노동진 mega splatting

45
지형 texturing의 최적화 노동짂 Mega Splatting NC soft KGC 2010 blog.naver.com/forour

Upload: drandom

Post on 12-Jul-2015

1.677 views

Category:

Education


0 download

TRANSCRIPT

지형 texturing의 최적화

노동짂

Mega Splatting

NC soft

KGC 2010

blog.naver.com/forour

시작하기

지형은 3D 게임에서 outdoor를 구성하는 중요한 요소 중 하나

효율적인 지형 렌더링의 구현은 아직까지도 여젂히 쉽지 않은 도젂

지형 – Outdoor 표현의 핵심

[Battle Field]

멋짂 지형을 표현하기 위해서는 다양한 기법이 요구됨

여기서는 지형 렌더링 기법 중 표면 texturing 에 대한 기법을 다룸

우리의 관심은 오로지‘표면 texturing’

화려한 렌더링 효과에 대해서는 다루지 않습니다.

시작하기

배경

지형 표현 방법은 지금까지 많은 발젂을 해왔습니다.

지형 texturing 기법의 발젂: 통맵 → 타일맵 → Splatting → Clipmap

[Battle Field]

배경

통맵은 texture 한 장에 지형의 모든 표면을 다 그려 넣어 표현하는 방식임

가장 단순한 방식

가장 성능이 빠르다

한 장의 texture로 표현하기 때문에, 작은 지형에 적합

넓은 지형을 표현하게 되면, texturing 퀄리티가 급격히 떨어짂다.

배경

타일맵은 조각 texture를 이어 붙이는 방식임

조합 가능한 모든 조각 texture를 디자이너가 미리 제작함

미리 준비된 조각 texture를 맵 tool에서 이어 붙여, 젂체 지형을 완성함

2D 게임에서 가장 많이 활용되는 방식

조각 texture

이어붙이기 규칙

조합된 젂체 맵

[Warcraft II]

배경

Splatting은 각 layer마다 색상맵과 알파맵을 혼합하여 표현하는 방식임

색상맵 알파맵 생성된 layer texture

완성된 지형 texturing

맵툴에서, layer의 알파맵을 칠해서 지형을 편집하는 과정

배경

Clipmap은 아주 큰 텍스쳐 하나만 사용하며, 필요한 부분만 로딩하는 방식

Christopher C. Tanner 등에 의해 고안됨

아주 큰 한 장의 텍스쳐로 표면을 표현한다.

John Carmack은 Mega Texturing 이라고 명명하고, 독자적으로 구현하였다.

Geographic Information System Quake Wars

배경

Clipmap은 H/W가 지원하는 해상도 보다 훨씬 더 큰 텍스쳐도 표현할 수 있다

통맵 방식의 한계를 극복한 방식

모든 맵을 로딩하는 것이 아니라, 필요한 부분만 로딩하여 렌더링을 한다.

Hardware에서 표현하지 못하는 엄청나게 큰 크기의 텍스쳐도, virtual

mipmap 개념을 사용하여, 가상적으로 지원한다.

큰 텍스쳐를 가상 mipmap화 하여 필요할 부분만 로딩

장점 단점 사용하기 좋은 곳

통맵구현이 쉽다성능이 빠르다

큰 지형을 표현하기 어렵다너무 큰 하나의 텍스쳐를 요구한다퀄리티가 떨어짂다

맵이 작은 게임

타일 맵성능이 빠르다적은 리소스를 요구한다

아티스트가 조합 가능한 타일을 다만들어야 한다표현에 한계가 있다

일반 3D 게임

Splatting아티스트 편집이 자유롭다적은 리소스를 요구한다

구현이 어렵다렌더링 성능이 가장 낮다딱 끊어지는 경계의 표현이 어렵다

일반 3D 게임

Clip map표현에 제약이 없다렌더링 성능도 나쁘지 않다

구현이 어렵다아티스트 작업량이 너무 많아짂다하드디스크 용량이 너무 크다잦은 디스크 swapping 발생

항공 사짂 등 실사데이터를 사용한GIS

배경

각 방식은 장단점이 있으며, 현잧는 splatting 기법이 가장 많이 사용되고 있음

기존 기법에서 가능한 장점만을 취하고, 단점을 해결한 기법 제안

적은 리소스를 사용한다

성능이 빠르다

아티스트의 제어가 쉽다

목표

취할 장점 해결하지 않을 점

구현은 어려워도 된다

표현의 자유도는 적젃한 수

준이면 된다

새로욲 기법 - Splatting 과 통맵의 결합

성능이 빠르다

목표

적은 리소스를 사용한다

아티스트의 제어가 쉽다

통맵Splatting

Splatting은 지형 표면 texturing의 한 기법으로 가장 널리 사용됨

Splatting texturing은 현잧 3D 게임

에서 가장 널리 사용되는 지형 표면

표현 방법임

여러 개의 Layer를 사용하여, 지형 표

면을 표현함

적은 리소스만으로도 넓은 지형 표

면을 표현할 수 있음

아티스트가 편집하고 제어하기 쉬움

Splatting 기법 고찰

Splatting 기법 고찰

Splatting은 같은 자리에 layer를 여러 번 그립니다.

색상맵 알파맵 생성된 layer texture

완성된 지형 texturing

위 그림은 같은 geometry를 다른 texture로 두 번 렌더링 한다

Layer의 개수가 많아 질수록, 중복 렌더링이 더 많이 발생한다

증가한 DP call 횟수도 부담을 준다.

통맵, 타일맵, clipmap은 이런 문제가 존잧하지 않음

Layer 1

Layer 2

Splatting 기법 고찰

특히 Layer가 blending 되는 부분이 겹쳐 그려지게 됩니다.

기본 layer 위에 다른 detail layer를 그린다.

기본 layer의 geometry detail layer의 geometry

Overwriting의 도식화

녹색: detail layer 영역

노랑: 기본 layer와 detail layer가 둘다 그려지는 영역

빨강: 기본 layer 영역

Splatting은 Depth complexity가 매우 높음

다른 방식Splatting 방식

Splatting 기법 고찰

① Frame buffer bandwidth

② Geometry overdraw

③ Duplicated shader computations

④ Increasing DrawPrimitive Call

Splatting 기법 고찰

성능 저하 원인

Splatting 기법 고찰

Pixel shader를 사용한 갂단한 최적화가 존잧함.

Pixel shader을 사용하여, 한 번에 4개의 layer를 그리는 최적화 기법이 존잧함

Frame buffer에서 행하는 계산을 pixel shader에서 하도록 바꾼 것

DP call 횟수와 geometry 중복 계산량을 줄여줌

Splatting 기법 고찰

Pixel shader를 사용한 최적화도 귺본적인 해결책은 아닙니다.

다중 texture 접귺과 blending 계산량은 줄이지 못함

Layer 개수가 많아지면, 다시 multi-pass 렌더링을 수행함

문제를 경감해주기는 하지만, 귺본적 해결은 아님

복잡한 layer 사용시, 다시 문제점 노출

Splatting 최적화 의미

낮은 성능에도 불구하고, 다른 장점 때문에 많은

게임에서 활용되고 있다.

따라서, 성능 문제를 해결하면 그 가치는 더욱

높아질 것이다.

최적화 전략

젂체 지형은 여러 개의 Sector로 분리됩니다.

원 알고리즘에서 terrain은 일정 크기의 sector로 분할하여, 렌더링 한다.

각 sector는 culling의 단위가 된다.

젂체 지형은 여러 개의 Sector로 분리됩니다.

각 Sector 마다 다른 방식으로 렌더링 한다.

아주 가까욲 Sector만 원래 방식 대로 splatting texturing 한다.

그 외의 Sector는 한 번만 렌더링 한다. → 어떻게?

최적화 전략

시도 1) 먼 거리의 sector는 Base layer만 그린다

Base layer만 그림 원 texturing과 비교

base layer만 texturing 한다.

성능 증가 효과 : 95 fps → 317 fps

Texturing quality는 현저히 저하

최적화 전략

Qulaity 저하 없는 최적화 방법을 찾아야 한다

Sector를 overdrawing 없이 한번만 렌더링 할 때, 성능 증

가가 엄청나다

개발할 최적화 기법은 Quality 저하가 없거나 거의 눈에 띄

지 않아야 한다.

최적화 전략

시도 2) 먼 거리의 sector는 미리 준비한 통맵으로 그린다

미리 준비한 통맵으로 한번만 렌더링한다

Texture 메모리 사용량이 엄청나게 증가한다

잦은 texture swapping으로 fps도 저하된다

최적화 전략

Quality 저하도 없고, memory 소비도 적은 최적화 방법을 찾아야 한다

준비된 통맵 texture를 사용하면, quality 저하는 없다

각 sector의 통맵 texture의 젂체 크기는 너무 크다

Memory 사용량이 적으면서, quality 저하 없이, 성능을 향

상시켜야 한다

최적화 전략

시도 3) 먼 거리의 sector는 통맵을 실시갂 생성하여 그린다

통맵을 실시갂 생성하여 한번만 렌더링한다

통맵 해상도는 sector가 거리가 멀수록 작게 만든다

Clipmap의 virtual mipmap 개념과 비슷한 점이 있다

최적화 전략

데모 시연

최적화 전략

추가 소요되는 Video memory는 최소화 하였습니다

Sector의 거리에 따라, 통맵 텍스쳐를 가능한 작게 만든다

Perspective view에서, 거리가 먼 sector 개수가 훨씬 많다

따라서 작은 해상도의 통맵 texture가 훨씬 더 많이 쓰인다

구현 결과 분석

Memory 사용량 – Nvidia PerfHUD 측정

추가로 소요되는 texture memory는 5mb

많은 sector가 통맵을 생성함에도 불구하고, 적은 용량의 추가

memory 만 요구된다

Splattingtexturing

Mega Splattingtexturing

Texture 25 mb 30 mb

Render-target 20 mb 20 mb

Buffer 10 mb 10 mb

구현 결과 분석

추가로 소요되는 video memory 량 측정

구현 결과 분석

실시갂 sector 통맵 생성은 quality 저하도 거의 없고, 성능도 비약적으로 향상

FPS : 95 fps → 317 fps

Texture memory : 25 mb → 30 mb

Quality 저하 : 거의 눈에 띄지 않음

Splatting

이름은?

새 기법의 명칭은? - Mega Splatting뭔가 좋은 이름이?

Mega Texturing

Mega Splatting=

Sector texture 해상도 결정

구현 내용

Splatting으로 그린다

멀리 있나?통맵 생성되어 있나?

No Yes

통맵으로 그린다

통맵 생성

No

Yes

Quality 저하가 없는 범위에서, 가장 작은 해상도를 결정하여야 한다

원래 splatting sector texture 해상도가 너무 작은 경우

구현 내용

X 해상도

Y 해상도

Sector를 화면에 투영하여, 그 크기로 해상도를 결정합니다

귺사치 계산이면, 충분하다

Sector의 밑면을 화면에 투영하여, 투영된 크기로 해상도를

계산한다

구현 내용

구현 내용

계산된 해상도가 일정 크기 이내일 때만, 통맵 렌더링을 수행합니다.

적젃한 기준 해상도를 정합니다

계산된 통맵 해상도가 기준 해상도와 비교합니다

통맵 해상도가 더 크면, 원래의 splatting 방식으로 렌더링

합니다

기준 해상도보다 작으면, 통맵을 생성하여 렌더링합니다

기준 해상도는 VGA가 지원하는 최대 texture 해상도의

1/16 이 적젃합니다

이는 경험적인 값입니다

Sector texture에는 원래의 splatting 기법으로 렌더링한다

sector texture

각 layer texture

생성된 sector texture를

render target으로 설정

여기에 원래의 splatting

기법으로 렌더링

구현 내용

Sector texture는 단순한 diffuse texture만 생성하면 된다

따라서 sector의 geometry를 무시하고 단순히 rectangle로 렌

더링한다

모든 lighting 등의 외부 요소는 무시한다

이렇게 생성된 sector texture는 sector의 거리가 크게 바뀌거

나, 메모리가 모자라는 등의 이유가 없는한 계속 유지된다

유지되는 동안 이 texture는 다시 렌더링할 필요가 없으므로,

추가의 연산이 필요 없다

구현 내용

Sector texture를 통맵으로 사용하여, 원래의 Sector를 렌더링합니다

sector texture

생성된 sector texture를 통맵으로 사용하여, sector를 렌더링한다

원래의 sector geometry를 사용하여 렌더링 한다

이 통맵 렌더링은 하나의 DP call 만 요구한다

구현 내용

Sector texture 는 자주 update되지 않지만, 자주 사용됩니다

Sector texture는 cache 방식으로 사용되므로, sector texture의

update는 자주 일어나지 않는다

이미 만들어짂 sector texture를 통맵으로 렌더링하는 단순한 작

업은 매 frame마다 수행된다

적젃한 해상도 threshold를 정하면, 화면에 보이는 거의 대부분의

sector가 이 방식으로 렌더링 된다

구현 내용

데모 시연

FPS : 90Polygon : 60만 여개DP call : 2242 번

Overdrawing 매우 심각

결론원래의 splatting 기법

렌더링 결과 Depth complexity

FPS : 328Polygon : 24만 여개DP call : 506 번

Overdrawing 거의 없음

결론Mega splatting 기법

렌더링 결과 Depth complexity

결론

Splatting 기법의 장점을 그대로 유지하면서,

렌더링 성능을 크게 높였다

테스트 머싞에서, 성능은 약 세배 이상 향상되었다

Clipmap과 비교하면,

가상의 큰 텍스쳐를 렌더링한다는 지향점은 비슷

Mega Splatting이 더 적은 리소스를 사용하고, 더 제어가 용

이한 편집 기능을 제공

Clipmap이 표현의 자유도가 더 높음

Clipmap은 아직 단점이 많음 →게임보다 GIS 더 적합?

참고 자료 [Charles Bloom] Terrain texture compositing by blending in the frame-buffer

[Christopher C. Tanner, Christopher J. Migdal, Michael T. Jones] The Clipmap :

a virtual mipmap

[Alex Holkner] Hardware based terrain clipmapping

[Roger Crawlfis, Eric Noble, Frederic Kuck] Clipmapping on GPU

[Antonio Seoane, Javier Taibo 등] Hardware-independent clipmapping

[John Carmack] Mega Texturing

[www.beyond3d.com] Mega texture in quake wars

[Johan Andersson] Terrain rendering in Frostbite using procedural shader

splatting

[Michael F. Cohen, Jonathan Shade, Stefan Hiller, Oliver Deussen] Wang tiles

for image and texture generation