磁気リコネクション研究 における mhd...

19
磁磁磁磁磁磁磁磁磁磁磁 磁磁磁磁 MHD 磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁 磁磁 磁磁 磁磁磁磁磁磁磁 磁磁磁磁磁磁 (/) 磁磁磁磁磁磁磁磁磁磁磁 磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁磁 磁磁磁 磁磁磁磁磁(R30 磁磁磁磁磁 )

Upload: velika

Post on 05-Jan-2016

72 views

Category:

Documents


6 download

DESCRIPTION

磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望. 新田 伸也 (電気通信大学/国立天文台) 解析屋が抱く 素朴な疑問 ・異常抵抗はどれだけ大きい? ・シミュレーションは万能か? ・解析的研究は時代遅れか? 挑発しますが、悪意は ありません。 (R30 :オトナ向け ). 天体リコネクション研究の特殊性. 1)時間発展の最初から最後まで 拡散領域を十分に解像 しなくてはならない ⇄ cf.  星形成 2)無次元 パラメータ値が 1から大きく離れている β〜10^-2>1 ⇩ - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

磁気リコネクション研究における

MHD シミュレーションの限界と解析的研究の展望

新田 伸也(電気通信大学/国立天文台)

解析屋が抱く素朴な疑問・異常抵抗はどれだけ大きい?・シミュレーションは万能か?・解析的研究は時代遅れか?

挑発しますが、悪意はありません。 (R30 :オトナ向

け )

Page 2: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

天体リコネクション研究の特殊性

1)時間発展の最初から最後まで拡散領域を十分に解像しなくてはならない

⇄ cf.  星形成

2)無次元パラメータ値が1から大きく離れている

β 〜 10^-2<< 1、 Rem* 〜 ? >>1⇩

数値シミュレーションするにはとても困難な問題!

従来のシミュレーション:本当に「意味のあるシミュレーショ

ン」になっているのか?

Page 3: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

高磁気レイノルズ数リコネクションの意義

MHD シミュレーションのネック:電気抵抗はモデルで与えるしかない!

⇄ 異常抵抗の実態は未解明!

実効的磁気レイノルズ数Rem*≡Alfven 速度/磁気拡散速度

10^6-10^5×Spitzer 抵抗 (Rem*=10-100 ) は実現されるのか?

⇩高磁気レイノルズ数 (Rem*>>100)

でのリコネクションとは?

Page 4: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

高磁気レイノルズ数シミュレーションの困難

メッシュ法の宿命拡散領域は

メッシュ幅より薄くなれない!⇩

磁気拡散速度に下限がある

電気抵抗を小さくし過ぎると、数値拡散が支配的になってしまう!

(物理的に無意味)⇩

メッシュ法による高磁気レイノルズ数シミュレーションは不可能!

Page 5: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

大規模シミュレーションの怪しさ

カレントシート厚さ下限〜イオン Larmor 半径〜 10^0[m](現実のカレントシート厚さ?)

⇩大規模シミュレーションでの

解像は不可能!( メッシュサイズ >> カレントシート厚さ下

限 )

⇩速いリコネクションのために

現実離れした巨大電気抵抗を導入(単なるコンジェクチャー!)本当の現象を記述できるのか?

高レイノルズ数リコネクションを解析的に調べてみよう!

Page 6: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

リコネクションの解析的研究例( Nitta 2006b )天体現象の素過程としての

2D-MHD リコネクション・モデル

シミュレーションで直観を得る!(Nitta et al. 01)

⇩アウトフロー領域:衝撃波管近似 (New

ton=Raphson 法 : Nitta et al. 02)+

インフロー領域: Grad=Shafranov 法(SOR 法 : Nitta 04、 06a)

⇩自己相似時間発展モデル

(Petschekモデルを超える新標準モデル )

Page 7: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

MHD シミュレーション

QuickTime˛ Ç∆TIFFÅià≥èkǻǵÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 8: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

QuickTime˛ Ç∆TIFFÅià≥èkǻǵÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 9: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

QuickTime˛ Ç∆TIFFÅià≥èkǻǵÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 10: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

アウトフロー領域

衝撃波管近似各不連続を跨いでの接続条件

(22元非線形連立代数方程式)⇩

Newton=Raphson 法で解く⇩

・各不連続両側の全ての物理量・各不連続の配置

⇩インフロー領域 (G-S方程式 ) の境界条

xySlow ShockForward Slow ShockContact Discon.Reverse Fast ShockCurrent Sheetregion pregion 1region 2region 3Slow ShockxfxcxsxyO

Page 11: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

インフロー領域

線形近似での Grad=Shafranov 法

0次:初期平衡(カレントシート)1次:リコネクションによる変化

+Zoom-Out座標系での MHD方程式系

⇩インフロー領域の1次量に関する2階 PDE(Grad=Shafranov方程式 )

←アウトフロー領域との境界条件⇩

SOR 法で解く⇩

インフロー領域の物理量

Page 12: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

リコネクション点付近の構造

0

0.2

0.4

0.6

0.8

1

10 100 1000 104

Rem*

リコネクション点の位置 x=xy

xy↑ as Rem*↑

Rem*

  〜15: Petschek type

15〜20: X-O-X type (mag. island)

> 20: Sweet-Parker type (new current sheet)

Xy

Rem*

Page 13: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

解の変遷 (β=0.01)Petschek typeRem*=15.63xy=0.

R=0.0504

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

x

y

A0'+A1' (case1)

X-point

Page 14: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

X-O-X typeRem*=16.88xy=0.048R=0.0489

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

x

y

A0'+A1' (case2)

X-point

Page 15: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

Sweet-Parker type(collapsed island+double Y-point)

Rem*=139.8xy=0.75

R=0.00713

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

x

y

A0'+A1' (case3)

X-point

Page 16: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

リコネクションレイトSSLSSDRyx

SSLSSDRyx

0.0001

0.001

0.01

0.1

1

10 100 1000 104

Rvyp/vxpbyp/bxp

Rem*

固定座標

真下に流入

相似座標

リコネクション点に斜めに流入

R

Rem*

Page 17: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

磁気エネルギー変換率リコネクション点が二つに分離

⇩island/カレントシートが残る

⇩磁気エネルギーの

一部だけが解放される

変換率f≡ 解放された磁気エネルギー/元の

カレントシートの磁気エネルギー

0.001

0.01

0.1

10 100 1000 104

Rem*

f

Rem*

Page 18: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

解析的研究の重要性

明らかに絶滅危惧種

やるべき事が無くなって廃れたのではない!

・日本の計算機環境は世界一・シミュレーション研究の成果は得やすい・若手は解析研究するより早く成長できる

本来、解析的研究向きテーマ

シミュレーション向きテーマの両方があり得る

シミュレーション:時間変化、複雑系に有利解析的研究:本質の理解、極限状況に有利

e.g. MHD風理論遷磁気音速領域:シミュレーション有利漸近領域:解析的研究有利

Page 19: 磁気リコネクション研究 における MHD シミュレーションの限界と解析的研究の展望

シミュレーションと解析は相補的

⇄ 我が国では極端にアンバランス( シミュレーション >>> 解析 )

⇩解析的研究の復権を!

もっと解析的研究人口を増やそう!いきなり M 1からシミュレーションに専念せず、 D 2

くらいまでは解析的研究(訓練)もしよう!

+シミュレーションと解析的研究の

コラボレーションを!乞う!共同研究シミュレーション屋さん

コロナ磁場構造、風理論、 GRB etc.

関係改善を!