電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

45
All Rights Reserved, Copyright Murata Software Co., Ltd. 電磁波解析入門セミナー 説明資料 1

Upload: buique

Post on 27-Jul-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

電磁波解析入門セミナー説明資料

1

Page 2: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

2

もくじ

1. 電磁波解析の概要

2. 電磁波解析の機能・設定の紹介

Page 3: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

3

もくじ

1. 電磁波解析の概要

• Femtet® の3つの電磁界ソルバ• 電磁波解析の3つの種類• 調和解析• 導波路解析• 共振解析

2. 電磁波解析の機能・設定の紹介

.... 4.............. 5

................................. 6.............................. 7

................................. 8

Page 4: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

4

Femtet® の3つの電磁界ソルバ

解析の種類 解析できる周波数の⽬安

電界解析 ⼀定電流・電圧低周波(〜 1MHz くらい)磁界解析

電磁波解析 ⾼周波(1MHz 〜 数⼗GHz くらい)

Femtet® には3つの電磁界ソルバがあります。

Page 5: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

5

共振解析 導波路解析 調和解析

• 共振現象の解析• 共振周波数• 共振モード• Q値 ...など

• 伝送線路の解析• 特性インピーダンス• 伝搬定数• 伝搬モード ...など

• 空間を伝わる電磁波• Sパラメータ• 指向性• 周辺電磁界 ...など

電磁波解析の3つの種類

電磁波解析では、3種類の解析ができます。⼊⼒は正弦波のみで、時間領域の解析はできません。

Page 6: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

6

アンテナの解析

magic teeの解析

調和解析

調和解析では、ある周波数の電磁波が空間をどのように伝わっていくかを解析できます。解析結果として、電磁界に加えて、Sパラメータの周波数特性や放射特性などが得られます。

Page 7: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

電界

磁界

断⾯のモデル(2次元)

内導体

外導体

7

同軸ケーブル

誘電体

伝送線路の断⾯をモデル化し、伝搬周波数や伝搬定数を求めます。伝搬モードや特性インピーダンス、Q値なども計算されます。

導波路解析

Femtet® の導波路解析ではこの2次元モデルを扱います。

解析結果

Page 8: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

電界分布

誘電体共振器

8

磁界分布

周波数: 11.2GHz

誘電体共振器の解析例

共振解析

共振解析では、特定周波数の電磁波のみが増幅する共振の解析を⾏うことができます。結果として、共振モード、共振周波数、Q値などが得られます。電磁波を⼊⼒するポートは設定せず、インピーダンスやSパラメータは計算できません。

空気

Page 9: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

9

もくじ

1. 電磁波解析の概要

2. 電磁波解析の機能・設定の紹介

• 解析の流れ• モデル形状作成• 解析条件の設定• 材料定数の設定• 境界条件の設定• 解析結果

.......................... 10.................... 11.....................12.................... 17.................... 18

............................. 31

特に調和解析についてご紹介します

Page 10: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

• 3次元モデルの形状定義• 解析条件:メッシュサイズ・参照周波数・解析周波数…• ボディ属性:異⽅性材料の⽅向• 材料定数:⽐誘電率・⽐透磁率・導電率• 境界条件:ポート・電気壁・磁気壁・開放境界・集中定数…

メッシュ分割 解析結果の表⽰解析ソルバ• 電磁波解析• 電場解析• 磁場解析• 応⼒解析• 熱解析• 圧電解析• ⾳波解析

10

解析の流れ

Page 11: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

11

調和解析のモデル形状定義

• 構造や材料の不連続部を切り出した形状を3次元で作成します。• 電磁波の出⼊り⼝にポートを設定します。

ε’,μ’,σ’

ε’’,μ’’,σ’’

ポート1

ポート2

ポート3

ε,μ,σ

ここで切り出してモデル化

電磁波

電磁波 電磁波

この部分を作成します。

ポート

ポート

調和解析モデルの概要

Page 12: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

解析条件:メッシャG2

12

⾼速なメッシャG2で解析時間が短縮できます

Femtet® 2017.0 から搭載されたメッシャG2は従来のメッシャと⽐較して規模の⼤きなモデルで10倍以上のスピードでメッシュ分割を⾏うことができます。

※ メッシャG2はメッシュ分割に失敗する確率がまだ⼗分低いとは⾔えないため初期設定では従来のメッシャでメッシュ分割を⾏います。

ボディ数 [個]

スピ

ード

アッ

プ[倍

](

従来

メッ

シャ

⽐)

Page 13: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

解析条件:要素の種類

13

[解析条件の設定] の [メッシュ]タブから1次要素と2次要素を選択できます。

( : 未知数)

要素の種類 未知数の位置 計算時間 計算精度

1次要素 短い 低い

2次要素 ⻑い ⾼い

Page 14: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

電界分布必要に応じてメッシュの⼤きさを変えることで、メッシュ数の増加を抑えながら精度の⾼い解析を⾏えます。

14

解析条件:アダプティブメッシュ

アダプティブメッシュは、短い解析時間と⾼い解析精度を両⽴する最適メッシュを⾃動で作成します

アダプティブメッシュによるメッシュ

※ メッシュは、参照周波数において最適となります

Page 15: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

15

解析条件:参照周波数

[解析条件の設定] の [メッシュ]タブで、最も興味のある周波数を設定します。

参照周波数は、解析を⾏う上で周波数に依存する様々なパラメータを設定する際に⽤いられます。※ 周波数依存材料の材料物性は

解析周波数で決まります。

Page 16: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

16

解析条件:解析周波数

調和解析では、解析周波数の設定が必要です

解析周波数⼀覧を表⽰できます。

Page 17: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

17

解析条件:周波数スイープ

周波数スイープの⽅法によって、解析時間・精度が変わります

逐次スイープ 並列逐次スイープ ⾼速スイープ

解析周波数 全て 全て ⼀部解析時間 ⻑い 短い 短い

解析精度 良い 良い 悪い場合がある

逐次スイープは全ての解析周波数で計算を⾏います。解析周波数が多い場合解析時間がかかりますが、精度の⾼い解析結果が得られます。並列逐次スイープは全ての解析周波数を計算します。複数の解析周波数を同時に計算するため、逐次スイープより解析時間が短くなります。精度の⾼い解析結果が得られます。⾼速スイープは⼀部の解析周波数の計算結果から全解析周波数の結果を推測します。解析時間は短いですが、モデルによっては解析精度が悪くなる場合があります。

※ 並列逐次スイープを利⽤するには⾼速化オプションが必要です

Page 18: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

18

⾼速スイープを使うと、⼀部の解析周波数の結果から、全解析周波数の結果を推測します。全ての解析周波数で計算を⾏う逐次スイープに⽐べて、計算時間が短縮できます。

※ Sパラメータの周波数特性の変動が⼤きい場合や、Sパラメータが⾮常に⼩さい場合に⾼速スイープを使うと、計算に時間がかかったり、計算精度が悪化することがあります。

S11(逐次スイープ)S11(⾼速スイープ)S21(逐次スイープ)S21(⾼速スイープ)

オープンスタブの解析例

逐次スイープ ⾼速スイープ

1.00 GHz1.09 GHz1.18 GHz

9.82 GHz9.91 GHz

10.00 GHz計101周波数

1.00 GHz1.90 GHz8.20 GHz

10.00 GHz

計4周波数

計算した周波数ポイント

解析条件:高速スイープ

Page 19: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

19

材料定数

材料定数として、誘電率、透磁率、導電率を設定します。

Page 20: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

20

Femtet が設定する境界条件解析実⾏時に Femtet が⾃動で設定します。解析結果画⾯のみで表⽰されます。“RESERVED_ “で始まる境界条件名が付けられます。

ユーザが設定する境界条件ユーザが必要な部分に設定します。外部境界条件と重なるときはこちらが優先されます。種類と境界条件名はユーザが設定できます。

外部境界条件解析実⾏時にモデルの⼀番外側に設定されます。外部境界条件の種類はユーザが選択できます。

境界条件は⼤きく3つに分けられます。

境界条件の分類

Page 21: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

• 電気壁• 開放境界• 磁気壁• 表⾯インピーダンス

導体の表⾯を表現する境界• ⼊出⼒ポート

積分路ポート上で電界の積分路を定義

• 集中定数• 多層電極よく使われる6つをご紹介します。

電磁波解析で使える境界条件は8種類あります。

境界条件の種類

Page 22: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

22

右クリックメニュー

積分路設定画⾯で電極間を結ぶように引く

境界条件:入出力ポート(1/8)

ポートを設定する平⾯を選択

• 基準インピーダンスを設定• 積分路を設定

ポートの設定⼿順

ポート名を⼊⼒

Page 23: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

23

境界条件:入出力ポート(2/8)

ポートは伝送線路の断⾯でなければなりません

ポート⾯を⾒てみると、マイクロストリップ線路の構造になっています

電極

空気

基板ポート

電気壁(境界条件) = 完全導体

例:電磁波解析例題8「オープンスタブ」のポート

Page 24: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

24

境界条件:入出力ポート(3/8)

ポートはモデルの内部にもつけることができます

ポート⾯を⾒てみると、平⾏板線路の構造になっています

アンテナ

空気

アンテナ

例:電磁波解析例題7「ダイポールアンテナ」のポート

ポート

例題には様々なポートのつけ⽅をしたモデルを掲載しておりますので、参考にしてください。

Page 25: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

25

境界条件:入出力ポート(4/8)

ポートの設定の失敗例として代表的なものに、導体の断⾯にポートを設定してしまうことがあります。

電磁波は導体内を伝搬できないため、正しく解析できません。

電極 空気

基板

Page 26: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

26

境界条件:入出力ポート(5/8)

• 積分路は特性インピーダンスを精度よく求めるために必要です• 積分路の向きは電界の向きの基準となります

積分路は、ポート内の2つの電極を結ぶように設定します。積分路には向きがあり、画⾯上では⽮印で表⽰されます。全てのポートで、積分路の向きを統⼀してください。

電極

空気

基板

ポート1

ポート2

Page 27: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

27

積分路の向きが統⼀されている場合

積分路の向きが統⼀されていない場合

境界条件:入出力ポート(6/8)

1GHz

1GHz

─ S11─ S12

─ S11─ S12

─ S11─ S12

─ S11─ S12

S12の位相が180度ズレます。

積分路の向き

Page 28: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

28

積分路を下向きに設定した場合

積分路を上向きに設定した場合

境界条件:入出力ポート(7/8)

積分路の向き

位相0度のポートの電界

ポートにおける⼊射電磁波の位相0度の電界は積分路の⽅向になります

位相0度のポートの電界

Page 29: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

29

(準)TEMモード

上記以外のモード

モード1個の解析例:矩形導波管の基本モードのみの解析

複数モードの解析例:円形導波管の解析

電極2枚の解析例:マイクロストリップ線路

電極3枚以上の解析例:差動線路の解析

必要

不要積分路を設定しても間違いではありません

境界条件:入出力ポート(8/8)

TEMモードが伝搬しない導波管の解析には、積分路は必要ありません

Page 30: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

全体モデル 1/4モデル

30

電界は、電気壁に対して垂直に、磁気壁に対して平⾏になります。この性質を利⽤して、対称モデルの対称⾯を表現することができます。また、外部境界を電気壁とすることで、導体で囲まれた解析空間を表現できます。

電界

磁気壁

電界

電気壁

電界

境界条件:電気壁と磁気壁

Page 31: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

31

開放境界は、放射された電磁波を反射しない境界条件。真空中の平⾯波の波動インピーダンス(初期設定377Ω)を設定する事で実現している。

波⻑/4

開放境界(Z = 377 [Ω])

ダイポールアンテナ アンテナと開放境界が電磁波が平⾯波とみなせるだけ

⼗分離れていなければならない。

377

1/4

Femtet ではλ/4 以上離すことをおすすめしています。

境界条件:開放境界

Page 32: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

32

1つの集中定数で並列のR、L、Cを設定できます。集中定数を設定できるのはシートボディだけです。

境界条件:集中定数

ループアンテナ

ポート 集中定数

アンテナ

Page 33: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

33

境界条件:多層電極

多層電極は多層構造の導体膜を表現します。

No. ⽐透磁率 導電率 厚み1 μr,C σC dC

2 μr,B σB dB

3 μr,A σA (dA)※

導体A(μr,A, σA)

導体C(μr,C, σC)導体B(μr,B, σB)

多層構造の情報をテーブルで設定します。

※ ⼀番内側の導体の厚みは無視され、⼗分厚いと仮定して計算します。

表⾯

内部

導体の断⾯

Page 34: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

34

計算結果:グラフ表示

Page 35: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

35

計算結果:テーブル

テーブルでは主な計算結果の値を確認できます

調和解析では、伝搬定数、特性インピーダンス、基準インピーダンス、Sパラメータが表⽰されます。

Page 36: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

36

フィールド重ね合わせの設定 コンター図による⾯電流密度表⽰

計算結果:フィールド

フィールドでは電磁界などが視覚的に表⽰されます

• 電界・磁界・ポインティングベクトルなどベクトル量のベクトル表⽰

• 電気/磁気エネルギー密度といったスカラー量・各種ベクトル量の⼤きさのコンター図表⽰

• フィールドの重ね合わせ• アニメーションの作成

アニメーション

電流密度のベクトル表⽰

Page 37: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

S、Y、Z⾏列の出⼒• CSVファイル• タッチストーンファイル

グラフ出⼒• XYグラフ• スミスチャート• 極座標グラフ

基準インピーダンス変更(ReNoralization)

ポート位置変更(DeEmbedding)

37

計算結果:SYZ行列

Page 38: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

指向性(無限遠)周辺電磁界(近傍)• 極座標グラフ• XYグラフ

指向性の3D表⽰

38

計算結果:指向性

Page 39: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

スタート⇒プログラム⇒Femtet®⇒伝送線路インピーダンス計算

39

特性インピーダンス計算ツール

Page 40: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

40

作成 2017.7.10

Page 41: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

41

補足1.入出力ポートの大きさ

ポートの⼤きさが計算値に与える影響を調べました。ポートが空気と基板の断⾯全体についている⽅が、精度が良いことがわかります。

空気

基板

電極

※ ポートを⼤きくしすぎると解析に失敗する場合があります。

0.1

1

10

100

特性インピーダンス 伝搬定数

誤差

[%]

ポート⼩ポート⼤

Page 42: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

42

アダプティブメッシュは、ポート⾯ → 解析領域の順でメッシュ分割を⾏います。

補足2.アダプティブメッシュ

“ポート_002”のメッシュ分割

“ポート_001”のメッシュ分割

解析領域のメッシュ分割

※ メッシュ分割がうまくできていると、収束判定パラメータは⼀定値に収束していきます。※ メッシュの質は、1以上の数で表され、1に近いほど計算誤差の⼩さいメッシュです。

Page 43: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

43

有限要素法には、要素の形が正四⾯体に近いほど計算精度がよくなる性質があります。

補足3.メッシュの質

メッシュの質 ∞1

outR

inR

in

out

RR

Q

要素の内接球と外接球の半径の⽐に、要素が正四⾯体のときにメッシュの質が1となるような係数αをかけたものQでメッシュの質を評価しています。

Page 44: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

44

補足4.表皮厚みより厚い導体Bodyを境界条件とする

導体Body内部も解析する• 電磁界は値を持つ• 精度はメッシュに依存• 多い計算量

電磁界

導体表⾯からの距離

0

δ表⽪厚さ

11/e

導体Body

電磁波

導体Body内部は解析しない• 電磁界ゼロ• 導体表⾯に表⾯インピーダンスが⾃動的に

設定されるので、損失を考慮できる。• 少ない計算量

表⾯インピーダンス☑ 表⽪厚みより厚い導体Bodyを境界条件とする □ 表⽪厚みより厚い導体Bodyを境界条件とする

※ 表⽪厚さδは、参照周波数で計算※ 導体Bodyの厚さが2δより⼩さいときは常に内部も解析

導体Bodyの厚みが2δより⼤きいとき

Page 45: 電磁波解析入門セミナー 説明資料 · magic tee の解析 調和

All Rights Reserved, Copyright ⓒ Murata Software Co., Ltd.

45

補足5.外部境界条件

外部境界条件は、解析実⾏時に、解析領域と⾮解析領域の境界(外部境界)に⾃動的に設定されます。ユーザが別に境界条件を設定した場合は、そちらが優先されます。

ポート外部境界条件(電気壁)

ポートの⾯も外部境界ですが、ユーザが設定したポートの⽅が優先されます。

外部境界条件の種類はプロジェクトツリーから変更できます。Hertz の初期設定は電気壁です。