3 5.51022atoms/cm3

    18 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    FEATURE : Nuclear Engineering

    kobesh

    Kobe Steel's Highly Effective kobesh Neutron Shield

    Recently, the management, transport and storage of spent fuels from the nuclear power reactors has become more and more important. A highly effective neutron shield called kobesh has been developed by Kobe Steel to improve safety and the overall economic management of spent fuel transport and management. This paper explains the technical characteristics of kobesh .

    Hiroshi AkamatsuDr. Hiroaki Taniuchi

    Kenichi Mantani

    1 kobesh

    kobesh lineup

    Hydrogen titanium base

    Ethylene propylenerubber basePolypropylene baseSilicone rubber baseType

    TH-OEP-REP-OPP-RPP-OSR-TSR-OSeries

    2.63.71.11.41.050.91.30.91.41.91.4Density (g/cm3)

    8.910226.410226.110227.610227.710225.510225.01022H-Content(max. atoms/cm3)

    VariableVariableVariableVariableVariableVariableVariableB-Content

    300150150120120170170Thermal stability for long use ()

    Pre-shapedPre-shapedPre-shapedPre-shapedPre-shapedPouringpre-shapedPouringpre-shaped

    Fabricationmethod

    Used in fire protecting cover

    Used in fire protecting cover

    Remarks

  • n, 12Polypropylene base kobesh

    kobesh 7.71022atoms/cm3 0.9g/cm3Silicone rubber base kobesh n, 13Ethylene propylene rubber base kobesh

    kobesh 6.71022atoms/cm3Silicone rubber base kobesh n, 14Titanium hydride base kobesh

    8.91022atoms/cm3

    2kobesh

    1 100150 kobesh

    19/Vol. 53 No. 3Dec. 2003

    Secondary lid

    Primary lid

    Trunnion

    Shell

    Basket

    Outer shell

    Cu fin

    Monitoring equipment

    Trunnion

    Neutron shield ( )kobesh

    1 TK TK type transport/storage cask

    1 kobesh kobesh

    SR series kobesh PP series and EP series kobesh TH-O series kobesh

  • 21

    kobesh

    kobesh 2 1 3 1 4 1 5 1 4 24 kobesh 44 kobesh 5 322

    kobesh

    20 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    12 12.5

    105.0

    Neutron shields 5050

    252Cf source (37MBq) (point source)

    Rem-counter

    Effective detector point (Surface detector {20.0 in diam.})

    (unit cm)

    2 Shielding performance test shielding material only

    235

    200 640

    650

    Iron plate 550

    YAYOI reactor Fast columnNeutron beam

    Neutrack TS-16N

    1 250

    Neutron shield sample plates

    610 600 (Unit : mm)

    3 Shielding performance test (transport/storage cask shielding

    structure)

    Exp. Cal.EPR SR

    100

    10

    10

    10 5 10

    Neutron dose rate(Sv/h)

    (b)

    (a)

    Thickness of neutron shield(cm)

    Water EPR SR PP TiH2

    4 Shielding performance test result (shielding material only)

    0 5Thickness of neutron shield(cm)

    Neutron dose rate(mSv/h/W)

    10 15

    100

    101

    102

    103

    EPR SR TiH2

    5

    Shielding performance test result (transport/storage cask shielding structure)

  • 1 6 2 3ln/ 1 J/mol J/mol/K K 7 150 20 Silicone rubber base kobesh 170Ethylene

    propylene rubber base kobesh 150Polypropylene base kobesh 12023

    200

    2AlOH3 Al2O3H2O 2H2O

    kobesh

    21/Vol. 53 No. 3Dec. 2003

    101 102 103

    Test duration(days)

    Weight change()

    2 1 0

    1 2 3

    1 0

    1 2 3 4 5 1 0

    1 2 3 4 5

    5 4 3 2 1 0

    1

    2 1 0

    1 2 3 4

    (a)

    (b)

    (c)

    (d)

    (e)

    101 102 103

    Test duration(days)

    Hydrogen content()

    5

    4

    3

    2

    1

    6

    5

    4

    3

    2

    14

    13

    12

    11

    10

    14

    13

    12

    11

    10

    9

    8

    7

    6

    5

    (a)

    (b)

    (c)

    (d)

    (e)

    120

    140

    120

    140160

    170

    120

    140

    160

    140-170

    140-170

    170160140

    140

    140160

    160

    120

    120140

    140

    120

    160

    160170

    170

    6 Thermal degradation data by long term heat resistance test

    aTitanium hydride type, bSilicone rubber type,cPolypropylene, dEthylene propylene rubber type, ePolyethyleneNumbers shown in the figures mean ambient air temperature.

  • kobesh

    kobesh kobesh

    1 H. TaniuchiStudy on Shielding Performance

    of Spent Fuel Transport and Storage Packages1999 p.145. 2 T. Iida et al.International Journal of Radioactive Materials

    Transport Vol.21991 p.79. 3 1989 p.36.

    22 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    Fitting line

    Useful life of cask

    Allowable service life(days)

    SR

    EPR

    PP

    104

    103

    1022.5 2

    1 000/T(K1)

    7 kobesh Evaluation of allowable service life for kobesh

  • 10B11B 210B20 11B10B19942001

    1

    1994194030 1, 211B10B10B 1

    BF310B 10B

    23/Vol. 53 No. 3Dec. 2003

    The Prospect of Enriched Boron Products

    A mass production technique for producing enriched boron was developed jointly by Kobe Steel and Stella Chemifa Co. in the 1990s. Enriched boron commercial production started in 2001 and since then, as a result of boron market research, several new enriched boron materials such as boron aluminum, boron acid, and boron carbide have been added to our production schedule. The demand for enriched boron is expected to increase rapidly if the material can be steadily supplied at a reasonable price.

    FEATURE : Nuclear Engineering

    Dr. Hiroaki Taniuchi

    Jun Shimojo

    Kenichi Mantani

    Product

    Maximum enrichment 95

    Circulated complex agent

    Natural BF3 gas Natural boron composition 10B:19.9 Neutron absorbing material 11B:80.1

    10BF3 solution

    11BF3

    Tower

    10BF3 complex

    10BF3

    Pump

    BF 3 gas

    Complex agent

    Heating

    resolving

    tower

    1 Flow chart of enriched boron plant

  • 1 10B 952001

    2.

    5 221

    BWRmass 1606130041PWR1

    22

    1 3 3 BWR PWR MOX 2 FeB23

    PWR pH

    24 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    1 Enriched borated aluminum

    Enriched boron

    Boric acidH3BO3, B2O3

    Borated aluminum alloy

    Boron carbideB4C

    FerroboronFeB

    Reactor water

    Basket material for packagings, etc.

    Control rods, etc.

    Borated stainless steel

    2 Lineup of application products using enriched boron

  • 7L i6Li5MOX 7Li MOX31 1

    2PWR 11

    3

    8 000ppm6020 000ppm80

    24

    PWRBWRMOX425

    10B

    2001 1 Vol.21959p.273. 2 VOL.531977p.239.

    25/Vol. 53 No. 3Dec. 2003

    4 B4C Enriched boron carbideB4C

    3 H3BO3 Enriched boric acidH3BO3

    2 FeB Enriched borated ferro-boronFeB

  • f 3 f 31990

    19941997

    1

    f 3NFT 6HZ3130 f 3

    26 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    f3

    Nuclear Waste Storage Cask Maintenance Facility

    In a nuclear fuel cycle, it is important to transport spent fuel from a reactor site to a reprocessing plant safely. Currently, a commercial reprocessing plant is being built at Rokkasho, in Aomori, at the northeastern end of the main island of Japan. In this plant, a nuclear waste cask maintenance facility is also under construction by Kobe Steel. The purpose of this facility is to systematically maintain a large number of spent fuel casks. This facility is the only facility of its kind in Japan. This paper introduces an overview of the cask maintenance facility.

    FEATURE : Nuclear Engineering

    Naoyuki Furuta

    Hitoshi Yamada

    Masamitsu Nakatani

    Keiichi Ogawa

    Makoto Shiratani

    Akira Nishikoba

    Top shock absorbing coverLid

    Neutron shielding

    FinThermal fin

    Bottom shock absorbing cover

    Thermal barrier

    Trunnion

    Transport frameOuter shell

    BasketBody

    Trunnion

    1 NFT38B Transport packaging for spent fuelNFT38B

  • 1 3 10

    2

    f 3

    3

    f 31

    2 3 4

    4

    f 3 f 3 21 f 3 f 3

    27/Vol. 53 No. 3Dec. 2003

    2 Material handling flow

    Cask receiving Preparation of cask transfer Cask transfer Decontamination of cask Cask maintenance Cask transfer Preparation of cask delivering Cask delivering

  • 2 3 10 3 1 PLC 3 2 3 4

    28 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    1 Master slave manipulatormaster arm

    2 Washing bar

  • 6ITV

    SGN4 22.13MPa3.5MPa f 3TNT

    29/Vol. 53 No. 3Dec. 2003

    3 US bar for inside of the structure

    ITV 6

    4 Structure outside washing

    device

  • 5

    f 31997NFT1 ITV

    2 2 3mmf 3

    f 310 20041

    30 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

  • 20067BP BP 1104 000mm1986 BP BP

    1BP

    BP

    BPBPBPBP 3

    2BP

    21BP

    BP 10mm4 000mmBP 200 BP 22BP

    1 1 3 BP BP 23

    BP BP 32

    31/Vol. 53 No. 3Dec. 2003

    BP Volume Reduction Equipment

    A new type of burnable poison (BP) volume reduction system is currently being developed. Many BP rods, a subcomponent of spent fuel assemblies are discharged from nuclear power reactors. This new system reduces the overall volume of BP rods. The main system consists of BP rod cutting equipment, equipment for the recovery of BP cut pieces, and special transport equipment for the cut rods. The equipment is all operated by hydraulic press cylinders in water to reduce operator exposure to radioactivity.

    FEATURE : Nuclear Engineering

    Yoshinori Kitamura

    Yoji Muroo

    Isao Hamanaka

  • SUS630

    32 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    Water pit for installation of cutting equipment

    Receiving portionfor cut pieces of BP rods

    Cutting portionof BP rods

    Feeding portionof BP rods

    Water-hydraulic cylinder

    Driving gear box

    Underwater ITV camera

    Driving gear box

    Water-hydraulic cylinder for BP rods cutting block

    Water-hydraulic cylinder forBP rods clamping block

    Bottom lining of water pit

    Carriage of container forcut pieces of BP rods

    Container for cutpieces of BP rods

    Underwater ITV camera

    1 BP BP volume reduction equipment

    1 BP General view of BP volume reduction equipment

  • 231

    200BP10 1

    3 000mm1 15

    33/Vol. 53 No. 3Dec. 2003

    Separating plate

    Drive-chain for lifting

    of separating plate

    Water-hydraulic pump

    (for high pressure circuit)

    Water-hydraulic pump

    (for low pressure circuit)

    Solenoid valve stand

    (equipped with solenoid

    controlled valves,

    metering valves,

    pressure reducing

    valves, check valves,

    etc.)

    Water-hydraulic cylinders

    Driving gear box

    (for liftable separating plate

    of BP rods, powered by

    water-hydraulic cylinder)

    Water pit for

    installation of cutting

    equipment

    Operating floor

    Water-hydraulic hoses

    Rack gear, powered by

    water-hydraulic cylinder

    2

    Water-hydraulically driving flow diagram

  • BP 200 BP BP 30 232

    BP 3 BP 4 000mmBP233

    BP 2 3 1 400mm 1 2

    BP 1 10 1 4

    3ITV

    BP2ITV BP

    34 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    3 BP Principle of cutting for BP rod

    Clamping block

    Cutting block

    Clamping block

    Movable blade Fixed blade

    Gauge stopper

    BP rods

    4 Mechanism of turning drive of container

    Driving mechanismfor turner of container

    Driving gear box for turner of container powered by water- hydraulic cylinder

    Turning gearfixed to receivingplate of container

    Gear for turningof container

    Container of cutpieces for BP rods

    Turning diskfor container

  • 35/Vol. 53 No. 3Dec. 2003

  • Cold Crucible Induction Melting CCIMCCIM

    1

    FBR FBR FBR 1994 3 2 1UO2 UO22 UO2 UO2

    36 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    The Applicability of Cold Crucible Induction Melting to Nuclear Engineering

    Cold crucible induction melting (CCIM) technique which is used routinely to refine and melt active metals like titanium has excellent characteristics and has recently shown promise in the nuclear engineering field. To evaluate the applicability of CCIM in the electrolyzer portion of the oxide-electrowinning process and the melting decontamination process for low-level radioactive metal waste contaminated with uranium, several experiments were conducted. Experimental results showed that the CCIM technique could be adapted to the nuclear engineering field.

    FEATURE : Nuclear Engineering

    Takashi Nishio

    Akira Wadamoto

    Tatsuhiko Kusamichi

    UO22 UO22

    Cl2

    UO2

    Pu4

    Removal of salt

    Removal of salt/Separation of NM

    UO2 NMUO2 UO2

    Spent nuclear fuel

    Molten salt (NaCl-2CsCl)

    Cl2

    Removal of salt

    UO2PuO2 MOX

    Cl2 Cl2O2

    Dissolution and electrowinning operation

    (Selective retrieval of UO2)Anode : UO2UO222e

    Cathode : UO222eUO2

    Dissolution operation Removal and electrowinning operation

    UO2Cl2UO222Cl PuO22Cl2 Pu44ClO2

    (Selective removal of NM) NM : noble metal in

    spent nuclear fuelAnode : 2ClCl22e Cathode : UO222eUO2 NMXXeNM

    MOX electrowinning operation

    Pu42ClO2 PuO22Cl2 Anode : 2ClCl22e

    Cathode : UO222eUO2 PuO222ePuO2

    Preparation of salt component, Retrieval of TRU and Removal of FP operation

    UO22

    Pu4PuO22

    1 1

    Oxide-electrowinning process1

  • PuO2MOXUO2PuO2MOX 2CCIM2CCIM FBR CCIM

    1 070 mm 1 000mm 3 50mm 200mmCCCIM 111

    2CsCl-NaCl 3kHz 650 150 120 650 12.5mm750 AgCl Ag 12CCIM

    CCIM 1 070mm 1 000mm C 1 000mmCCIM200mm 170mm

    37/Vol. 53 No. 3Dec. 2003

    2 CCIM Conceptual drawing of CCIM

    Current

    Pass of cooling water

    Molten metal

    Crucible

    Solidified layer (Skull)

    Magnetic fieldForce

    Induced current

    Molten metal flow

    Coil

    Segments

    3 C Annular shaped crucible made of hastelloy C

    Inner crucible

    Hastelloy

    Molten salt

    Solidified salt layer (Skull)

    Carbon heater

    Pass of cooling water

    Outer crucible

    Power supply

    3kHz 400kW

    FrequencyPower

    Crucible

    204mm24 50kg

    DiameterNumber of segmentsCapacity of molten metal

    Vacuum chamber

    0.1105Pa Pressure

    1 CCIMBasic specification of the CCIM equipment

  • 1 070mm1 000mm 20 701 070mm 200mm13

    CCCIM

    2

    42CCIM

    CCIM21

    211

    Ce CeO23CeO2CeAlMg AlCaO-Al2O3-SiO2CeO2Al CCIM 1SUS30440kgCeO20.04 0.4 kg 2 kgAl0.6 0.8 kg CeAl CeAl Ce CeICP

    38 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    Low level radioactive metal waste contaminated with uranium

    Slag phase

    Transition

    Metal phaseSlag

    Slag including uranium oxide

    Solidify

    Disposal

    Utilize usefully

    Melt

    UO2UO2

    UO2

    Decontaminated metal

    4 Melting decontamination process

    Ce concentration in thesolidified metal (ppm)

    Melting point()

    Basicity

    Slag composition(mol)

    BottomMiddleTopAftermeltingBeginningSiO2Al2O3CaO

    0.10.10.10.10.1

    0.10.20.10.10.1

    0.10.10.10.10.1

    1 4501 4001 5001 4001 550

    1 4101 3001 4001 3501 350

    0.250.490.6411.5

    7060354414

    10726626

    2033395060

    2 Experimental result of the

    effect of slag composition

    ConditionStainless steel : 40kg, Slag : 2kg, CeO2 : 40g, Al : 0kgHolding time in molten state : 30min

  • 0.1ppm212

    1CaO-Al2O3-SiO22CeO2 Ce 0.5ppm Al Si CeO22CeO2 CeO2 40g 10 400g Ce 0.5ppm Ce Ce 38 00011 0003 4Al Ce0.5ppm Ce100ppm

    200 CeO2CeO2 SUS AlSi Al2O3 SiO2CeO2 Al Si CCIMAl 460 5 60 Al 1.9Ce Ce 0.1ppm CeCCIM5 Ce 2 4Ce

    39/Vol. 53 No. 3Dec. 2003

    Elementary concentration in themolten metal (ppm)

    Holding timein moltenstate (min) AlCe

    2.12104

    2.03104

    1.89104

    1.90104

    1.88104

    1.76104

    1.69104

    1.52104

    0.20.10.10.10.10.10.10.1

    0306090105120135150

    5 Experimental result of the effect of holding time in molten

    state

    Decontaminationfactor

    Ce concentration in thesolidified metal (ppm)

    Amount ofCeO2 added(g) BottomMiddleTop

    11 000 8 000

    0.10.1

    0.10.7

    0.10.4

    40400

    3 CeO2Experimental result of the effect of CeO2

    ConditionStainless steel : 40kg, Slag : 2kg, Al : 0kgSlag compositionCaOAl2O3SiO250644 (mol)Holding time in molten state : 30min

    4 Experimental result of the effect of anti-decontamination

    element

    ConditionStainless steel : 40kg, Slag : 2kg, CeO2 : 40gSlag compositionCaOAl2O3SiO2 : 50644 (mol)

    Ce concentration in thesolidified metal (ppm)

    Holding timein molten state(min)

    Amount ofAl added(kg) BottomMiddleTop

    0.10.20.10.10.1

    0.10.30.20.80.2

    0.10.10.50.30.1

    305153030

    00.60.60.60.8

    ConditionStainless steel : 40kg, Slag : 2kg, CeO2 : 40g, Al : 0.6kgSlag compositionCaOAl2O3SiO2 : 50644 (mol)

  • 22

    CCIM Ce

    CCIMFBR

    CCIM 1 , No.142002, p.1. 2 , No.142002, p.75. 3

    1975, p.229,

    40 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

  • 2006 7 2DB19902003 6 DB

    1.

    11

    2 DB 550 000 2 31

    2 3

    3 3

    4

    12

    DB11

    15

    2

    3

    2.

    21

    4 2

    41/Vol. 53 No. 3Dec. 2003

    2DBAn Automatically Controlled System for Waste Transport in Low Level Nuclear Waste Storage Facilities

    Kobe Steel has developed and manufactured a fully automatic remote-controlled system for the storage of up to 42 000 waste drum packages discharged from nuclear reprocessing facilities. The system includes two forklifts and an elevator both of which are controlled via a remote control center. The forklifts can transport up to 4 ton waste packages. The elevator can transport a forklift carrying a maximum weight package. The system also includes a rescue vehicle that can be manually operated at a distance from a remote station using ITV cameras.

    FEATURE : Nuclear Engineering

    Hidetoshi Miyaue

    Yoshinori Kitamura

  • 1

    2

    42 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    Maintenance area

    Battery charger

    Forklift

    Conveyor

    Elevator

    Storage area

    B3F

    B2F

    B1F1F

    Storage area

    Storage area

    1

    Flow chart of handling equipment

  • 2

    43/Vol. 53 No. 3Dec. 2003

    2

    Configuration of control system for automatic forklift

    Control room

    Maintenance area

    Storage area

    Control unit for

    elevator

    Control unit

    for embedded

    inductive

    wire ( 2)

    Control unit

    for embedded

    inductive

    wire ( 3)

    Control unit

    for embedded

    inductive

    wire ( 4)

    Control unit

    for embedded

    inductive

    wire ( 5)

    Control unit for embedded

    inductive wire ( 1)

    Operating desk

    Control unit

    Control unit for

    battery charger

    Battery

    charger

    Date

    transmission

    equipment

    Embedded

    inductive wire

    Embedded

    inductive wire

    Embedded

    inductive wire

    Shutter

    Automatic forklift

    Embedded

    inductive wire

    Embedded

    inductive wire

    Date transmission

    equipment

    Elevator

  • 3 44 1 2 2 2 24 14 3

    22

    2122 1430 2

    3.

    DBB3F 1F 4 50 000 5

    4.

    21

    44 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    1 Automatic forklift

  • 12

    4.1

    ITV 3 3

    45/Vol. 53 No. 3Dec. 2003

    6 Outward photo of the burner

    2 Assembling cage of forklift elevator

    B3FL

    B2FL

    B1FL

    1FL

    Connecting box

    Connecting box

    Battery charger

    Remote manual operating desk

    Optical fiber cable

    Maintenance area

    Relay box

    Connecting box

    Connecting box

    Connecting box

    Connecting box

    3 Configuration of control system for

    rescue vehicle

    3 Rescue vehicle

  • ITV 4 5

    2

    46 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    4 Rescue of automatic forklift

    5 Remote manual operating desk

  • 129 131 11318.05131 129I129I129 I12915702 I I129 AgI3 AgI Ag0I4 II129TRU I129 2I129 I129 2 HIPHot Isostatic Pressing5

    1

    SiO2 AgSGL3HIP HIP I 2HIP 1 2HIP

    47/Vol. 53 No. 3Dec. 2003

    HIP HIP Rock Solidification Technology for Radioactive Iodine Contaminated Waste

    To reduce the rate of radioactive explosion from radioactive iodine contaminated waste, a HIP (Hot Isostatic Pressing) solidification method has been developed for iodine filter (silver silica gel) waste. In solidified waste manufactured at 750 (treatment temperature), 100MPa (treatment pressure) using HIP treatment, the base material is transformed from silica gel to high density and high compression strength quartz. In the simulated test, a standardized leaching rate of I and Si was about 107 to 108g/cm2/day, respectively, was achieved with HIProcksolidified waste in groundwater.

    FEATURE : Nuclear Engineering

    Ryutaro Wada

    Tsutomu Nishimura

    Yoshitaka KurimotoDr. Tsuyoshi Imakita

    Ar gas inlet Upper rid

    High pressure vessel

    Insulation

    Work

    Electric heater

    Support

    Lower rid

    1 HIP 5

    Principle of HIP method 5

  • 5HIP 6

    2HIP

    HIP 3SUS304HIP I 221

    AgSGL

    125I125I125 AgSGL 1I 22

    HIP 2I 50mm 60mm 0.1 2.06 4 5221

    48 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    2 HIP Overview of HIP equipment

    1Grinding

    2Pre-heating

    3Packing into capsule

    4HIP solidification treatment

    HIP solidificate

    3 HIP 6

    Rock solidified treatment flow by HIP method 6

    ContentItemSilica-gelCarrierSiO2Composition

    Adhesion by adsorptionHolding method of AgAgNO3Active composition12wt%Adhesion rate of Ag

    0.7 Mg/m3DensityBeadShape

    12mmGrain size60m2/gSpecial surface area 4wtAdsorption water

    1 12

    Specification and chemical composition of simulated iodine filter waste (After saturated adsorption with iodine)12

    Specification

    Concentration (wt)Element12.410.5Ag76.4SiO2 0.3Al2O3 0.1CaO 0.2MgO 0.1K2O100.0 Total

    Chemical composition

  • 40m250mHIP 2mm

    750 100MPa 3EPMAX I 6 2 40m250m I I I HIP 250m40m222

    4506007501050 100MPa 3 SEM EPMA I1050 SEM 7450600 750I EPMA8

    49/Vol. 53 No. 3Dec. 2003

    Decided parameterEstimated parameterItem 480480Evaporation

    Pre-treatment 250

    40 250 non-grind

    Grindinggrade

    750

    450 600 7501 050

    TreatmenttemperatureTreatment(Solidification) 100 100 200MPa

    Treatmentpressure

    1 1 3hTreatment time

    2 HIP 12

    Test condition of HIP solidified treatment 12

    Treatment time is decided by the size of solidified waste.

    4 HIP HIP 12

    Overview of HIP capsule after HIP treatment 12

    5 HIP 1012

    Photograph of horizontal section for HIP solidified waste1012

    Grinding grade

    Non-grind 250 40

    Concentration of iodineLow High

    6 EPMA 69

    Comparison with the effect of grinding grain size by EPMA elements mapping of horizontal section for HIP solidified waste 69

  • 450600 750750 I 1050 I AgI1050IAgI 750 HIP 223

    100200MPa 750 1050 200MPa 3EPMA I 100MPa 100MPa HIP 224

    HIP 750 100MPa 3 250m

    6923

    2 3 3 HIP HIP XRDX AgISiO2quartzcrystobaliteAg SiO212

    3

    31

    HIP1981 PNL MCC1 14 300 I Si 311

    2HIP

    50 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    450 600 750

    Treatment temperature

    7 SEM 69

    Comparison with the effect of HIP treatment temperature by SEM micrograph of horizontal section for HIP solidified waste 69

    Treatment temperature450 600 750 1 050

    Concentration of iodineLow

    High

    8 EPMA 69

    Comparison with the effect of HIP treatment temperature by EPMA elements mapping of horizontal section for HIP solidified waste 69

    Ref.7Granite

    PhysicalcharacteristicsUnitItem

    2.672.59g/cm3Density

    107108cm/secWater permeable coefficient (rate)

    115100MPaCompression strength

    3 HIP 612

    Physical characteristic of rock solidified waste by HIP 612

  • 20mmW20mmL20mmH I 312

    1ppm 9 4 5OPC/BFS1/478pHCaOH212Na2S3103M100 Na2S2O61.25104M313

    I Si 10EhpH11Na2S2O6 Eh200mV. vs. NHEpH121 3 I 106 g/cm2AgI I Ag I 10 16.5

    51/Vol. 53 No. 3Dec. 2003

    ParameterItem20mm20mm20mmSample size

    Simulative sea water saturated by cement materialTest solution12pH35Test temperature

    Na2S 3103MNa2S2O6 (1.25104M)

    Reducing agentconcentration

    0.1cm1Solid/water rateO21ppmOxygen concentration of gas phase300daysTest period

    4 13

    Test condition of long-term leaching test 13

    N2

    O21ppm

    Oxygen analyser

    Simulative sea water saturated by cement

    material

    [S2]3103M

    Solidified waste35

    Gas purifier equipment

    Atmosphere controlled box (Low O2) 9 13

    Outline of test equipment long-term leaching 13

    5 13

    Main chemical composition of test solution 13

    (Simulative sea water saturated by cement material)

    Concentration (wt)Element

    1.03Na

    0.04K

    0.04Ca2

    0.13Mg2

    1.92Cl

    0.27SO42

    0.01HCO3 (CO32 )

    5105

    4105

    3105

    2105

    1105

    0300200100

    Leaching time(days)

    Leaching amont(g/cm2 )

    0

    S2 (3.0103M)

    S2O62 (1.25104M)

    I Si

    10 I Si 1113

    Result of leaching test (leached amount of I and Si)1113

  • AgI Ag0 I 4Si 105g/cm2Na2S Eh 500mV. vs. NHEpH 12 AgI INa2S2O660I105 g/cm260I60 100 200 Si Na2S2O6I Si 1113 Eh500350mV. vs. NHEpH12

    13Na2S S2Na2S2O6 S2O62 Eh AgI I 13 Na2S 1L1g/cm2/ L1 0

    1

    g0 g g cm2 300 I 3.510 7g/cm2/Si6.9108g/cm2/32

    HIP 12 4SEMXRDEPMA TEMNa2S300321SEM

    Na2S300 SEM13

    52 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    Black changing area

    0.5mm

    Cross sectionSurface

    SEM

    Cross section

    EPMA

    TEM

    micro-XRD

    Matrix

    AgI

    Quartz grains

    SEMSurface

    XRD

    part Before leachingAfter leaching

    part part part

    12 HIP 13

    Location and method of physical analysis for Rock solidified waste by HIP 13

    14

    13

    12

    11

    10

    9

    8

    7

    200

    0

    200

    400

    600300200100

    Leaching time(days)

    pH

    0

    S2 (3.0103M)

    S2O62 (1.25104M)

    pH Eh

    Eh/mV (NHE)

    11 Eh pH13

    Result of leaching test (Eh and pH in solution)13

  • 322XRD

    HIP 3 XRD X14 SiO2 Ag2SAgI SiO2 AgI Na2S I AgI I Ag0Ag2S SiO2

    S2 Ag0I 323EPMA

    EPMA 15Si I 0.5mmAg 0.5mm S I0.5mm 13 Ag2S 0.5mmClCa0.5mmI

    53/Vol. 53 No. 3Dec. 2003

    13 SEM13

    Overview and SEM micrograph of sample (After long-term leaching)13

    Black changing area

    Matrix

    Interface

    Overview of cross section

    Surface

    20 30 40 50 60 70 80 90

    Interface

    14 HIPXRD13

    Result of observation and micro-XRD analysis for horizontal section ofRocksolidified waste by HIP 13

    (a) Overview of solidified wasteafter 300 days leaching

    (b) SEM image of solidified wasteafter 300 days leaching

    (1 000)

    20mmW20mmL20mmt

  • AgI S2AgI I XRD 270 324TEM

    TEM16 b16 a TEM16TEMab10m SiO2EDX XRD EPMA Ag2S Ca I 1113325

    Na2S Ag2S 0.5mm

    54 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    Matrix Black changing area

    Interface Surface

    0.0 0.2 0.4 0.6

    Scan distance for surface(mm)

    0.8 1.0

    I

    Ag

    S

    Ca

    Cl

    Si

    15 HIPEPMA13

    EPMA element mapping analysis after leaching test on horizontal section ofRocksolidified waste by HIP 13

    100nm

    SiO2 (Amorphous)

    SiO2 (Quartz)

    Ag0After 300days leaching

    (a) Part before leaching (reference)

    (b) Part after leaching

    Observation EDX analysis No

    1 Black interventionAg, Si, S, Ca, O (AgS53.446.6)

    2 None (crack) Si, O, Ca, Ag

    2

    1

    16 HIP TEM 13

    TEM micrograph for both before and after leaching test on horizontal section ofRocksolidified waste by HIP 13

  • I Ag2S I SiO213

    4HIP

    HIPHIP SiO2 1012HIP ISi I129 1113AgI 10m SiO2 12 I13

    HIP 69 13

    1 1988 2

    2000

    3 TRUJNC TY1400 20000012000 4 Y. Kurimoto et al.CHEMICAL BEHAVIOR OF SILVER

    IODIDE UNDER REDUCING CONDITION, Sixth Int. Conf. Migration, SENDAI1997

    5 HIPCIP

    6 T. NISHIMURA et al.FIXATION OF RADIOACTIVE IODINE BY HOT ISOSTATIC PRESSING, ICEM99#1182 full paperNAGOYA1999

    7 1 JNC TN1400 990211999122.

    8 Hughes et alTHE SIGNIFICANCE OF LEACH RATES IN DETERMINING THE RELEASE OF RADIOACTIVITY FROM VITRIFIED NUCLEAR WASTENUCLEAR TECHNOLOGYVol.611983, p.496

    9 3 HIP Vol.6, No.11999

    10 4 HIP2001 O2001

    11 5 HIP 2001 O2001

    12 HIP 2003 8 21

    13 2003 8 21

    14 MCC Materials Characterization Center, 1981Nuclear Waste Materials HandbookWaste Form Test Methods DOE/TIC11400, Pacific Northwest Laboratory

    55/Vol. 53 No. 3Dec. 2003

  • 16kg/h 1 1 2 900

    3 2 2

    2CO

    130kg/h

    1

    P.61104020301510130kg/h6 780kg/dHEPA

    HEPA

    1 10640mg/Nm360ppm

    56 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    An Incineration Technology for Low Level Radioactive Solid Waste

    Low-level radioactive solid waste, mainly consisting of rag paper and cloth, is usually incinerated. However, polymeric waste, including rubber and polyvinyl chloride plastic, is securely stored in view of safe treatment. Kobe Steel has developed a new kind of incinerator which can be used for polymeric waste. It has the following characteristics:a) A controlled air type furnace with a unique grate designb) In order to control dioxin emissions, the furnace wall is refractory-lined to maintain furnace temperatures at 900 or higher

    c) Secondary combustion air is injected into the furnace to mix with gas from the primary combustion zone.In this paper, the following non-radioactive test results using an actual incinerator, (feed rate: 130 kg/hr.) are presented: 1) Polymeric waste, including rubber, polyethylene and polyvinyl chloride plastic, was incinerated under stable operation;

    2) Design specifications including treatment capacity, emission limits were satisfactorily achieved.

    FEATURE : Nuclear Engineering

    Mamoru Suyari

    Ryota Nakanishi

    Tsuyoshi Noura

    Masashi Fujitomi

    Shintaroh Ano

  • 6 ppm0.1ng-TEQ/Nm320

    2

    1

    21 000 22 180HEPA HClSOxNOx1.5kPa

    3

    2

    57/Vol. 53 No. 3Dec. 2003

    2 Cross sectional view of commercial Incinerator

    Radioactive waste inlet

    Grate

    Bottom ash

    Gas outlet

    Secondary air inlet

    Ashtray

    Ash dosing hopper

    Secondary combustion zone

    Primary combustion zone

    Burner

    Primary air

    1 Process flow diagram of

    commercial plant

    Combustible wastes

    Feed and air seal system

    Plasma melting furnace

    Secondary combustion furnace

    LPG

    Gas cooler

    Ceramic filter

    HEPA filter

    Scrubber

    Pre-heater

    Induced draft fan

    Denitrification equipment

    Heater Combustor

    Incinerator

  • 1Controlled air incineration1 21 22PEDXN

    4

    130kg/h20022002114.1

    1

    25 6.8kg 3 3 130kg/h 4.2

    4

    58 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    3 Trend of treated amount

    180

    160

    140

    120

    100

    80

    60

    40

    20

    00 1 2 3 4 5 6 7

    Timeh

    Treated amountkg/h

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.00 1 2 3 4 5 6 7

    Timeh

    Furnace pressurekPa

    4 Incinerator pressure fluctuation

    1 Waste properties

    Surrogated

    wood/rubber/PE/PVC 14.5/28.5/38/19 14.5/28.5/38/19Mixture ratio

    Moisture Ash in DS LHV MJ/kg Ultimate analysis C in DS H in DS N in DS S in DS Cl in DS O in DS

    7.79 7.99 30.03

    61.67 8.81 0.10 0.33 9.29 12.01

    15.00 10.00 23.83

    56.85 8.12 0.09 0.30 8.56 11.07

    Designed

  • 1.50kPa 0.5kPa 10 120 1DCS 1.50kPa 1.10kPa 1.70kPa 1.50kPa3 1 1.0kPa 4.3

    5NOCODXN 12O2COppm

    2O2CO28164 10NO4070ppm 6 2 5NOThermal NOx NOx10ppm 60ppm 0.3ppm0.27mg/Nm3 0.0017ng-TEQ/Nm3JIS K 0311:1999 20

    59/Vol. 53 No. 3Dec. 2003

    5 Trend of gas composition at

    incinerator outlet

    O2

    NO ppm@12O2

    CO2

    CO ppm@12O2

    20

    18

    16

    14

    12

    10

    8

    6

    4

    2

    0

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    00 1 2 3 4 5 6 7

    O2, CO2 concentration

    NO, CO concentration

    ppm12 O2 base

    Timeh

    0 1 2 3 4 5 6 7

    O2, CO2 concentration

    Timeh

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    20

    18

    16

    14

    12

    10

    8

    6

    4

    2

    0

    NO, CO concentration

    ppm12 O2 base

    O2

    NO ppm@12O2

    CO2

    CO ppm@12O2

    6 2 Trend of gas composition at

    secondary furnace

  • 4.4

    0.88 54.5

    71 000 1 0004.62

    221 00028 2222 920150

    1 R. Nakanishi et al.WM

    ,01 Conference, February 25-March 1,

    2001, Tucson, AZ.

    60 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    1 300

    1 200

    1 100

    1 000

    900

    8000 1 2 3 4 5 6 7

    Gas temperature

    Timeh

    Incinerator lower partIncinerator upper partIncinerator outlet duct

    1 100

    1 050

    1 000

    950

    9000 1 2 3 4 5 6 7

    200

    150

    100

    50

    0

    Incinerator, secondary combustion furnace

    outlet temperature

    Timeh

    Gas cooler outlet temperature

    Incinerator outletSecondary combustion furnace outletGas cooler outlet

    7 Gas temperature distribution

    in incinerator

    8 Gas temperature

  • 2003 2

    1

    2 / 124 /11

    200 1 200kg110 1

    61 2 212

    2 1

    2

    2 3TRNTRNTR TR RF

    61/Vol. 53 No. 3Dec. 2003

    A Plasma Melting System for Solid Radioactive Waste

    Kobe Steel has developed a plasma melting system for the volume reduction and stabilization of solid radioactive wastes such as concrete, insulation, filters, glass, sand etc. The main features of the system are as follows.1) Non-transfer air plasma torches: 1.3MW 22) Treatment capacity: 2 tons/batch3) Waste feed: 200 liter drums4) Tapping method: furnace tilting5) Molten slag cooling: in the systems chambersIn this paper, an outline of the system and its first-run performance results are described.

    FEATURE : Nuclear Engineering

    Dr. Yasuo Higashi

    Masahiko Sugimoto

    Masashi Fujitomi

    Tsuyoshi Noura

  • 200kW NTR Phoenix Solutions Reverse polarity1PT250NTR

    3

    20 2 1 3

    4

    /1 1 2 /

    62 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    2 Plasma arc generation method

    1 Process flow of plasma and incineration furnace

    Cathode

    Anode

    Anode

    Cathode

    Induction coil

    RF plasma typeNon-transfer type

    Plasma gas (Air)

    Transfer type

    Secondary combustion furnace

    Ceramic filter

    HEPA filter

    Induced draft fan

    Denitrification equipment

    Heater

    Pre-heater

    Scrubber

    Incinerator

    Incombustible wastes

    Plasma melting furnace

    Gas coolerLPG

    1 PT250

    PT250 plasma torch used for JAERI melting furnace

  • 200

    / 2 /1 12 222

    5

    2002

    1151

    Anode-cathode Anode

    63/Vol. 53 No. 3Dec. 2003

    Items

    Dimension of furnace Outer diameter Outer height

    Material Main shell Support

    Water cooling Furnace bottom Furnace roof and side wall

    Others Waste drum feeder Plasma torch Plasma torch operating Molten slag sampling equipment Preheating burner Furnace tilting Tapping funnel

    Approx.3 000mm Approx.3 500mm

    SS400Refractory lining SS400

    Non cooling Cooled by water jacket

    Drum pusher with air cylinder PT250 non transfer type torch 2 Ball joint/elevatorThree dimensional moving Motor driven remote operation LPG burner Hydraulic cylinder, Max. tilting angle 20 degrees Casting iron

    Specifications 1 Main specification of plasma melting furnace

    Slag sampling unit

    Tilting center

    Plasma torch

    Furnace scope

    Feed gate

    Drum feeder

    Hydraulic cylinder

    Funnel

    Receptacle

    3 Schematic drawing of plasma furnace

  • 4 1.3MW1 400A 3 400/min 3 452

    12 / 2 200 1 200kg HEPA LPG 1 15

    2 1 kPa 35

    64 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    2 2 Material handling chamberex. secondary cooling chamber

    3 Plasma arc flameview from drum feeder

    4 Relation of plasma gas flow rate and voltage Plot was average value using measured data

    Plasma arc flame

    1 800

    1 000

    950

    900

    850

    800

    750

    7002 000 2 200 2 400 2 600 2 800 3 000 3 200 3 400 3 600

    VoltageV

    Voltage at 1 050A Voltage at 1 200A Voltage at 1 350A Voltage at 1 500A

    1 400A forecast

    Gas flow ratel/min

    3 400l/min for 1.3MW

    2 Standard waste composition for melting furnace

    Weight of waste kg/batch

    Concrete

    1 635 325 30 2 8 2 000

    Steel Ash Carbon Miscellaneous Total

    4 Plasma arc attachment at cathodefront electrode

  • 4256 6 6 6 4 2 1 37879 CONOx10

    241 12 2 12 24

    NTR 2 2 /

    65/Vol. 53 No. 3Dec. 2003

    5 Furnace inside during meltingview of furnace scope

    6 , , , Tapping out the molten slag Furnace inside, Tapping area, Receptacle, Furnace back view

    Plasma torch

    Plasma arc

    7 Solidified concrete waste

  • JNCLWTF LWTF

    1LWTF

    LWTF1 3CsSr JNCJNC British Nuclear Fuel Ltd.BNFL 1

    NUKEM ROBEROBEROBEROBE

    2

    66 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    A Treatment Technology for Liquid Waste Generated from Nuclear Reprocessing Facilities

    The treatment process of waste liquid generated from nuclear processing facilities involves the concentration of radioactive materials using coprecipitation and ultrafiltration, and the subsequent liquid waste solidification of filter slurry and filtrates. In this new treatment process a metal oxide membrane filter was developed as a pre-filter for ultrafiltration processes after coprecipitation. Furthermore, a new ROBE process was developed to solidify the resultant waste liquid generated from reprocessing facilities, based on solidification experiments and the testing of the resultant solids properties.

    FEATURE : Nuclear Engineering

    Yoshiaki Tanaka

    Toshio Iwata

    Akira Wadamoto

  • 67/Vol. 53 No. 3Dec. 2003

    1 LWTF

    Process flow of LWTF liquid waste treatment facility

    Reception tank

    Receive low level liquid waste

    generated from reprocessing

    facility

    Neutralization tank

    Neutralize liquid waste and

    convert iodine ion to silver iodide

    after valency conditioning

    Prefilter

    Eliminate highly

    concentrated sludge

    with inorganic filter

    before ultrafiltration

    using hollow fiber

    filter

    Ultrafilter I

    Remove flocculated

    radioactive nuclides

    and silver iodide from

    waste stream

    Preconditioning tank

    Remove carbonic ion which

    gererate soluble chemical

    compound like uranyl

    carbonate from waste stream

    with conversion to

    carbondioxide gas

    Coprecipitation tank/

    ultrafilter

    Remove radioactive

    nuclides including

    actinides adsorbed to

    ferric hydroxide floc at

    chemical condition pH6

    Conditioning tank/

    ultrafilter

    Remove radioactive

    nuclides adsorbed to

    ferric hydroxide floc at

    chemical condition pH10

    Intermediate tank

    Receive treated liquid

    and feed to adsorption

    column

    Feed back wash liquid

    to ultrafilter

    Adsorption column

    Remove soluble

    radioactive nuclides

    such as Cs, Sr with

    selective adsorbent

    from waste stream

    Processed liquid tank

    Receive processed

    waste liquid

    Feed to solidification

    facility

    Coprecipiation & ultrafiltration

    Liquid waste conditioning

    Neutralization

    Warm tank

    Evaporator

    Feed additives (sodium

    borate) into liquid waste

    Generate supersaturated

    waste liquid containing

    highly concentrated

    sodium nitrate

    with vacuum evaporation

    Solidfied waste

    Solidify sodium nitrate

    including additives with

    cooling supersaturated waste

    liquid because of changing

    exess water to crystal water

    Solvent treatment

    facility

    Reprocessing

    facility

    Secondary liquid

    waste treatment

    Condensate tank

    Condenser

    Solidified waste

    Evaporator

    Feed tank

    Reception tank

    Reception

    tank

    NaOH

    NaOH

    Na 2B4O7

    HNO3

    HNO3

    NaOH

    Fe(NO3) 3

    Na 2B4O7

    NaOH

    HNO3

    Fe(NO3) 3

    Na 2SO

    3

    AgNO3

    Neutralization

    tank

    Prefilter

    Ultrafilter

    Preconditioning

    tank

    Coprecipitation

    tank

    Conditioning

    tank

    Permeation

    tank

    Intermediate level

    waste storage

    Discharge to sea

    after evaporation

    Low level

    waste storage

    In case of reusing, resolve

    solidified waste (future plan)

    Slurry waste solidification

    Processed liquid waste solidification

    Reception

    tank

    Feed

    tank

    Condensate

    tank

    Solidified

    waste

    Evaporator

    Evaporator

    Solidified

    waste

    Condenser

    Ultrafilter

    Ultrafilter

    Intermediate

    tank

    Processed liquid

    tank

    Sr adsorption column

    Cs adsorption

    column

  • JNCLWTFBNFL 1 Prefilter 21

    BNFL 1 7211

    212 2 456075psi 60psi

    60psi4.2kg/cm2G213 3 4.55.56.5m/s 5.5m/s 21420 4 60psi 6.5m/s 5.5m/s 1 1 3 11bar 5 10

    68 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    4 20 20 times condensed test

    Back wash

    Back washBack wash (3 times)

    Back wash (10 times)

    7.4 condensed

    13.8 condensed

    19.5 condensed20 condensed

    1.2

    1.1

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    0.00 10 20 30 40 50

    Time(h)

    Permeability(m/day/bar)

    60 70 80 90 100

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.00 50

    Time(min)

    Permeability(m/day/bar)

    60psi, 4.5m/s 60psi, 5.5m/s 60psi, 6.5m/s

    100 150

    3 Cross flow variation test

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.00 50

    Time(min)

    Permeability(m/day/bar)

    45psi, 5.5m/s 60psi, 5.5m/s 75psi, 5.5m/s

    100 150

    2 Pressure variation test

  • 6.5m/s 0.9m/day/bar5.5m/s 0.7m/day/bar 1.0 1.1m/day/bar 215 520 0.51.03.0 h510 min3 1 56.5m/s5.5m/s 1 1 3 11bar 5 10 22

    4.2kg/cm2G 5.5m/s 1/3h 5min 0.7 1.0m/day/bar

    3ROBE LWTF

    ROBE 1

    LWTF Na2B4O731

    NaNO3 ROBE 311

    1Na2B4O71 102030wt 20wt 10wt

    69/Vol. 53 No. 3Dec. 2003

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.00 100 200 300

    Time(min)

    Permeability(m/day/bar)

    400 500 600

    Back wash

    5 Back washing test

    Composition of simulated liquidComponent

    Slurry wasteProcessed liquid waste

    200205100151

    320511

    NaNO3 (g/l)NaNO2 (g/l)Na2NO4 (g/l)Na2HPO4 (g/l)Organics (g/l)Impurities* (g/l)Deformer (g/l)

    140140Additive (g/l)

    1 ROBEComposition of simulated liquid (ROBE)

    * Metalic impurities mainly composed of iron

  • 20wt2 30wt 20wt 4

    3 30wtCo60 108R 2 12

    312

    32

    6 7Na2B4O7

    30wt 1825wt 30wt 20wt33

    1Na2B4O730wt 20wt

    70 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    After irradiationBefore irradiationProperty

    Slurry wasteProcessedliquid wasteSlurry wasteProcessedliquid waste

    63256423Compr. strength (kg/cm2)

    0.91.0H2 evolved (mol/cm3)

    2 108REffect on physical properties and

    evolution of Co60 irradiation (108R)

    30

    20

    10

    010 20 30

    Not solidified Solidified Not discharged

    Solidying area

    Additive(wt on total salt)Water (wt on solid (total saltwater))

    6 Result of solidification test (Processed liquid waste)

    30

    20

    10

    010 20 30

    Not solidified Solidified Not discharged

    Solidying area

    Additive(wt on total salt)

    Water (wt on solid (total saltwater))

    7 Result of solidification test (Slurry waste)

  • NaNO3NaNO2Na2CO3Na2SO4Na2HPO4 25NaNO375Na2HPO4 LWTFROBE

    R&DLWTF

    ROBE 1 2ROBE 2 1 ATOM 405 JULY/AUGUST 1990, Effluent management at

    Sellafield. 2 H. A. MahlmanThe OH Yield in the Co60 Radiolysis of

    HNO3, J. Chem. Phys., 35,9361961

    71/Vol. 53 No. 3Dec. 2003

  • 1

    1.

    110 2

    72 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    Low Permeability Layer "BENTBALL"

    In underground nuclear waste disposal sites, bentonite clay is used as backfills or plugs to stop water leakage and ensure low permeability and nuclide adsorption. In this study, a new material (BENTBALL) developed by Kobe Steel to solve the problems which traditional bentonite has used in the execution is evaluated.

    FEATURE : Nuclear Engineering

    Stable stratum

    Under ground water

    Buffer material

    Natural system

    Natural system

    Glass waste

    Multi barrier system

    Over pack

    500 1 000m

    Artifical system

    Ryutaro Wada

    Kenji Yamaguchi

    Yasunori Takeuchi

    Junji Kumamoto

    1 High level nuclear waste disposal site

    Hideo Komine

    Hiroshi Nakanishi

  • 34

    2.

    V1Na Ca MX-80Na 3 589N-30 4 /20 100/80 0 600MPa V1100 50mm 20mm 2mm 1

    3.

    12334 5235

    3.1

    3.1.1

    SUS 240mm H240mm / 2 3 1 2 33.1.2

    23 31 22021.61Mg/m32/22040vol

    2 3 50202 1.78Mg/m3 2

    3 2 /10

    73/Vol. 53 No. 3Dec. 2003

    2 Concept of BENTBALL execution

    1 Example of BENTBALL

    Pulverulent bentonite

    Materials

    Execution

    Compacting Setting closely

    Varied sizedBENTBALLs packing

    BENTBALLex. 2.25Mg/m371

    True density of bentonite

    13, avg.,d : Indicated by dry density

    T 2.7Mg/m3

    d 1.6Mg/m3

    1 0.7Mg/m3

    26 2 1.6Mg/m3

    59 3 2.25Mg/m383

    Swelling

    Block BENTBALL : Spherical high density compact

    True density ratio

    Expected dry density avg. 1.6Mg/m3

    Execution methods

    50 20 2

    2.25 2.25 2.25

    Average ball sizemm

    Appearance

    Dry densityMg/m3

  • 3.2

    41.72mmd 1.20Mg/m3 1.7 2.0mm 1.0 3.0mm 0.15Mg/m3 1.0 3.0mm2mmd 1.35Mg/m3

    4

    4.1

    24.1.1

    Na Vl9.1 13.52 1 000m 500m1.2kg 5 3.1kPa 3ab 5 90 12 ob 10mm/min1 ao 1002 obcm2min6b

    74 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    3 Packing property of BENTBALL

    2/220 or 2/22050 vol

    Two sized BENTBALLThree sized BENTBALL

    2.0

    1.9

    1.8

    1.7

    1.6

    1.5

    1.4

    1.3

    1.2

    1.1

    0 20 40 60 80 1001.0

    Filling dry densityMg/m3

    4 Spraying of BENTBALL

    BENTBALL

    Over pack

    2 Basic data of BENTBALL

    BENTBALL

    1.702.00 Ball sizemm

    Dry density Mg/m3

    Initial moisture ratio

    2.03

    1.37

  • 7

    690 6

    75/Vol. 53 No. 3Dec. 2003

    3 Experimental condition Experimental condition A B

    Kind of test pieces BENTBALL Compacted bentonite

    1.23 1.01

    Feedwater Distilled water

    Capacity of graduated method 1 000ml

    3.1

    1 000ml cons.

    500mlInitial volume of test pieces

    Waterstage of feedwater

    Filling dry density Mg/m3

    PressurekPa

    Putting stainless steel balls Swelling part

    Seeped part

    Unseeped part

    VoVa

    Vb

    5 Schematic diagram of graduated method

    6 Saturating property of BENTBALL

    Unseeped Seeped

    BENTBALL Compacted bentonite

    Vo

    Va

    Vb

    0.0030

    0.0025

    0.0020

    0.0015

    0.0010

    0.0005

    0.00000 20 40 60 80 100

    Timeday

    Saturating velocitymm/s

    300

    250

    200

    150

    100

    50

    00 20 40 60 80 100

    Timeday

    Swelling rate

    Granular bentonite Compacted bentoniteGranular bentonite

    Compacted bentonite

    7 Saturating and swelling

    property of BENTBALL

  • 4.2

    4.2.1

    19mm V1 100 2.25Mg/m34.2.2

    Ne 0 12Ne 1 8v

    FEM

    k 3r 22p

    tv

    r r2k p

    X t X tt t D k 4r rX

    pr

    rX

    kpcp1/LLkr rX

    p

    log pc6.0350.02594w0.01132w2

    4.156104w34.531106w4cmH2O5

    1

    2.25Mg/m3 = 3 1 1.761083.041072 1.481072.981061 3.681032 5.221032.68101 0.333 10 20 20JNC 4 4.2214.8892/3MPa8Sexp3.849727.33322.0856 MPa9 0.4 4.2.3

    94010111330 134.2.4

    D r

    rX

    k Kg/Kexp42.11.1447e2.1232e2m2 6

    D cm2/s 7b1b1s

    a1s b2b2

    a2

    76 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    Point of measurement

    160

    19

    15019mm BENTBALL

    SeepageSaturated part

    Unsaturated partr 0r X

    r L

    8 BENTBALL analytical model

    9 Swelling experiment of BENTBALL

  • 1

    2 2 JNC TN 140099022 1999p.V72.

    2 37 142002p.2411.

    3 2 2 JNC TN 1400990221999p.V89.

    4 JNC TN 8400990381999.

    77/Vol. 53 No. 3Dec. 2003

    12 Volume water content distribution

    t 6ht 13h

    Volume water content

    Coordinatem

    t 22h

    0.3

    0.2

    0.1

    0.00.000 0.002 0.004 0.006 0.008

    10 Comparison of experiment and calculation

    :Experiment :Calculation

    Timeh

    Displacementmm

    0.8

    0.6

    0.4

    0.2

    0.00 10 20 30 40

    11 Coordinate of saturated part

    0.0000 10 20

    Timeh

    Surface of BENTOBALL : 0.0095m

    Coordinate Xm

    30 40

    0.002

    0.004

    0.006

    0.008

    0.010

    Coordinate Xmm

    The point of saturated part

    13 Displacement distribution

    0.0012

    0.0010

    0.0008

    0.0006

    0.0004

    0.0002

    0.00000.000 0.002 0.004

    Coordinatem

    t22h

    t6h

    t13h Displacementm

    0.006 0.008

  • TRUtransuranic waste 1ANDRA20.10.3m/y 0.01100m/y 19992002 4 38pHSPHCSUS304, 316Zircaloy-4

    1

    1 2Ar Ar Ar APIMS

    78 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    Evaluation of Gas Generation Rates Caused by Metal Corrosion under the Geological Repository Conditions

    Hydrogen gas is most likely generated in geological repositories of high-level and TRU radioactive waste through the reductive corrosion of carbon steel found in reinforced concrete and container materials. If the rate of gas generation is high, the gas that accumulates in the repository can cause deterioration of engineered barriers and result in the leakage of contaminated water. In this study, the rate of hydrogen gas generation was investigated and measured to better evaluate the specific influence of environmental factors on the carbon steel commonly used in geological repositories.

    FEATURE : Nuclear Engineering

    Tsutomu Nishimura

    Ryutaro Wada

    Kazuo Fujiwara

    800ml/minMass flow controller

    Water bathGas purifier

    Argon

    PC

    APIMS

    FIC

    FICFIC

    1 000ml/min

    Air release

    30 sets of gas measuring systems

    1 Schematic drawing of gas evaluation facility

  • 3 Ar 500ppb 1ppb Ar Ar 5 1 11 000ppb

    0.0110m/y 3042.5 1 APIMSAtmospheric Pressure Ionization Mass Spectrometer 1

    2

    79/Vol. 53 No. 3Dec. 2003

    2 Apparatus of gas evaluation

    facility

    3 Apparatus of immersion vessel

    4

    Calibrating of gas evaluation facility

    FIC

    B

    A

    Air release

    Air release

    APIMS

    Air release

    Immersion vessel-1

    Water bath

    O2 analyzer

    Immersion vessel-30Argon

    Gas purifier

    DescriptionItemN2, Ar , He , H2 etc.Sample gasPositiveIonsm/Z3360Mass rangeS/N 1 000O2 peak in N2 gas

    Resolution

    M/M2MResolving powerAtmospheric pressure ionizationIon sourceQuadruple mass spectrometerMass spectrometer0.068sec/massAnalysis scanning timeSimultaneous monitoring of 16 separate peaksIon monitoring

    1 APIMSSpecifications of APIMS

  • APIMS APIMS4AB A B 210ISO 1APIMS APIMS 30 1.5 / 5 APIMS 15 2 2 1 6 3

    2 5 1 30 1 20 1 30 5 7 10

    3

    31

    SPHCSUS304

    80 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    5 APIMS H2, O2 and H2O concentration-time curves for 50 days

    H2O

    100

    10

    1

    0.1

    0.010 12 24

    Time(hour)36 48 60

    Concentration(ppb) H2

    O2

    Measurement/Calculation

    H2 concentration measurement (ppb)

    H2 concentration calculation (ppb)

    Gas (ml/min)Case Standard

    H2 gasArgon

    2.6020011.01231.3228.1200021.05121.1115.310010031.0662.459.05015041.0526.325.12018051.1115.413.9101906

    2 Calibrating of gas evaluation facility

    103

    102

    101

    100

    101

    Concentration(ppb)

    0 50 100Time(day)

    150 200

    Measurement No.29

    O2 H2O H2

    6 H2, O2 and H2O concentration vs. immersion time

  • SUS316Zircaloy-480mm120mmt3mm 5 1ppm CaOH2 NaCl 5 000ppm

    35 900 6 652 1ppb 332

    m/y 111212Cr Cr33e101 9 103Fe4H2OFe3O44H2 1Zr4H2OZrOH42H2 2 20 100 20

    81/Vol. 53 No. 3Dec. 2003

    Measurement No.29

    0

    600

    500

    400

    300

    200

    100

    050 100 150

    Immersion time(day)

    H2 gas production concentration(ppb)

    200 250 300

    7 Time dependence of H2 gas concentration

    Measurement No.2940

    30

    20

    10

    00 50 100 150 200 250 300

    Immersion time(day)

    H2 gas production volume(ml)

    8 Cumulative H2 gas generation volume

    1.E01

    1.E00

    1.E01

    1.E02

    1.E030 50 100 150

    Time(day)200 250 300

    Equivalent corrosion rate(m/y)

    9 Equivalent corrosion rate vs. immersion time

    1.E00

    1.E01

    1.E02

    1.E030 50 100 150 200 250 300

    Time(day)

    Cumulative equivalent

    corrosion thickness(m)

    10 Cumulative equivalent corrosion thickness vs. immersion time

    ConditionItem

    Carbon steel (SPHC), Stainless(SUS304, SUS316), Zircaloy (Zircaloy-4)Shape80mm120mmt3mm, 5pieces / test containerSurface treatmentShot-blasted

    Test pieces

    Ca(OH)2 NaCl (5 000ppm)pH12.4 (measurement)Test solution

    35Temperature

    APIMSH2 gas measuringequipmentArgon (O2

  • 100 100 5102m/y800 2102m/y SUS304 SUS316 2 SUS304 SUS316 100 400 2102m/y2102m/ypH12.5Fe10 5103m/y1

    810ppm

    900 2102

    m/y 5103m/y 1 M. R. MinguezPEGASE PROJECT REPORT, ENRESA1995. 2 W. R. Rodwell et al.A Joint EC/NEA Status Report published

    the EC, European Commission Report EUR 19122EN,1999. 3 H11

    82 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    2.0E01

    1.8E01

    1.6E01

    1.4E01

    1.2E01

    1.0E01

    8.0E02

    6.0E02

    4.0E02

    2.0E02

    0.0E000 100 200 300 400 500

    Time(day)

    Equivalent corrosion rate(m/y)

    600 700 800 900 1 000

    0.14

    0.12

    0.10

    0.08

    0.06

    0.04

    0.02

    0.00

    Time(day)

    Equivalent corrosion rate(m/y)

    0 200 400 600 800

    SUS304 SUS316 Zircaloy-4

    11 Equivalent corrosion rate (Carbon steel)

    12

    Equivalent corrosion rate (Stainless, Zircaloy)

  • 2000. 4 H12

    2001. 5 H13

    2002. 6 H14

    2003. 7 No.552000.

    8 2000 2000, p.710. 9 No.152002, p.91.10 1999 1999, p.770.

    83/Vol. 53 No. 3Dec. 2003

  • 500m 1 000m1 5MPa 40MPa pH in situ in situ

    1 in situ

    in situ 1 2 1high-pressure cell

    40MPa 111

    111Eh/pH

    EhpH pH

    84 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    in situ

    Solubility Assessment Technology for High Pressure Environments by in situ Laser-induced Fluorescence Spectroscopys

    High level radioactive waste are ultimately disposed of 500-1 000m deep in the earth, and at this depth, about 5-40MPa pressure is exerted to the wastes, etc. However, since no thoroughgoing evaluation has been made on the effects of the pressure of the above-mentioned level on chemical actions, etc., in situ solubility measurement apparatus that can measure in situ the solubility and pH under high pressure was developed and some data have been generated.

    FEATURE : Nuclear Engineering

    High-pressure sampling unit

    Drain

    Sapphire window

    High-pressure cell

    PG : Pressure gauge TC : Thermocouple

    Sapphire window

    Eh, TC

    Reference electrode

    pH sensor

    PG

    CO2 feed

    1 in situ Schematic section diagram of in situ solubility measurement

    apparatus under high-pressure condition

    Dr. Tsuyoshi Imakita

    Dr. Seiichi Yamamoto

    Dr. Kaoru Masuda

    Takahiro Shimizu

    Kenji Yamaguchi

    Shun Sakamoto

  • 200 80 ISFET pH112in situ

    in situ 3 in situ 60 S/N12

    121

    122

    4

    85/Vol. 53 No. 3Dec. 2003

    High pressure cell - max press.40MPa - temp.RT60

    H-type pressure equilibrated reference Ag/AgCl electrode (Toshin Industry Co.)

    pH sensor ISFET electrode (BAS Co.) ISFET : ion sensitive field effect transistor

    Magnetic stirrer

    Sapphire window - for observation and spectroscopic measurement - diameter : 25mm

    2 in situ

    Photograph of in situ solubility measurement apparatus under high-pressure condition

    1 in situ Function of in situ solubility measurement

    apparatus under high-pressure condition

    InstrumentsFunction

    ISFET pH sensorPressure equilibrated reference electrodeWorking electrode and counter electrode

    pH measurement

    Analytic function

    Eh measurement

    Corrosion potential measurement

    Sapphire window

    in situ laser-induced fluorescence spectroscopy

    Observation inside

    Test function High pressure sampling unitHigh pressure sampling

    Magnetic stirrerAgitation internal solution

    Violet laser diode (NEO-ARK LDT-4030S)

    Collection fiber

    Counter

    Grating

    MSlit Monitor

    Laser power-supply Collimation optics

    Collection optics

    Sample (High-pressure cell)

    Fluorescence spectrometer (Hitachi F-3000)

    3 in situ In situ laser-induced fluorescence measurement diagram

  • 2in situ

    21

    CO2 2CO2 pH

    CO2Eh/pH22

    3in situ 5CO2CO2CO22023

    CO2pH 2 3

    86 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    2 pH 3

    Relation with uranium fluorescent speciation and pH3

    Stable solution conditionFluorescent speciation

    Strong acid solution about pH 2 UO22

    About pH 4.5, low concentration of carbonate, coexistence with other speciation , UO22OH2

    2

    pH 69, low concentration of carbonate UO23OH5

    pH 56, high concentration of carbonate, coexistence with other speciation UO2CO3aq

    Hydraulic pump

    High-pressure sampling unit

    High-pressure cell

    Hydraulic jack

    4 Schematic diagram of high-pressure sampling unit

    3 Parameter of uranium complex

    solubility test under high-pressure condition

    Oil pressure piston

    Eh electrode (Pt wire)

    High pressure cell

    Pressure gauge

    Magnetic stirrer

    Cooling unit

    Test solution

    pH sensor (ISFET)

    Ag/AgCl electrode

    PotentiometerpH meter

    CO2 refill

    Plunger pump

    5 CO2 Schematic diagram of CO2 injection

    apparatus

    Measuring itemTest conditionAmount of CO2 additionUranium solution

    pHFluorescent spectrumUranium of solution at high-pressure sampling

    Temp.25Press.Ambient pressure20MPa

    Double saturationSaturation1/2 Saturation1/4 Saturation

    Uranium concentrationInitial102MpHIn course after CO2 addition

    orbuffer solution

  • 1CO2 pH 350ml20MPa CO248 pH2 0.2mICP CO2424

    1

    pH CO2 4 UO2CO3 CO2 1/41/2 2 0.1M NaClO4CO2 pH0.2M pH 7.9 6UO2CO3 6a 20MPaCO2 6be4abe pH 4 10m

    ICP 4CO2 10 4M 10 3M 12

    PHREEQCI-Ver2.8 PHREEQCI U.S.Geological Survey 7 8 pH 6

    87/Vol. 53 No. 3Dec. 2003

    4 CO2

    Transition of uranium solubility by CO2 addition at high-pressure condition

    DataCO2 addedM

    PressureMPaCondition Total UMFluorescent intensitypH

    3.2E4quarts cellhigh pressure cell7.90.0003 0.1UO2CO3 after 48ha

    2.5E3high pressure cell8.00.4420Add 1/4 saturation CO2b

    2.4E3high pressure cell6.60.7820Add 1/2 saturation CO2c

    2.3E3high pressure cell6.41.7420Add saturation CO2d

    2.2E3high pressure cell6.13.5920Add double saturation CO2e

    1.0E00

    1.0E01

    1.0E02

    1.0E03

    1.0E04

    1.0E05

    1.0E06

    Concentration(M)

    0.0001 0.001 0.01

    CO2 partial pressure(MPa)

    0.1 1 10

    Total U UO2CO3 UO22

    UO2OH

    7 CO2 Simulation result for relation with uranium carbonate

    complex and CO2 partial pressure in demineralized water

    450 500 550Wavelength(nm)

    b, c, d, e

    a

    Relative intensity

    UO2CO3 peek (About 105 M/L)

    600 650

    CO2 about 0.43M dissolution pH 6.18

    UO2CO3 equilibrium solution Atmospheric equilibrium, pH7.9

    a measurement at quartz cellbeIndicate b as representative measurement at high-pressure cell

    6 Fluorescent spectrum of uranium complex

  • CO2 pHUO22 UO2CO3pH6 CO2UO2CO334

    CO32/UO22 420MPa CO2 1pH 6.1 8CO32/UO22CO2UO2CO334

    pH in situ in situ CO2in situ pH

    CO2 in situ 1214

    1

    2 , , JNC TN1400 99-020 1999.

    2 1987 3 Y. Kato et al.A Study of U VI Hydrolysis and Carbonate

    Complexation by Time-Resolved Laser-Induced Fluorescence Spectroscopy, RadioChim.Acta 64 1994, p.107.

    4 S. Sakamoto et al.: The Development of Direct pH Measurement Method of Aqueous Solution in Equilibrium with Supercritical Carbon Dioxide, in proc. of Super Green 2002, Suwon, Korea2002, p.361.

    88 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    1.0E00

    1.0E01

    1.0E02

    1.0E03

    1.0E04

    1.0E05

    1.0E06

    Concentration(M)

    0.0001 0.001 0.01

    CO2 partial pressure(MPa)

    0.1 1 10

    Total U UO2(CO3)22 UO2(CO3)34

    UO2CO3

    8 pH 6 CO2 Simulation result for relation with uranium carbonate

    complex and CO2 partial pressure at pH 6

  • 1999 RESQ:Remote Surveillance SquadRESQ-A RESQ-B RESQ-C RESQ-A

    1

    RESQ-A

    900mm 1 800mm

    1 200m

    2

    1RESQ-AYELLOW & RED 1 50kg 400mm 580mm 550mm1.7m

    89/Vol. 53 No. 3Dec. 2003

    Information Gathering Robots for Nuclear Accidents

    When nuclear accidents happen, the recovery efforts have to be started fast to reduce their affects to public as small as possible. To make good recovery effort procedures, accurate information on the present status of the accident is indispensable. Japanese first criticality accident occurred in 1999 taught us the difficulty of information gathering activities under remaining radiations of nuclear accidents. After this accident, Japan Atomic Energy Research Institute (JAERI) have developed information gathering robots (RESQ: Remote Surveillance Squad). In this development project, Kobe Steel took charge of fabrication of the early information gathering robots (RESQ-A).

    FEATURE : Nuclear Engineering

    Jumpei Nakayama

    Masahiko Sugimoto

    CWD

  • 2 31 1

    3

    4

    / 1 1

    90 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    SpecificationItems

    Radiation-rayneutronImageSound

    Temperature

    Information gathering function

    Approx. 2.0km/hMax. speed

    Height 50mmWidth 200mm Crossable barriers

    10 degreesGrad ability

    Commercial or batteryAvailable power

    Radio transmission or cableControl

    Width 400mmLength 580mmHeight 550mm

    Dimension

    Approx. 50kgWeight

    1 Specification of early information gathering robot

    1 Early information gathering robots

    1 Functions of early information gathering robot

    High zoom camera

    Light

    Telescopic motion (Up to 1.5m)

    Radiation sensor

    Weight : 50kg Radio transmission : 200m Speed : 2km/h

    Omnidirectional vehicle

    Thermo sensor

    Directional microphone

    2 Transportable controller

    3 Concentrated control panel

  • 4 1 2 2

    / on

    4

    91/Vol. 53 No. 3Dec. 2003

  • SCPRSupercritical-water Cooled Power Reactor 18 SCPR 1 25MPa 553 781K 280 508 911

    1

    11

    647K37422.1MPaCrMod.9Cr-1Mo12Cr-1Mo SGSUS316 SUS310NiAlloy690Alloy718 Ti Ti-3Al-2.5V

    92 KOBE STEEL ENGINEERING REPORTS/Vol. 53 No. 3Dec. 2003

    Fuel Cladding Materials for Supercritical-water Cooled Power Reactors

    Supercritical-water Cooled Power Reactor (SCPR), which have a higher thermal efficiency and a simpler plant concept, are much less expensive to construct and operate than conventional light water reactors. SCPR technology and production has been widely studied in many countries. In the current design of SCPR, the coolant pressure and temperature is 25MPa and 560 to 781K, respectively. The structural integrity of reactor cladding is evaluated one of the key issues for the practical application of SCPR. In this study, potential SCPR cladding materials were selected from commercially available materials and screened through mechanical tests and SCW (Supercritical-water) corrosion tests.

    FEATURE : Nuclear Engineering

    Makoto Harada

    Osamu Kubota

    Hiroyuki Anada

    Parameters SCLWR3) SCFR4) SCLWR5) SCLW