105399078 hspa presentation

Upload: tarek-elsafrani

Post on 12-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/22/2019 105399078 HSPA Presentation

    1/32

    Enhanced High-Speed Packet Access

    Background: HSPA Evolution

    Signaling Improvements

    Architecture Evolution/ Home NodeB

  • 7/22/2019 105399078 HSPA Presentation

    2/32

    HSPA+ (HSPA Evolution) Background

    ,need to continue enhancing the HSPA technology

    3GPP Long Term Evolution (LTE) being standardized now, but not

    223 HSDPA operators in service in 93 countries (Oct. 08)**

    Investment protection needed for current HSPA deployments

    HSPA+ effort introduced in 3GPP in March 2006

    HSPA+ defines a broad framework and set of requirements for theevolution of HSPA

    .-

    Rel.-8: further uplink enhancements

    *HSPA is the combination of HSDPA and HSUPA

    **http://www.3gamericas.org/pdfs/Global_3G_Status_Update.pdf

    UMTS Networks 2Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    HSPA+ introduced to continue focus on enhancements to HSPA

  • 7/22/2019 105399078 HSPA Presentation

    3/32

    HSPA+ Goals

    - ,agreed that HSPA+ should:

    Provide spectrum efficiency, peak data rates & latency comparable toLTE in 5 MHz

    Exploit full potential of the CDMA air interface before moving to OFDM

    Allow operation in an optimized packet-only mode for voice and data

    Utilization of shared channels only

    Be backward com atible with Release 99 throu h Release 6

    Offer a smooth migration path to LTE/SAE through commonality, andfacilitate joint technology operation

    ,

    HSPA evolution is two-fold

    Improvement of the radio Architecture evolution

    UMTS Networks 3Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    ggress ve goa s or en anc ng

  • 7/22/2019 105399078 HSPA Presentation

    4/32

    Higher Order Modulations (HOMs)

    Uplink Downlink

    BPSK2 bits/s mbol 16QAM4 bits/s mbol 64QAM6 bits/s mbol

    Increases the peak data rate in a high SNR environment

    HOMs increase the number of bits/symbols transmitted, thereby

    Very effective for micro cell and indoor deployments

    UMTS Networks 4Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    ncreas ng e pea ra e

  • 7/22/2019 105399078 HSPA Presentation

    5/32

    HOM Peak Rate Performance Benefits: DL 64-QAM & UL 16-QAM

    Downlink Mb/s

    42.2

    Equal to LTE peak rates in 5 MHz2x2 SU-MIMO + 64 QAM in DL

    16-QAM in UL**

    HSPA+

    (64 QAM & 2x2 MIMO*)The use of Higher OrderModulations significantlyncreases t e t eoret ca

    peak rates of HSPA

    HSPA+

    (16 QAM & 2x2 MIMO)

    28.0

    rov es ata rate ene ts

    for users in very goodchannel conditions (e.g.quasi-static or fixed users

    HSPA+ (64 QAM)

    14.0

    .

    Uplink

    c ose o e ce cen er,lightly loaded conditions)

    HSDPA (16 QAM)HSPA+ (16 QAM)

    .

    5.74

    Theoretical Max Peak Rates In Perfect RF Conditions*Part of 3GPP Rel-8

    UMTS Networks 5Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    good channel conditions**Using 2 resource blocks for PUCCH and max prime factor restriction = 5

  • 7/22/2019 105399078 HSPA Presentation

    6/32

    HSDPA 64-QAM Micro Cell / Hotspot Deployment

    ~30% throughput increasefor top 10% users

    Key assumptions: 500m inter-

    site distance and 6dB attenuationfrom non-serving cells (models

    Results from 3GPP R1-063415

    site-to-site isolation)

    2 Rx Antenna, Equalizer

    Without 64-QAM With 64-QAM Gain

    .

    90%-tile Throughput(normalized for 1 user persector)

    12 Mbit/s 15.6 Mbit/s 30%

    UMTS Networks 6Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    HOMs provide significant improvements for hot spot deployments

  • 7/22/2019 105399078 HSPA Presentation

    7/32

    Multiple Antenna Techniques

    Node-BUE 1

    Beamforming

    Different data streams sent to different users using the same codes Im roves throu h ut even in low SINR conditions cell-ed e

    Already supported in Release 5/6, works with single antenna UEs

    -UE 2

    Multiple data streams sent to the same user

    Significant throughput gains for UEs in high SINR conditions

    Double Transmit Adaptive Array (D-TxAA) was adopted for Rel-7

    Node-B UE

    FDD and is based on dual codeword SU-MIMO

    C ose Loop Transm t D vers ty CLTD Improves reliability on a single data stream

    Fall back scheme if channel conditions do not allow SMNode-B UE

    UMTS Networks 7Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    8/32

    Fixed Beam Switching (FBS)

    From UL e.g. 4 beams

    sector area by help of a fixed

    number of beams

    Selection

    S-CPICH (per beam) is

    introduced for improving UE

    Beam specific secondary

    scramblin codes can be

    applied code limitation

    preventable

    xe spa a ers,

    e.g. Butler-Matrix or

    baseband

    im lementation

    UMTS Networks 8Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    9/32

    Adaptive Beamforming/ Beam Pointing (BP)

    User specific adaptive

    spatial filtering User specific antenna patterns

    are formed depending on a

    pre-defined optimisation

    criteria e. .

    MaxSINR

    MaxSNR

    maxSNR significantly outper-forms maxSIR

    measuremen s

    For a low angular spread BP

    is nearly equivalent to

    Algorithm

    UMTS Networks 9Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    10/32

    Basic MIMO Channel

    M Tx N Rx

    Coding/Modulation/

    Weighting/Mapping

    Weighting/Demapping

    Demodulation/Decoding

    The MIMO channel consists of M Tx and N Rx antennas

    Each Tx antenna transmits a different si nal

    The signal from Tx antenna j is received at all Rx antennas i

    Channel capacity can increase linearly

    CMIMO min{M,N} CSISO

    UMTS Networks 10Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    11/32

    MIMO in HSPA+

    Release 7 MIMO for HSDPA 2x2 D- xAA, Mo e 1 HS-DPCCH-only feedback (CQI and PCI reported on HS-DPCCH)

    PARC Algorithm with support for dual stream and single stream (different from

    EncodeChannel

    interleave

    Modulator

    (16QAM, QPSK)

    V11

    Stream 1 Antenna 1

    V12

    V21Stream 2 Antenna 2

    Encode

    interleave (16QAM, QPSK)

    UMTS Networks 11Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    12/32

    MIMO Performance Benefits

    - . .

    2x2 D-TxAA MIMO provides significant experienced peak, mean & cell edgeuser data rate benefits for isolated cells or noise/coverage limited cells

    2x2 D-TxAA MIMO provides 20%-60% larger spectral efficiency than 1x2

    1.5

    1.75

    IM

    Ov

    s.

    dC

    ell

    SISO (1x1)

    MIMO (2x2)Note: All gainsnormalized toNear Cell Center

    80

    (%)of2x2

    MSE

    0.5

    0.75

    1

    .

    Gaino

    f

    M

    anI

    sol

    at SISO Data Rate

    40

    60

    iencyG

    ai

    ver1x2L

    0

    0.25

    Near Cell Center Average Cell Cell Edgeata

    Rate

    S

    ISOf

    o

    0

    20

    Interference Limted Isolated Cellpe

    ctralEffi

    MIMO

    Location SystemS

    UMTS Networks 12Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    for isolated, noise limited cells

  • 7/22/2019 105399078 HSPA Presentation

    13/32

    HSDPA UE Physical Layer Capabilities

    HS-DSCH Maximum number Su orted Modulation Minimum Maximum Total number of Theoretical

    Category

    of HS-DSCH multi-codes

    Formats

    inter-TTIinterval

    MAC-hs TB size

    soft channel bits

    maximum datarate (Mbit/s)

    Category 1 5 QPSK, 16QAM 3 7298 19200 1.2

    Category 2 5 QPSK, 16QAM 3 7298 28800 1.2

    Category 3 5 QPSK, 16QAM 2 7298 28800 1.8

    Category 4 5 QPSK, 16QAM 2 7298 38400 1.8

    Category 5 5 QPSK, 16QAM 1 7298 57600 3.6Cate or 6 5 PSK 16 AM 1 7298 67200 3.6

    Category 7 10 QPSK, 16QAM 1 14411 115200 7.2

    Category 8 10 QPSK, 16QAM 1 14411 134400 7.2

    Category 9 15 QPSK, 16QAM 1 20251 172800 10.1

    Category 10 15 QPSK, 16QAM 1 27952 172800 14.0

    Category 11 5 QPSK 2 3630 14400 0.9

    Category 12 5 QPSK 1 3630 28800 1.8

    Cate or 13 15 PSK 16 AM 64 AM 1 35280 259200 17.6

    Category 14 15 QPSK, 16QAM, 64QAM 1 42192 259200 21.1

    Category 15 15 QPSK, 16QAM 1 23370 345600 23.3

    Category 16 15 QPSK, 16QAM 1 27952 345600 28.0Category 17 15 QPSK, 16QAM, 64QAM/

    MIMO: QPSK, 16QAM

    1 35280/

    23370

    259200/

    345600

    17.6/

    23.3

    Category 18 15 QPSK, 16QAM, 64QAM/

    MIMO: QPSK, 16QAM

    1 42192/

    27952

    259200/

    345600

    21.1/

    28.0

    Category 19 15 QPSK, 16QAM, 64QAM 1 35280 518400 35.2

    UMTS Networks 13Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    Category 20 15 QPSK, 16QAM, 64QAM 1 42192 518400 42.2

    cf. TS 25.306Note: UEs of Categories 15 20 support MIMO

  • 7/22/2019 105399078 HSPA Presentation

    14/32

    E-DCH UE Physical Layer Capabilities

    E-DCH Max. num. Min SF EDCH TTI Maximum MAC-e Theoretical maximum PHYCategory Codes TB size data rate (Mbit/s)

    Category 1 1 SF4 10 msec 7110 0.71

    Cate or 2 2 SF4 10 msec/ 14484/ 1.45/2 msec 2798 1.4

    Category 3 2 SF4 10 msec 14484 1.45

    Category 4 2 SF2 10 msec/ 20000/ 2.0/2 msec 5772 2.89

    Category 5 2 SF2 10 msec 20000 2.0

    Category 6 4 SF2 10 msec/ 20000/ 2.0/2 msec 11484 5.74

    Category 7(Rel.7)

    4 SF2 10 msec/2 msec

    20000/22996

    2.0/11.5

    NOTE 1: When 4 codes are transmitted in parallel, two codes shall be

    transmitted with SF2 and two codes with SF4

    NOTE 2: UE Cate or 7 su orts 16 AM

    UMTS Networks 14Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    cf. 25.306

  • 7/22/2019 105399078 HSPA Presentation

    15/32

    Continuous Packet Connectivity (CPC)

    Uplink DPCCH gating duringPrior to Rel-7

    inactivity significant reductionin UL interference

    Data

    Pilot

    -

    New uplink DPCCH slot formatoptimized for transmission

    Rel-7 using CPC

    Data

    DPCCH only

    o

    HS-SCCH-less transmission introduced to reduce si nalin bottleneck for real-time-services on HSDPA

    UMTS Networks 15Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    real-time services (e.g. VoIP)

  • 7/22/2019 105399078 HSPA Presentation

    16/32

    CPC Performance Benefits

    CPC provides up to a factor of two VoIP on HSPA capacity benefit comparedto Rel-99 AMR12.2 circuit voice and 35-40% benefit compared to Rel-6 VoIP

    3 R'99 Circuit Voice

    2

    2.5

    ofCP VoIP on HSPA (Rel'6)*

    VoIP on HSPA (CPC)*

    Note: All

    1

    1.5

    cityGai capacity gains

    normalized toAMR12.2Circuit Voice

    0

    0.5

    IP

    Cap Capacity

    AMR12.2 AMR7.95 AMR5.9V

    UMTS Networks 16Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    prov es s gn can o on capac y ene s

    * All VoIP on HSPA capacities assume two receive antennas in the terminal

  • 7/22/2019 105399078 HSPA Presentation

    17/32

    Always On Enhancement of CPC

    _

    Reduces signaling load and battery consumption (in combination with DRX)

    Allows users to be kept in CELL_DCH with HSPA bearers configured

    Need to page and re-establish bearers leads to call set up delay

    Incomin

    UE in

    URA_PCH

    CPC allows users to

    kept in CELL_DCH

    UE in

    CELL_DCH

    callPage UE

    Paging

    ResponseWithout CPC, users

    Send data almostImmediately

    (

  • 7/22/2019 105399078 HSPA Presentation

    18/32

    Enhanced CELL_FACH & Enhanced Paging Procedure

    _

    state, eventually fall back toCELL_PCH/URA_PCH

    HSPA+ introduces enhancements toreduce the delay in signaling thetransition to CELL_DCH use of

    HSDPA in CELL_FACH and

    UE in

    URA_PCH_ s a es ns ea o -

    CCPCH

    Enhanced CELL_FACH

    call Page UE

    Paging

    Use HSDPA forfaster

    transmission ofsignaling

    In Rel.-8 work item opened to improveRACH procedure

    -

    CELL_FACH 2ms framelength with up to4 retransmissions

    _ bearers

    CELL_DCH

    Send data

    UMTS Networks 18Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    En ance CELL_FACH/Pag ng/RACH re uces setup e ay mproves PoC

  • 7/22/2019 105399078 HSPA Presentation

    19/32

    E-RACH High level description

    -

    Transition to E-DCH transmission in CELL_FACH

    Possibility to seamlessly transfer to Cell_DCH

    NodeB can control common E-DCH resource in CELL_FACH

    Resource assignment indicated from NodeB to UE

    Transmission starts

    with power ramping

    on preamble

    NodeB responds by

    allocating common E-DCH

    resources

    UE starts common E-DCH

    transmission.

    F-DPCH for power control, E-AGCHreserved for E-DCH

    access

    for rate control, E-HICH for HARQ

    #0 #1 #2 #3 #14#13#12#11#10#9#8#7#6#5#4#0 #1 #2 #3 #14#13#12#11#10#9#8#7#6#5#4

    p-

    a

    #0 #1 #2 #3 #14#13#12#11#10#9#8#7#6#5#4#0 #1 #2 #3 #14#13#12#11#10#9#8#7#6#5#4PRACH

    access

    slots

    Access slot set 1 Access slot set 2

    #0 #1 #2 #3 #14#13#12#11#10#9#8#7#6#5#4#0 #1 #2 #3 #14#13#12#11#10#9#8#7#6#5#4

    UMTS Networks 19Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    10 ms 10 ms

  • 7/22/2019 105399078 HSPA Presentation

    20/32

    UTRAN Architecture

    Core Network

    RNS RNS

    Iu Iu

    TCP RTT:

    ~300ms

    SDU buffer

    RNC RNCIur

    Node B Node B Node B Node B

    uPriority Queue

    MAC-hs RTT:

    ~10ms

    UE

    :

    ~100ms

    Multiple ARQ loops at different levels

    UMTS Networks 20Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    21/32

    RLC Throughput Limit vs. RLC Window Size

    Theoretical limit:PHY >> RLC

    roug pu m vs. n ow ze;

    RLC payload = 320bits; Parameter = RLC RTT [ms]

    14.00

    Options to increasedata rate

    Increase PDU size/

    10.00

    12.00

    ps]

    RLC window

    Reduce RTT

    4.00

    6.00

    .

    Rmax[Mb

    100120

    0.00

    2.00 Limit to safelyavoid protocol

    error.

    0 500 1000 1500 2000 2500 3000 3500 4000 4500

    RLC Window Size [#PDUs]

    UMTS Networks 21Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    HSDPA increases peak data rate significantly, while it does not reduce RLC RTT equivalently !

  • 7/22/2019 105399078 HSPA Presentation

    22/32

    Enhanced Layer-2 Support for High Data Rates

    new peak rates offered by HSPA+features such as MIMO & 64-QAM

    RLC-AM eak rate limited to ~13

    1500 byte IP packet

    RLC-AM

    ra c ow or user

    Mbps, even with aggressivesettings for the RLC PDU size and

    RLC-AM window size

    802 802802

    MAC-hsRLC-AM PDU

    x19

    .. Rel6

    Release 7 introduces new Layer-2features to improve HSDPA

    Flexible RLC PDU size

    22 bits

    802 802802

    MAC-hs PDU

    ..

    -e s ayer segmentat on

    reassembly (based on radioconditions)

    -

    1500 byte IP packet

    -

    Traffic flow i for user k

    1500 byte IP packet

    -

    Traffic flow j for user k

    Release 8 improves E-DCH

    MAC-i/ MAC-is2

    RLC-AM PDU

    1500 2

    RLC-AM PDU

    1500

    Rel7MAC-ehs

    15001

    -

    1500

    UMTS Networks 22Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    Layer-2 enhancements to support higher rates of HSPA+

    -

  • 7/22/2019 105399078 HSPA Presentation

    23/32

    MAC-ehs in NodeB

    MAC-ehs Functions (TS 25.321)

    Flow Control

    Scheduling/ Priority handling

    HARQ handling

    TFRC Selection

    MAC-ehs

    Priority Queue

    distribution

    MAC-d flows

    Scheduling/Priority handling

    Priority Queue Mux

    SegmentationMAC Control

    PriorityQueue

    PriorityQueue

    PriorityQueue

    Segment

    ation

    egmen

    ation

    egmenation

    Priority Queue MUX

    TFRC selection

    HARQ entity

    HS-DSCHAssociated DownlinkSignalling

    Associated UplinkSignalling

    UMTS Networks 23Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    24/32

    Evolved HSPA Architecture (1) Objectives

    Further improve latency and bit rate with limited and controlled hardware andsoftware impacts

    Take advantage of these improvements as soon as today

    E.g. independently of the availability of the SAE Core

    Operate as a packet-only network based on shared channels only

    Backwards compatible with legacy terminals

    Simple upgrade of existing infrastructure (for both hardware, software)

    UMTS Networks 24Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    25/32

    Evolved HSPA Architecture (2) Full RNC/NodeB collapse

    2 deployment scenarios: standalone UTRAN or carrier sharing withlegacyUTRAN

    Evolved HSPA- stand-alone Evolved HSPA- with carrier sharingEvolved HSPA- stand-alone Evolved HSPA- with carrier sharing

    GGSN

    GGSN

    Iu

    GGSN

    GGSN

    Iu

    SGSNUserplane: Iu/Gn

    (onetunnel)Control

    RNC

    Legacy

    SGSNUserplane: Iu/Gn

    (onetunnel)Control

    RNC

    Legacy

    Userplane: Iu/Gn

    (onetunnel)Control

    plane: Iu EvolvedHSPA

    NodeB

    Iur

    UTRANUserplane: Iu/Gn

    (onetunnel)Control

    plane: Iu EvolvedHSPA

    NodeB

    UTRAN

    EvolvedHSPA

    NodeB

    Iur NodeB

    NodeBEvolvedHSPA

    NodeB

    Iur NodeB

    NodeB

    UMTS Networks 25Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    26/32

    Evolved HSPA Architecture (3): Key features

    Optimal efficiency with all radio functions grouped together (Radio bearercontrol, RRC, handover control, RLC/MAC)

    Optimisation of resources

    Central mana ement of common channels

    Synergy with LTE

    ,

    Ciphering and compression already in NodeB+ (with decision of PDCP inLTE eNodeB)

    UMTS Networks 26Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    27/32

    Home NodeB Background

    the customers premise

    Connected via customers fixed linee. . DSL

    Small power (~100mW) to onlyprovide coverage inside/ close to

    the building

    Advantages

    Improved coverage esp. indoorUE

    Single device for home/ on themove

    Special billing plans (e.g. homezone)

    ChallengesIP Network

    Gateway

    Interference

    Security

    Costs

    UMTS Networks 27Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    CN

    Home NodeB architecture principles based on extending Iu interface

  • 7/22/2019 105399078 HSPA Presentation

    28/32

    Home NodeB architecture principles based on extending Iu interfacedown to HNB (new Iuh interface)

    RAN Gateway Approach with new Iuh Interface

    pproac

    Leverage Standard CN Interfaces (Iu-

    CS/PS)

    Mobile CS/PS Core

    CN Interface

    Iu-CS/PS

    Minimise functionality within Gateway

    Move RNC Radio Control Functions toRNC RAN GW

    Iuh

    Home NodeB and extend Iu NAS &

    RAN control layers over IP network

    Features

    Security architecture

    Plug-and-Play approach

    NodeB HNB

    Femto local control protocol

    CS User Plane protocol

    UMTS Networks 28Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    FMS interface

  • 7/22/2019 105399078 HSPA Presentation

    29/32

    Summary

    - .-

    Investment protection for HSPA operators

    Fill the gap before deployment of LTE

    Provide alternative to LTE in some selected scenarios

    Higher peak data rates

    Signaling improvements

    Arc itecture evo ution

    HSPA+ features were designed to provide a smooth evolution from Rel-99 orRel-5/Rel-6 HSPA by enabling:

    Backwards compatibility

    Le ac Rel-99 Rel-5 Rel-6 terminals can be su orted on an HSPA+ carriersimultaneously with HSPA+ traffic

    New HSPA+ terminals likely with support Rel-99 and/or Rel-5/Rel-6 HSPA

    UMTS Networks 29Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    30/32

    A Smooth Evolution to HSPA+

    HSPA+HSUPA

    2006 2007 2008 20092005

    HSDPAW-CDMA

    DL: 2 Mbps

    UL: 384 kbps

    DL: 14.0 Mbps

    UL: 384 Kbps

    DL: 14.0 Mbps

    UL: 5.74 Mbps

    DL: 28.0 Mbps

    UL: 11.5 Mbps

    DL: 42.2 Mbps

    UL: 11.5 Mbps

    HSPA+IMPLEMENTATION

    HSPA+ Key Takeaways

    Higher Bit Rates &

    Increased Capacity

    More than 2x HSPA peak rates,

    35-40% improvement in VoIP capacity64-QAM DL/16-QAM UL,MIMO, L2 enh., CPC

    Reduced Delay

    Saves 100s of ms of setup delay

    Coexistence with Rel99/HSDPA/HSUPA,

    Enhanced CELL_FACH/

    RACH/ Paging,

    Architecture

    moo vo u on o + ,availability expected 2008-2009

    -

    UMTS Networks 30Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

    architecture evolution; smooth migration to LTE

  • 7/22/2019 105399078 HSPA Presentation

    31/32

    HSDPA References

    apers:

    A. Toskala et al: High-Speed Packet Access Evolution (HSPA+) in 3GPP,Chapter 15 in Holma/ Toskala: WCDMA for UMTS, Wiley 2007

    R. Soni et al: Intelligent Antenna Solutions for UMTS: Algorithms andSimulation Results, Communications Magazine, October 2004, pp. 2839

    Standards TS 25.xxx series: RAN Aspects

    TR 25.308 HSDPA: UTRAN Overall Description (Stage 2)

    . n ance p n : vera escr p on age

    TR 25.903 Continuous Connectivity for Packet Data Users

    TR 25.876 Multiple-Input Multiple Output Antenna Processing forHSDPA

    TR 25.999 HSPA Evolution beyond Release 7 (FDD)

    TR 25.820 Rel.-8 3G Home NodeB Stud Item Technical Re ort

    UMTS Networks 31Andreas Mitschele-Thiel, Jens Mckenheim WS 2008

  • 7/22/2019 105399078 HSPA Presentation

    32/32

    Abbreviations

    AICH Acquisition Indicator ChannelAMR Adaptive Multi-Rate

    BPSK Binary Phase Shift Keying

    Mux Multiplexing

    PARC Per Antenna Rate Control

    PCI Precoding Control Information

    CPC Continuous Packet Connectivity

    CQI Channel Quality Information

    DSL Digital Subscriber Line-

    PDU Protocol Data Unit

    Rx Receive

    RTT Round Trip Time

    F-DPCH Fractional Dedicated Physical ControlChannel

    GW Gateway

    HNB Home NodeB

    SAE System Architecture Evolution

    S-CPICH Secondary Common Pilot Channel

    SDMA Spatial-Division Multiple-Access

    HOM Higher Order Modulation

    HSPA High-Speed Packet-AccessIA Intelligent Antenna

    LTE Long Term Evolution

    SINR Signal-to-Interference plus Noise Ratio

    SISO Single-Input Single-Output

    SM Spatial Multiplexing

    MAC-ehs enhanced high-speed Medium AccessControl

    MAC-i/is improved E-DCH Medium AccessControl

    MIMO Multi le-In ut Multi le-Out ut

    VoIP Voice over Internet Protocol

    64QAM 64 (state) Quadrature AmplitudeModulation

    UMTS Networks 32Andreas Mitschele-Thiel, Jens Mckenheim WS 2008