すばる prime focus spectrograph (pfs)blue 3800-6700 2300 red 6500-10000 3000 nir 9700-13000 4400...

30
201289光学赤外線天文連絡会シンポジウム「2020年に向けてのロードマップ」 @国立天文台三鷹 すばる Prime Focus Spectrograph (PFS) 菅井 (Kavli IPMU) 実行グループ (PI 村山斉 Kavli IPMU)

Upload: others

Post on 29-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 2012年8月9日 光学赤外線天文連絡会シンポジウム「2020年に向けてのロードマップ」 @国立天文台三鷹

    すばる Prime Focus Spectrograph (PFS) 菅井 肇 (Kavli IPMU)

    実行グループ (PI 村山斉 Kavli IPMU)

  • Prime Focus Spectrograph (PFS)

    1. What is PFS ?

    2. Science targets

    3. Why on Subaru ?

    4. Challenges in PFS

    5. Each component

    6. Efficiency & sensitivity estimates

    7. Major milestones

    8. Summary

  • 1. What is Prime Focus Spectrograph (PFS) ?

    Optical + NIR Multi-object fiber spectrograph

    - Number of fibers: 2400

    600 per Spectr. X 4 Spectrographs

    - Fiber core diameter 128mm

    Microlens attached to fiber input edge

    fiber input F/2.2 -> F/2.8 (1”.1 diameter per fiber)

    - Field of view: 1.3 deg

    - Wavelength: 0.38 - 1.3 μm

    概要

    [Sugai et al. SPIE]

  • 1. What is PFS ?

    Optical + NIR Multi-object fiber spectrograph

    - Each spectrograph: 3-color-arm design

    Arm Coverage[A] Resolution[l/dl]

    ------------------------------------------------------

    Blue 3800-6700 2300

    Red 6500-10000 3000

    NIR 9700-13000 4400

    -------------------------------------------------------

    Spectrograph collimator F/2.5, camera F/1.1

    Detector pixel 15mm (2Kx4K x 2 FDCCDs for each Blue/Red arm, 4Kx4K HgCdTe(1.7mm cutoff) for NIR arm)

  • movie movie with sound

    How the system works

    ../obayashi/check0702b.wmvPFSintro.m4v

  • 2. Science targets

    Cosmology

    Galactic Archaeology Galaxy/AGN evolution

    See arXiv:1206.0737 “Extragalactic science and cosmology with Subaru PFS” Ellis et al. (2012)

    Credit: Gen Chiaki, Atsushi Taruya

    Image: Belokurov et al.

    SF rate figure: Hopkins & Beacom

    9.3 h-3 Gpc3 in 0.8

  • Strengths of Subaru Telescope

    Large Field of View e.g., Suprime Cam (Hyper Suprime Cam, Prime Focus Spectrograph) Platescale (arcsec mm-1) ∝1/f prime focus (rigid tel. structure)

    Excellent Image Quality e.g., Kyoto 3DII (PI instr.: IFS,FP,etc.) + AO188 in optical wavelength mirror surface, dome shape, rigid structure, tel. tracking

    3. Why on Subaru ?

  • 4. Challenges in PFS

    - Bright telescope F-ratio of 2.2

    - Bright camera F-ratio of 1.1

    - Quick & accurate reconfiguration of fiber

    positioners

  • Comparison with other optical multi-fiber spectrographs

    ( )

  • 4. Challenges in PFS

    - Bright telescope F-ratio of 2.2

    Use of microlens

    Transformation of F-ratio from 2.2 2.8

    - Bright camera F-ratio of 1.1

    Use of double Schmidt corrector

    - Quick & accurate reconfiguration of fiber positioners

    Uses of new-type high-precision positioner and wide-field

    metrology camera

  • 5. Each component

    - Microlens + Fiber

    - Fiber positioner

    - Spectrograph

    - Metrology camera

  • Sharing Wide Field Corrector with HSC

    PFS case:

    Optical interface with Wide Field Corrector

    Field element

    = 52-mm thickness flat plate

    substitutes for filter + dewar window

    http://www.eso.org/sci/facilities/eelt/fp7-elt-pub/

    wfi_workshop/pdffile/SMiyazaki.pdf

    Hyper Suprime-Cam

    (HSC)

    Wide Field Corrector (WFC)

    国内の他の計画との関連

  • Light from telescope through WFC & Field element

    to microlens + fiber

  • Microlens at fiber entrance

    Transforms input f-ratio (F/2.2 F/2.8)

    (1) to reduce light loss caused by over-filling

    acceptance angle of fiber

    (2) to ease difficulties of spectrograph design

    Molding a suitable microlens out of glass

    glass - variety of refractive-index selection

    molding - aspheric surface

    Fiber core

    Challenge for fast F-ratio with Microlens

    600 mm

  • Fiber experiment/development

    [de Oliveira et al. SPIE]

    Careful measurements of

    fiber characteristics,

    including F-ratio degradation

  • 1.3°Field of View

    Cobra Positioner Patrol Area

    (9.5 mm dia.)

    Theta Stage (2.4 mm

    radius)

    Phi Stage (2.4 mm

    radius)

    2400 Cobra Positioners

    Cobra Optic Bench

    Theta Stage

    Phi Stage

    Fiber Arm

    New type Positioner

    Rigid, No inclining

    JPL --- started prototype 7-element Cobra development

    Fiber Positioner

    [Fisher et al. SPIE]

  • through fiber to spectrograph

  • 0.38-1.3mm: VPH gratings 280 mm diam. each

    Resolving power = l/dl ~ 3000

    Spectrograph

    We build four of these

    [Vivès et al. SPIE]

    [Gunn et al. SPIE]

    No moving parts

    Stability, Easier operation

    Fiber slit length ~140 mm

    (fiber spacing =230 mm)

  • Spectrograph

  • Back-illuminated fiber observed by metrology camera

  • Metrology camera

    (2)

    Planned to be located in

    Cassegrain container

    Magnification ~0.0415

    Camera aperture size ~130 mm

    Detector 120M 2.2mm-pixel CMOS

    (diffraction-limited image quality)

    Here

    645 mm

    “Directly” seen and taken with one shot

    [Wang et al. SPIE]

  • 6. Efficiency & sensitivity estimates

    6.1 Total efficiency estimates

    6.2 Signal-to-noise ratio estimates

  • Efficiency & S/N estimates Taking Wide Field Corrector (WFC) distortion into consideration

    Fiber diam.=1”.13

    at center

    1”.03

    at 0.675 deg

    Non-telecentricity, vignetting, residual chromatic aberration also considered

  • Total efficiency for field center at zenith Includes everything from sky to detector (0”.64 seeing at 730nm) & aperture effect

    80

    60

    40

    20

    0

    400 500 600 700 800 900 1000 1100 1200 1300 nm

  • Total efficiency for field corner at el=30deg

  • Signal-to-noise ratio estimates

    Balanced S/N ratio over wide wavelength range

  • 7. Major milestones (events)

    Endorsement by Japanese community 2011 Jan

    MOU between NAOJ and Kavli IPMU 2011 Dec

    Project CoDR (Conceptual Design) 2012 Mar

    Project PDR (Preliminary Design) 2013 Jan

    Project CDR (Critical Design) 2013 Dec

    SIR/TRR (System Integration /Test Readiness) 2016 Feb

    ORR (Operational Readiness) 2016 Nov

    First Light (Engineering) 2017 Jan

    現在想定しているスケジュール

  • 暗黒エネルギーの性質をLSST、Euclidなどの巨大計画に迫る精

    度で、彼ら以前に測定する。z~1–2の今までにない大規模な銀河

    データ、超遠方の銀河の分光データ、銀河系内星の6次元位相空

    間分布を得る。

    なお、地上望遠鏡による多天体ファイバ分光器はBigBOSSや

    4MOSTをはじめ口径4メートルクラス望遠鏡で計画されているが、

    PFSでは8メートルの口径を活かし高品質のより遠方の銀河まで

    を含むデータで対抗する。(なお、4メートルクラスでは可視光のみ)

    またTMT時代にはtarget selectionにHSC+PFSが不可欠となる。

    海外の類似計画との差別化

  • 8. PFS Summary

    Optical + NIR Multi-object fiber spectrograph

    - On Subaru prime focus (8.2m; F/2.2)

    - Target sciences:

    - cosmology, Galactic Archaeology, galaxy/AGN evolution

    - Basic parameters

    - Number of fibers 2400 (600 x 4)

    - Field of view: 1.3 deg

    - Wavelength: 0.38 - 1.3 μm

    - Spectral resolution: l/dl~3000

    - Now in Preliminary Design phase (PDR ~2013 Jan)

    - Conceptual Design Reveiw succeeded 2012 March

  • 2nd General Collaboration Meeting @ Tokyo 2012 Jan

    PFSポータルサイト http://sumire.ipmu.jp/en/2652 (より一般向けのwwwも近日公開) 技術的なより詳細 http://pfs.ipmu.jp/factsheet/

    関連ホームページ

    http://sumire.ipmu.jp/en/2652http://pfs.ipmu.jp/factsheet/