الطريقة الحديثة لتصميم الخلطات الأسفلتية_pdf_29.pdf

Upload: kabasy2015

Post on 02-Jun-2018

274 views

Category:

Documents


4 download

TRANSCRIPT

  • 8/10/2019 PDF_29.PDF_

    1/77

    Road Institute

    March 29 31, 2003

    Role of Polymers on New Superpave AsphaltMix Design Specificaions for Roads

    1 3 May 2005

  • 8/10/2019 PDF_29.PDF_

    2/77

    Introduction to Polymers

    Superpave Mix Design

    By

    Eng. Hamad Alslyman

  • 8/10/2019 PDF_29.PDF_

    3/77

    PRESENTATION OUTLINE

    SHRP and Superpave

    SUperpave steps

    Superpave

    Pre-Superpave Mix Design Methods

    Polymers Modified Asphalt (PMA) Technical Basis5

  • 8/10/2019 PDF_29.PDF_

    4/77

    Mix. Design History

  • 8/10/2019 PDF_29.PDF_

    5/775/2/2006 Road Institute

    HVEEM MIXDESIGN

    Some Volumetric properties not

    emphesized

    Asphalt Content Selection very subjective

    MARSHALLMIX DESIGN

    Impact Compaction unrealistic

    Stability not related toperformance

  • 8/10/2019 PDF_29.PDF_

    6/775/2/2006 Road Institute

    Marshall Design Criteria

    Light Traffic Medium Traffic Heavy TrafficESAL < 104 10 4 < ESAL< 10 ESAL > 106

    Compaction 35 50 75

    Stability N (lb.) 3336 (750) 5338 (1200) 8006 (1800)

    Flow, 0.25 mm (0.1 in) 8 to 18 8 to 16 8 to 14

    Air Voids, % 3 to 5 3 to 5 3 to 5

    Voids in Mineral Agg.

    (VMA) Varies with aggregate size

  • 8/10/2019 PDF_29.PDF_

    7/775/2/2006 Road Institute

    SHRP and SuperPave

  • 8/10/2019 PDF_29.PDF_

    8/775/2/2006 Road Institute

    Strategic Highway Research Program SHRP

    User- Producers Steering Committee

    Superior Performance Asphalt Pavement (SuperPave)

    SHRP- SuperPave

    Federal Highway Adm. SHRP- Implementation

    SuperPave

  • 8/10/2019 PDF_29.PDF_

    9/775/2/2006 Road Institute

    SUPERPAVE TECHNICAL BASIS

  • 8/10/2019 PDF_29.PDF_

    10/775/2/2006 Road Institute

    1- Performance Based Specs

    2- Measurement Based Tests

    3- Stress-Strain Based Analysis

    SUPERPAVE TECHNICAL BASIS

    4- Behavior depends on:

    - Temperature

    - Time of loading

    - Aging (properties change with time)

  • 8/10/2019 PDF_29.PDF_

    11/775/2/2006 Road Institute

    SUPERPAVE LEVELS

    Material Selection

    Compaction and Vol. Design

    Mix Performance Tests

  • 8/10/2019 PDF_29.PDF_

    12/775/2/2006 Road Institute

    MATERIAL SELECTION

    AGGREGATES

    ASPHALT CEMENT (Binder)

  • 8/10/2019 PDF_29.PDF_

    13/77

    5/2/2006 Road Institute

    AGGREGATES

    Aggregate Properties

    Aggregate Source

    Aggregate Gradation

  • 8/10/2019 PDF_29.PDF_

    14/77

    5/2/2006 Road Institute

    AGGREGATES

    Aggregate Gradation

    1- Max Density Line

    2- Control Points

    3- Restricted Zone

    G d

  • 8/10/2019 PDF_29.PDF_

    15/77

    5/2/2006 Road Institute

    100

    0

    .075 .3 2.36 4.75 9.5 12.5 19.0

    % Passing

    control point

    restricted zone

    max density line

    max

    size

    nom

    max

    size

    Sieve Size (mm) Raised to 0.45 Power

    Superpave Aggregate Gradation

  • 8/10/2019 PDF_29.PDF_

    16/77

    5/2/2006 Road Institute

    Superpave Aggregate Gradation

    Design Aggregate Structure

    100

    0

    .075 .3 2.36 12.5 19.0

    % Passing

    Sieve Size (mm) Raised to 0.45 Power

  • 8/10/2019 PDF_29.PDF_

    17/77

    5/2/2006 Road Institute

    MATERIAL SELECTION

    AGGREGATES

    ASPHALT CEMENT (Binder)SUPERPAVE BINDER TESTS

  • 8/10/2019 PDF_29.PDF_

    18/77

    5/2/2006 Road Institute

    Dynamic Shear Rheometer (DSR)

    -

    otational Viscometer (RV) -

    SUPERPAVE BINDER TESTS

  • 8/10/2019 PDF_29.PDF_

    19/77

    5/2/2006 Road Institute

    Bending Beam Rheometer (BBR)

    -

    olling Thin Film Oven (RTFO)

    -

    Pressure Aging Vessel (PAV) -

    Direct Tension Tester (DTT) -

    SUPERPAVE BINDER TESTS

    SUPERPAVE BINDER TESTS

  • 8/10/2019 PDF_29.PDF_

    20/77

    5/2/2006 Road Institute

    SUPERPAVE BINDER TESTS

    RV

    DTT

    BBR

    DSR

    -202060135

    PAV - AGING

    RTFO - AGING

    NO - AGING

    Short Term Aging

    Long Term Aging

  • 8/10/2019 PDF_29.PDF_

    21/77

    5/2/2006 Road Institute

    High Temperature Behavior

    High in-service temperature

    Desert climates Summer temperatures

    Sustained loads

    Slow moving trucks

    Intersections

    Viscous Liquid

  • 8/10/2019 PDF_29.PDF_

    22/77

    5/2/2006 Road Institute

    Permanent Deformation

    Function of warm weather and traffic

    Courtesy of FHWA

  • 8/10/2019 PDF_29.PDF_

    23/77

    5/2/2006 Road Institute

    Low Temperature Behavior

    Low Temperature

    Cold climates Winter

    Rapid Loads

    Fast moving trucks

    Elastic Solid

    Thermal cracks

    Stress generated by contraction

    Material is brittle

  • 8/10/2019 PDF_29.PDF_

    24/77

    5/2/2006 Road Institute

    Thermal Cracking

    Courtesy of FHWA

  • 8/10/2019 PDF_29.PDF_

    25/77

    5/2/2006 Road Institute

    Aging

    Short term

    Asphalt reacts with oxygen

    Long term

  • 8/10/2019 PDF_29.PDF_

    26/77

    5/2/2006 Road Institute

    Superpave Asphalt Binder Specification

    The grading system is based on Climate

    PG 64 - 22

    Performance

    Grade Average 7-day max

    pavement temperature

    Min pavementtemperature

    New Superpave Performance Graded Specification

    Tests Used in PG Specifications

  • 8/10/2019 PDF_29.PDF_

    27/77

    5/2/2006 Road Institute

    RV DSR BBR

    Construction

    Tests Used in PG Specifications

    R i l Vi

  • 8/10/2019 PDF_29.PDF_

    28/77

    5/2/2006 Road Institute

    Rotational Viscometer

    Inner Cylinder

    Torque Motor

    ThermoselEnvironmental

    Chamber

    Digital Temperature

    Controller

  • 8/10/2019 PDF_29.PDF_

    29/77

    5/2/2006 Road Institute

    RV DSRBBR

    Rutting, and

    Fatigue

    DSR E i t

  • 8/10/2019 PDF_29.PDF_

    30/77

    5/2/2006 Road Institute

    Area for

    Liquid Bath

    Motor

    Parallel Plates

    with Sample

    DSR Equipment

    DSR E ipm nt

  • 8/10/2019 PDF_29.PDF_

    31/77

    5/2/2006 Road Institute

    DSR Equipment

    DSR

    EquipmentComputer Controland Data

    Acquisition

  • 8/10/2019 PDF_29.PDF_

    32/77

    5/2/2006 Road Institute

    RV

    DSR

    BBR

    Rutting

  • 8/10/2019 PDF_29.PDF_

    33/77

  • 8/10/2019 PDF_29.PDF_

    34/77

    5/2/2006 Road Institute

    RV

    DSR

    BBR

    Fatigue

    Fatigue Cracking

  • 8/10/2019 PDF_29.PDF_

    35/77

    5/2/2006 Road Institute

    g g

    Function of repeated traffic loads over time

    (in wheel paths)

  • 8/10/2019 PDF_29.PDF_

    36/77

    5/2/2006 Road Institute

    Long Term Aging

    ( Pressure Aging Vessel )

    Simulates aging of 7 to 10 years

    50 gram sample is aged for 20 hours

    Pressure of 2,070 kPa (300 psi)

    At 90, 100 or 110 C

    Pressure Aging Vessel

  • 8/10/2019 PDF_29.PDF_

    37/77

    5/2/2006 Road Institute

    Pressure Aging Vessel

    Courtesy of FHWA

  • 8/10/2019 PDF_29.PDF_

    38/77

    5/2/2006 Road Institute

    RVDSR

    BBR

    ThermalCracking

    Bending Beam Rheometer

  • 8/10/2019 PDF_29.PDF_

    39/77

    5/2/2006 Road Institute

    Bending Beam Rheometer

    Air Bearing

    Load Cell

    Deflection Transducer

    Fluid Bath

    Computer

    Bending Beam Rheometer Sample

  • 8/10/2019 PDF_29.PDF_

    40/77

    5/2/2006 Road Institute

    Bending Beam Rheometer Sample

    Bending Beam Rheometer Equipment

  • 8/10/2019 PDF_29.PDF_

    41/77

    5/2/2006 Road Institute

    n ng am m r Equ pm n

    Cooling

    System

    Fluid BathLoading

    Ram

    Direct Tension Test

  • 8/10/2019 PDF_29.PDF_

    42/77

    5/2/2006 Road Institute

    Direct Tension Test

    Le

    L

    Load

    Stress = = P / A

    Strain f

    f

    Di t T i T t

  • 8/10/2019 PDF_29.PDF_

    43/77

    5/2/2006 Road Institute

    Direct Tension Test

    Courtesy of FHWA

  • 8/10/2019 PDF_29.PDF_

    44/77

    Superpave Binder PurchaseSpecification

    Performance Grades

  • 8/10/2019 PDF_29.PDF_

    45/77

    5/2/2006 Road Institute

    PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

    (Rotational Viscosity) RV

    90 90 100 100 100 (110) 100 (110) 110 (110)

    (Flash Point) FP

    46 52 58 64 70 76 82

    46 52 58 64 70 76 82

    ((ROLLING THIN FILM OVEN)ROLLING THIN FILM OVEN) RTFORTFO Mass LossMass Loss 1.00 kPa

    < 5000 kPa

    > 2.20 kPa

    S < 300 MPa m > 0.300

    Report Value

    > 1.00 %

    20 Hours, 2.07 MPa

    10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

    (Dynamic Shear Rheometer)

    DSRG* sin

    ( Bending Beam Rheometer) BBR S Stiffness & m - value

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -

    18 -24

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12

    -18 -24

    (Dynamic Shear Rheometer) DSR G*/sin

    (Dynamic Shear Rheometer) DSR G*/sin

    < 3 Pa.s @ 135 oC

    > 230 oC

    CEC

    How the PG Spec Works

  • 8/10/2019 PDF_29.PDF_

    46/77

    5/2/2006 Road Institute

    PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

    (Rotational Viscosity) RV

    90 90 100 100 100 (110) 100 (110) 110 (110)

    (Flash Point) FP

    46 52 58 64 70 76 82

    46 52 58 64 70 76 82

    ((ROLLING THIN FILM OVEN)ROLLING THIN FILM OVEN) RTFORTFO Mass LossMass Loss 2.20 kPa

    S < 300 MPa m > 0.300

    Report Value

    > 1.00 %

    20 Hours, 2.07 MPa

    10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

    (Dynamic Shear Rheometer) DSR G* sin

    ( Bending Beam Rheometer) BBR S Stiffness & m - value

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -

    18 -24

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12

    -18 -24

    (Dynamic Shear Rheometer) DSR G*/sin

    (Dynamic Shear Rheometer) DSR G*/sin

    < 3 Pa.s @ 135 oC

    > 230 oC

    CEC

    58 64

    Test TemperatureTest Temperature

    ChangesChanges

    Spec RequirementSpec Requirement

    Remains ConstantRemains Constant

    > 1.00 kPa

    Permanent Deformation

  • 8/10/2019 PDF_29.PDF_

    47/77

    5/2/2006 Road Institute

    PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

    (Rotational Viscosity) RV

    90 90 100 100 100 (110) 100 (110) 110 (110)

    (Flash Point) FP

    46 52 58 64 70 76 82

    46 52 58 64 70 76 82

    ((ROLLING THIN FILM OVEN)ROLLING THIN FILM OVEN) RTFORTFO Mass LossMass Loss 0.300

    Report Value

    > 1.00 %

    20 Hours, 2.07 MPa

    10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

    (Dynamic Shear Rheometer) DSR G* sin

    ( Bending Beam Rheometer) BBR S Stiffness & m - value

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -

    18 -24

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12

    -18 -24

    (Dynamic Shear Rheometer) DSR G*/sin

    (Dynamic Shear Rheometer) DSR G*/sin

    < 3 Pa.s @ 135 oC

    > 230 oC

    CEC

    > 1.00 kPa

    > 2.20 kPaUnagedUnaged

    RTFO AgedRTFO Aged

    P t D f ti

  • 8/10/2019 PDF_29.PDF_

    48/77

    5/2/2006 Road Institute

    Permanent Deformation

    Addressed by high temp stiffness

    G*/sin on unaged binder > 1.00 kPa

    G*/sin on RTFO aged binder > 2.20 kPa

    > Early part of

    pavementservice life

    Heavy TrucksHeavy Trucks

    Fatigue Cracking

  • 8/10/2019 PDF_29.PDF_

    49/77

    5/2/2006 Road Institute

    PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

    (Rotational Viscosity) RV

    90 90 100 100 100 (110) 100 (110) 110 (110)

    (Flash Point) FP

    46 52 58 64 70 76 82

    46 52 58 64 70 76 82

    ((ROLLING THIN FILM OVEN)ROLLING THIN FILM OVEN) RTFORTFO Mass LossMass Loss 1.00 kPa

    > 2.20 kPa

    S < 300 MPa m > 0.300

    Report Value

    > 1.00 %

    20 Hours, 2.07 MPa

    10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

    (Dynamic Shear Rheometer) DSR G* sin

    ( Bending Beam Rheometer) BBR S Stiffness & m - value

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -

    18 -24

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12

    -18 -24

    (Dynamic Shear Rheometer) DSR G*/sin

    (Dynamic Shear Rheometer) DSR G*/sin

    < 3 Pa.s @ 135 oC

    > 230 oC

    CEC

    < 5000 kPa

    PAV AgedPAV Aged

    F i C ki

  • 8/10/2019 PDF_29.PDF_

    50/77

    5/2/2006 Road Institute

    Fatigue Cracking

    Addressed by intermediate temperaturestiffness

    G*sin on RTFO & PAV aged

    binder < 5000 kPa

    > Later part ofpavement service life

    Low Temperature Cracking

  • 8/10/2019 PDF_29.PDF_

    51/77

    5/2/2006 Road Institute

    PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

    (Rotational Viscosity) RV

    90 90 100 100 100 (110) 100 (110) 110 (110)

    (Flash Point) FP

    46 52 58 64 70 76 82

    46 52 58 64 70 76 82

    (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 %

    (Direct Tension) DT

    (Bending Beam Rheometer) BBR Physical Hardening

    28

    -34 -40 -46 -10 -16 -22 -28 -34 -40 -46 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -10 -16 -22-28 -34

    Avg 7-day Max, oC

    1-day Min, oC

    (PRESSURE AGING VESSEL) PAV

    ORIGINAL

    > 1.00 kPa

    < 5000 kPa

    > 2.20 kPa

    20 Hours, 2.07 MPa

    10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

    (Dynamic Shear Rheometer) DSR G* sin

    ( Bending Beam Rheometer) BBR S Stiffness & m - value

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -

    18 -24

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12

    -18 -24

    (Dynamic Shear Rheometer) DSR G*/sin

    (Dynamic Shear Rheometer) DSR G*/sin

    < 3 Pa.s @ 135 oC

    > 230 oC

    CEC

    S < 300 MPa m > 0.300

    Report Value

    > 1.00 %

    PAV Aged

    Low Temperature Cracking

  • 8/10/2019 PDF_29.PDF_

    52/77

    5/2/2006 Road Institute

    PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

    (Rotational Viscosity) RV

    90 90 100 100 100 (110) 100 (110) 110 (110)

    (Flash Point) FP

    46 52 58 64 70 76 82

    46 52 58 64 70 76 82

    (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 %

    (Direct Tension) DT

    (Bending Beam Rheometer) BBR Physical Hardening

    28

    -34 -40 -46 -10 -16 -22 -28 -34 -40 -46 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -10 -16 -22-28 -34

    Avg 7-day Max, oC

    1-day Min, oC

    (PRESSURE AGING VESSEL) PAV

    ORIGINAL

    > 1.00 kPa

    < 5000 kPa

    > 2.20 kPa

    20 Hours, 2.07 MPa

    10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

    (Dynamic Shear Rheometer) DSR G* sin

    ( Bending Beam Rheometer) BBR S Stiffness & m - value

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -

    18 -24

    -24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12

    -18 -24

    (Dynamic Shear Rheometer) DSR G*/sin

    (Dynamic Shear Rheometer) DSR G*/sin

    < 3 Pa.s @ 135 oC

    > 230 oC

    CEC

    S < 300 MPa m > 0.300

    Report Value

    > 1.00 %

    PAV Aged

    PG Binder Selection

  • 8/10/2019 PDF_29.PDF_

    53/77

    5/2/2006 Road Institute

    PG 58-22

    PG 52-28

    PG 64-10PG 58-16

    > Many agencies have

    established zones

    PG Binder Selection

  • 8/10/2019 PDF_29.PDF_

    54/77

    5/2/2006 Road Institute

    COMPACTION AndVOLUMETRIC DESIGN

    COMPACTION

  • 8/10/2019 PDF_29.PDF_

    55/77

    5/2/2006 Road Institute

    reactionframe

    rotating

    base

    loading

    ram

    control and data

    acquisit ion panel

    mold

    height

    measurement

    til t bar

    Key Components of Gyratory Compactor

    1.25o

    Ram pressure

    600 kPa

    Volumetric Analysis

  • 8/10/2019 PDF_29.PDF_

    56/77

    Analyzing relationships between mass andvolume

    Bulk specific gravity (BSG) Maximum specific gravity

    Air voids

    Effective specific gravity of aggregate

    Voids in mineral aggregate, VMA

    Voids filled with asphalt, VFA

    Specimen Preparation

  • 8/10/2019 PDF_29.PDF_

    57/77

    5/2/2006 Road Institute

    Mechanical mixer

    0.170 Pa-s binder viscosity

    Superpave Volumetric Mix Design Specs

  • 8/10/2019 PDF_29.PDF_

    58/77

    5/2/2006 Road Institute

    Determine mix properties at NDesign and compare to criteria :

    Dust proportion 0.6 to 1.2

    Air voids 4% (or 96% Gmm)

    VMA Based on Agg Size

    VFA Based on Traffic V.

    %Gmmat Nmin < 89%

    %Gmmat Nmax < 98%

  • 8/10/2019 PDF_29.PDF_

    59/77

  • 8/10/2019 PDF_29.PDF_

    60/77

    Moisture SensitivityAASHTO T 283

  • 8/10/2019 PDF_29.PDF_

    61/77

    5/2/2006 Road Institute

    Calculate the TensileStrength Ratio (TSR)

    AASHTO T 283

    Determine the tensile strengths

    of both sets of 3 specimens

  • 8/10/2019 PDF_29.PDF_

    62/77

    5/2/2006 Road Institute

    Mix Performance Tests

    Mix Analysis Testing

  • 8/10/2019 PDF_29.PDF_

    63/77

    5/2/2006 Road Institute

    Type ofAnalysis

    PermanentFatiqueCracking

    Low Temp.cracking

    Type of Distress

    Intermediate

    Complete

    Frequency sweep

    at constant height

    Simple shear testat constant height

    Repeated shear test

    at cons shear ratio

    Indirect tensile

    strength

    Uniaxil Strain test Volumetric test

    lndirect tensile creep

    Ind. tensile strength

    Binder creep stiffnes and Creep rate

    Simple shear testat constant height

    Frequency sweep

    at const. height

    Indirect tensile

    strength lndirect tensile creep Ind. tensile strength

    Binder creep stiffness

    and Creep rate

    Frequency sweepat const. height

    Simple shear test at const. height Repeated shear at const shear ratio

    Simple Shear Testing System (SST)

  • 8/10/2019 PDF_29.PDF_

    64/77

    5/2/2006 Road Institute

    Indirect Tensile Testing System (IDT)

  • 8/10/2019 PDF_29.PDF_

    65/77

    5/2/2006 Road Institute

    POLYMER

  • 8/10/2019 PDF_29.PDF_

    66/77

    5/2/2006 Road Institute

    The word polymer is a combination of two Greek

    words polys and meros. Polys means numerous,

    and meros means part; therefore, polymer is a

    compound of numerous parts. Actually, a polymer is a

    large molecule which consist of of one or more

    repeating units linked together by covalent bonds.

    Requirements For Polymers

  • 8/10/2019 PDF_29.PDF_

    67/77

    5/2/2006 Road Institute

    Should be compatible with asphalt.

    Should be capable of being processed by conventional

    mixing and laying equipment.

    Should be able to maintain their premium properties

    during mixing, storage, and application services.

    Should also be cost effective.

    Ideal Polymers for PMA

  • 8/10/2019 PDF_29.PDF_

    68/77

    5/2/2006 Road Institute

    Increases the softening point of PMA

    Maintains viscosity resulting in good hot-mix

    workability.

    Compatible with a wide range of asphalt

    Excellent storage stability

    Low shear blending Low melting point less than 180 degree C

    Factors Affecting PMA Properties

  • 8/10/2019 PDF_29.PDF_

    69/77

    5/2/2006 Road Institute

    Asphalt Type

    Polymer Type

    Polymer Content

    Methods of Modification

    Synthetic Polymers

  • 8/10/2019 PDF_29.PDF_

    70/77

    5/2/2006 Road Institute

    Elastomers

    Chosen to give more resilient and flexible pavements

    Compatible with aromatic asphalt

    Plastomers

    Chosen to result in mixes higher stabilities and stiffnessmodulii.

    Compatible with paraffinic and napthanic asphalt.

    Polymer Types

  • 8/10/2019 PDF_29.PDF_

    71/77

    5/2/2006 Road Institute

    Plastomeric - stiffness ,strength, elasticityEV

    EM

    PE

    Polybutadiene

    Elastomeric - elasticity, elastomeric recoveryS S

    S R

    CRM

    Compatibility

  • 8/10/2019 PDF_29.PDF_

    72/77

    5/2/2006 Road Institute

    Function of Chemistry

    Function Of Shearing

    Particles must be sheared fine to create

    distribution and easy bitumen-polymer

    reaction.Bitumen must be ABLE to react

    Compatibility

  • 8/10/2019 PDF_29.PDF_

    73/77

    5/2/2006 Road Institute

    How well the polymer and asphalt interact

    Depends on asphalt and polymer chemistry

    Additives may be required

    Profoundly affects the rheolgical properties of binder and

    the mix performance

    compatible EVA 3% EVA compatible 5%

  • 8/10/2019 PDF_29.PDF_

    74/77

    poorly compatible 5% EMA compatible EMA 5%

    Effects of Incompatibility- Binder

  • 8/10/2019 PDF_29.PDF_

    75/77

    5/2/2006 Road Institute

    Lower Softening Point

    Higher stiffness low temperatures

    Lower stiffness high temperatures

    Higher phase angle

    Shorter storage times

    Higher melt viscosity

  • 8/10/2019 PDF_29.PDF_

    76/77

    5/2/2006 Road Institute

  • 8/10/2019 PDF_29.PDF_

    77/77

    Thank You