20200909 sasai takizawa esi final · 2020. 9. 24. · si-2 general methods 1h-, 13c-, and 19f-nmr...

58
SI-1 Supporting Information Exploration of flow reaction conditions using machine-learning for enantioselective organocatalyzed Rauhut-Currier and [3+2] annulation sequence Masaru Kondo a , H. D. P. Wathsala a , Makoto Sako a , Yutaro Hanatani a , Kazunori Ishikawa b , Satoshi Hara b , Takayuki Takaai b , Takashi Washio b,c *, Shinobu Takizawa b,c *, and Hiroaki Sasai a * a Department of Synthetic Organic Chemistry, The institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047 (Japan) b Department of Reasoning for Intelligence, ISIR, Osaka University c Artificial Intelligence Research Center, ISIR, Osaka University Correspondence: [email protected], [email protected], [email protected] 24 Sep 2020 - Note added after first publication: This supplementary information file replaces that originally published on 09 Dec 2019. There were some minor errors including incorrect axis scales in Figures S3B and S5B which have now been corrected in this updated version. This does not affect the results and conclusions of the article. General methods…………………………………………………………………………………SI-2 Procedure for the preparation of 13g…………………………………………………………SI-2 General procedure for preparation of dienones 1……………………………………………SI-3 Reaction optimization in batch system…………………………………………………………SI-5 General procedure for the RC and [3+2] annulation sequence (flow) ……………………SI-8 Gaussian process regression with GPy………………………………………………………SI-15 X-ray structure of 4e………………………………………………………………………SI-21 Reference………………………………………………………………………………………SI-21 1 H-, 13 C-, and 19 F-NMR charts………………………………………………………………SI-22 HPLC charts……………………………………………………………………………………SI-49 CONTENTS: Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Upload: others

Post on 05-Dec-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-1

Supporting Information

Exploration of flow reaction conditions using machine-learning for enantioselective organocatalyzed Rauhut-Currier and [3+2] annulation sequence

Masaru Kondoa, H. D. P. Wathsalaa, Makoto Sakoa, Yutaro Hanatania, Kazunori Ishikawab, Satoshi

Harab, Takayuki Takaaib, Takashi Washiob,c*, Shinobu Takizawab,c*, and Hiroaki Sasaia*

aDepartment of Synthetic Organic Chemistry, The institute of Scientific and Industrial Research

(ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047 (Japan) bDepartment of Reasoning for Intelligence, ISIR, Osaka University

cArtificial Intelligence Research Center, ISIR, Osaka University

Correspondence: [email protected], [email protected],

[email protected]

24 Sep 2020 - Note added after first publication:This supplementary information file replaces that originally published on 09 Dec 2019. There were some minor errors including incorrect axis scales in Figures S3B and S5B which have now been corrected in this updated version. This does not affect the results and conclusions of the article.

General methods…………………………………………………………………………………SI-2

Procedure for the preparation of 13g…………………………………………………………SI-2

General procedure for preparation of dienones 1……………………………………………SI-3

Reaction optimization in batch system…………………………………………………………SI-5

General procedure for the RC and [3+2] annulation sequence (flow) ……………………SI-8

Gaussian process regression with GPy………………………………………………………SI-15

X-ray structure of 4e………………………………………………………………………SI-21

Reference………………………………………………………………………………………SI-21

1H-, 13C-, and 19F-NMR charts………………………………………………………………SI-22

HPLC charts……………………………………………………………………………………SI-49

CONTENTS:

Electronic Supplementary Material (ESI) for Chemical Communications.This journal is © The Royal Society of Chemistry 2020

Page 2: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-2

General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600

FT NMR or Bruker AVANCE II (1H-NMR 400 MHz, 13C-NMR 100, 150 MHz or 175 MHz, 19F-NMR 565 MHz). 1H-NMR spectra are reported as follows: chemical shift in ppm relative to the

chemical shift of CHCl3 at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet,

q = quartet, m = multiplet), and coupling constants (Hz). 13C-NMR spectra reported in ppm relative

to the central line of triplet for CDCl3 at 77 ppm. Benzotrifluoride was used as external standards

for 19F-NMR. ESI-MS spectra were obtained with JMS-T100LC (JEOL). Optical rotations were

measured with JASCO P-1030 polarimeter. HPLC analyses were performed on a JASCO HPLC

system (JASCO PU 980 pump and UV-975 UV/Vis detector). FT-IR spectra were recorded on a

JASCO FT-IR system (FT/IR4100). Absolute configuration was determined by Rigaku R-AXIS

RAPID 191R diffractometer using filtered Cu-K radiation. Column chromatography on SiO2 was

performed with Kanto Silica Gel 60 (40-100 μm). Commercially available organic and inorganic

compounds were used without further purification. Dienones 1 were prepared according to known

literature procedure.1 Stainless steel (Comet-01-X) micromixer2 with inner diameter of 100 μm

were manufactured by Techno Application. The flow microreactor system was dipped in a cooling

oil bath to control the temperature. Solutions were introduced to the flow microreactor system using

syringe pumps, Harvard Model 11, equipped with gastight syringes purchased from YMC. GPy (a

programming library in Python for Gaussian processes) was used to estimate yield from parameters

such as quantity of 2a, temperature, and flow rate. Jupyter Notebook was also used to visualize and

analyze data (see Figs. S3-S5).

Procedure for the preparation of 13g

To a solution of 11 (3.08 mmol) in MeOH (15 mL) was added PhI(OAc)2 (3.08 mmol) at 0 °C and

stirred at room temperature. After 1 h, saturated NaHCO3 aq. was added to the reaction solution to

quench. EtOAc (50 mL) was added to the reaction mixture and washed with brine (30 mL). The

organic layer was separated and dried over Na2SO4. Evaporation of solvent, followed by dried in

vacuo gave 12 as crude mixture. This crude mixture was dissolved in THF (10 mL) and reacted

with Grignard reagent (1.0 M ether solution, 5.7 mL) at -78 °C. After 0.5 h, 10% HCl aq. (10 mL)

was added to reaction mixture, and then it was warmed to room temperature. After stirring for 2 h,

the reaction mixture was diluted with EtOAc (30 mL) and the organic phase was washed with

Page 3: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-3

saturated NaHCO3 aq. The separated organic layer was dried over Na2SO4, evaporated, then dried in

vacuo. The crude residue was purified by silica gel column chromatography. Pure 13g was obtained

as yellow solid in 58% overall yield from 11.

13g: yellow solid; 25% yield; 1H-NMR (400 MHz, CDCl3) δ 7.66 (d, J = 8.2 Hz,

2H), 7.26 (d, J = 8.2 Hz, 2H), 7.01 (s, 2H), 6.95 (s, 1H), 6.77 (d, J = 10.3 Hz, 2H),

6.05 (d, J = 10.3 Hz, 2H), 5.42 (s, 1H), 2.43 (s, 3H), 2.26 (s, 6H); 13C-NMR (100

MHz CDCl3) δ 185.12, 149.02, 144.29, 139.33, 137.55, 137.51, 130.89, 129.69,

127.95, 127.81, 123.52, 59.74, 21.66, 21.44; HRMS (ESI) calcd for

C21H21NO3SNa: m/z ([M+Na+]) 390.1134, found 390.1134; IR (KBr) 3110, 2885,

1664, 1617, 1460, 1401, 1341, 1160, 1089, 818, 697, 550 cm-1.

General procedure for preparation of dienones 1

A round bottom flask was charged with a dichloromethane solution of dienone 13 (10 mL, 1.0

mmol) and DIEPA (2 equiv.). Then, acryloyl chloride (2.0 mmol) was added to the reaction mixture

and stirred vigorously for 1 h at room temperature. The reaction was then passed through short

silica pad to quench. The combined solvent was removed in vacuo and the obtained crude residue

was quickly purified by silica gel column chromatography (hexane/EtOAc) to give the desired

product 1 (1 is not so stable in silica gel).

1c: white solid; 40% yield; 1H-NMR (400 MHz, CDCl3) δ 7.54 (d, J = 8.4 Hz,

2H), 7.22 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 10.5 Hz, 2H), 6.90 (dd, J = 16.9, 10.1

Hz, 1H), 6.48 (dd, J = 16.9, 1.2 Hz, 1H), 6.03 (d, J = 10.5 Hz, 2H), 5.90 (dd, J =

10.1, 1.2 Hz, 1H), 2.56-2.61 (m, 1H), 2.40 (s, 3H), 0.81 (d, J = 6.9 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ 184.83, 170.82, 146.89, 145.43, 136.75, 134.68,

130.61, 130.15, 129.67, 128.67, 67.58, 32.14, 21.72, 17.15; HRMS (ESI) calcd

for C19H21NO4SNa: m/z ([M+Na+]) 382.1083, found 382.1081; IR (KBr) 2983,

2962, 2939, 2378, 2364, 2345, 1714, 1673, 1630, 1403, 1336, 1186, 1071, 981,

920, 663 cm-1.

Page 4: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-4

1g: white solid; 64% yield; 1H-NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.7 Hz,

2H), 7.26-7.31 (m, 4H), 6.93 (dd, J = 16.8, 10.3 Hz, 1H), 6.87 (s, 2H), 6.23 (dd,

J = 16.8, 1.3 Hz, 1H), 6.02 (d, J = 10.1 Hz, 2H), 5.79 (dd, J = 10.3, 1.3 Hz, 1H),

2.44 (s, 3H), 2.22 (s, 6H); 13C-NMR (100 MHz, CDCl3) δ 185.00, 169.69,

148.33, 145.69, 139.11, 138.22, 136.48, 133.52, 130.80, 130.50, 129.81,

128.62, 127.54, 122.98, 65.67, 21.81, 21.52; HRMS (ESI) calcd for

C23H25NO6SNa: m/z ([M+Na+]) 466.1295, found 466.1295; IR (KBr) 2984,

2962, 1712, 1669, 1625, 1401, 1354, 1341, 1185, 1170, 1117, 1068, 981, 666, 599 cm-1.

1l: white solid; 1H-NMR (400 MHz, CDCl3) δ 7.75-7.79 (m, 2H),

7.69-7.73 (m, 2H), 7.65 (d, J = 8.7 Hz, 2H), 7.41-7.48 (m, 5H), 7.28 (d,

J = 7.8 Hz, 2H), 6.99 (dd, J = 16.9, 10.1 Hz, 1H), 6.18 (dd, J = 16.9, 1.0

Hz, 1H), 6.09 (d, J = 10.2 Hz, 2H), 5.77 (dd, J = 10.2, 1.0 Hz, 1H), 2.45

(s, 3H); 13C-NMR (100 MHz, CDCl3) δ 184.86, 169.47, 147.93, 145.80,

136.49, 135.72, 133.37, 133.27, 132.99, 131.07, 129.89, 129.54, 128.61,

128.25, 127.86, 127.73, 126.92, 124.53, 122.46, 65.74, 21.88 (one

carbon overlapped); HRMS (ESI) calcd for C26H21NO4SNa: m/z

([M+Na+]) 446.1083, found 466.1080; IR (KBr) 3058, 2380, 2366, 2360, 2345, 2310, 1692, 1668,

1627, 15077, 1397, 1192, 1177, 1087, 986, 865, 660 cm-1.

1o: yellow solid; 50% yield; 1H-NMR (400 MHz, CDCl3) δ 7.71 (d, J = 7.8

Hz, 2H), 7.32 (d, J = 7.8 Hz, 2H), 7.05 (d, J = 9.6 Hz, 2H), 6.79 (dd, J = 16.9,

10.1 Hz, 1H), 6.46 (dd, J = 16.9, 0.9 Hz, 1H), 6.15 (d, J = 9.6 Hz, 2H), 5.91

(dd, J = 10.1, 0.9 Hz, 1H), 2.54 (s, 1H), 2.45 (s, 3H); 13C-NMR (100 MHz,

CDCl3) δ 183.93, 168.20, 145.78, 144.66, 136.78, 132.27, 131.76, 130.00,

128.15, 128.11, 76.36, 76.20, 55.76, 21.79; HRMS (ESI) calcd for

C18H15NO4SNa: m/z ([M+Na+]) 364.0614, found 364.0613; IR (KBr) 3274,

3098, 3063, 1704, 1667, 1625, 1608, 1398, 1348, 1173, 1014, 942, 863, 811, 662 cm-1.

1p: yellow solid; 40% yield; 1H-NMR (400 MHz, CDCl3) δ 7.66 (d, J =

8.7 Hz, 2H), 7.13 (d, J = 10.3 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 6.76 (dd,

J = 16.7, 10.1 Hz, 1H), 6.47 (dd, J = 16.7, 1.4 Hz, 1H), 6.01 (d, J = 10.3

Hz, 2H), 5.95 (dd, J = 10.1, 0.9 Hz, 1H), 3.87 (s, 3H); 13C-NMR (100

MHz, CDCl3) δ 184.58, 170.73, 164.11, 150.62, 134.26, 131.70, 130.81,

130.77, 127.44, 114.38, 60.16, 55.90, 26.99; HRMS (ESI) calcd for

C17H17NO5SNa: m/z ([M+Na+]) 370.0720, found 370.0718; IR (KBr)

3452, 2946, 2842, 2345, 1720, 1670, 1597, 1498, 1348, 1265, 1166, 1020, 835, 805, 560 cm-1.

Page 5: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-5

1q: white solid; 75% yield; 1H-NMR (400 MHz, CDCl3) δ 7.47 (d, J = 10.1

Hz, 2H), 7.31-7.39 (m, 5H), 6.65 (dd, J = 16.7, 10.1 Hz, 1H), 6.37 (d, J =

10.1 Hz, 2H), 6.30 (d, J = 16.7 Hz, 1H), 5.80 (d, J = 10.1 Hz, 1H), 3.22 (s,

3H); 13C-NMR (100 MHz, CDCl3) δ 184.59, 168.72, 148.05, 138.42, 131.83,

129.53, 128.96, 128.37, 125.39, 66.09, 44.71 (one carbon overlapped);

HRMS (ESI) calcd for C16H15NO4SNa: m/z ([M+Na+]) 340.0614, found

340.0615; IR (KBr) 3057, 3033, 3012, 2934, 2385, 2360, 1692, 1667, 1631,

1489, 1399, 1359, 1332, 1184, 1137, 958, 787, 765 cm-1.

Reaction optimization in batch system

General procedure for the RC and [3+2] annulation sequence

To a solution of acrylic amide 1a (0.03 mmol, 10 mg) in degassed dry solvent was added allenic

ester 2a (0.06 mmol, 7 μL, 2 equiv.). Then, chiral catalyst 5 (6 μmol, 20 mol%) was added to the

mixture of 1a and 2a. Then, a crude mixture was passed through short silica pad with EtOAc.

Removal of solvent under reduced pressure gave a crude residue, which was purified by silica gel

chromatography (n-hexane/EtOAc = 2/1) to afford product 4a.

Table S1. Solvent screening

Page 6: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-6

Table S2. Screening of organocatalyst

Table S3. Screening of concentration and temperature

Page 7: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-7

The domino reaction of 1a and 2a as prototypical substrates in the presence of chiral organocatalyst

(20 mol %) was attempted in a batch process (Table S2). Among the organocatalysts examined,

(S)-valine-derived catalyst 5 bearing diphenylphosphine and benzoyl units promoted the desired

domino reaction to afford spiro heterocycle 4a with high regio- and stereoselectivity, albeit in 42%

yield. In 2017, we and Huang independently reported highly active organocatalyst for the

enantioselective intramolecular RC reaction of 1,1,3 however, neither amine catalyst 9 nor Huang

Cat. for the RC showed attractive outcomes on our desired domino reaction. Many unidentified

products were also formed due to side reactions of dienone 1a with the highly reactive intermediary

RC product 3a,1 and allenoate 2a in the presence of catalysts 5. In terms of enantioselectivity, the

use of catalyst 5 in toluene gave 4a in 92% ee as a single diastereomer, but no significant

improvement in the chemical yield of 4a was accomplished in the batch system (Table S1-3).

Page 8: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-8

Procedure for the RC and [3+2] annulation sequence (Flow)

Fig. S1. The flow system of RC and [3+2] annulation.

As shown in Fig. S1, a flow microreactor system was dipped in oil bath to heat at 80 ˚C. A solution

of 1 (0.03 mmol) and 2 (0.06 mmol, 2.0 equiv.) in degassed dry toluene (1.5 mL), and a solution of

catalyst 5 (6 μmol, 2.3 mg, 20 mol%) in degassed dry toluene (1.5 mL) were introduced to the flow

microreactor system by syringe pumps (flow rate: 1.7 mL/min). After the continuous-flow was kept

within residence time, the reaction mixture was collected to a round bottom flask. The reaction

mixture was passed through short silica pad with EtOAc. Removal of solvent under reduced

pressure afforded a residue, which was purified by silica gel chromatography (n-hexane/EtOAc) to

give the product 4.

Fig. S2. Micro mixers: Comet X-01

4a: 76% yield (70% yield on a 1 mmol scale of 1a); white solid; 1H-NMR

(400 MHz, CDCl3) δ 7.95 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 10.5 Hz, 1H),

7.35 (d, J = 8.0 Hz, 2H), 6.62 (t, J = 2.1 Hz, 1H), 6.15 (d, J = 10.5 Hz, 1H),

4.06-4.18 (m, 2H), 2.97 (dd, J = 17.4 Hz, 2.2 Hz, 1H), 2.77 (dd, J = 18.5,

7.6 Hz, 1H), 2.56-2.60 (m, 2H), 2.37-2.49 (m, 6H), 1.96 (s, 3H), 1.24 (t, J =

7.1 Hz, 3H); 13C-NMR (100 MHz, CDCl3) δ 194.25, 176.36, 163.56,

148.22, 145.59, 140.30, 135.74, 134.12, 129.73, 128.72, 63.77, 60.61, 52.57, 49.02, 42.33, 37.62,

33.43, 27.13, 21.81, 14.27 (one carbon overlapped); HRMS (ESI) calcd for C23H25NO6SNa: m/z

([M+Na+]) 466.1295, found 466.1295; IR (KBr) 2963, 2926, 2854, 1738, 1719, 1710, 1686, 1678,

(A)

Page 9: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-9

1362, 1304, 1263, 1172, 1086, 1015 cm-1; [α]D25 = -72.2 (c 1.0, CHCl3 for 94% ee); HPLC

conditions: Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 215 nm, tR = 24.0 min

(major isomer) and 41.1 min (minor isomer).

4b: 68% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.93 (d, J = 8.4

Hz, 2H), 7.48 (d, J = 10.5 Hz, 1H), 7.34 (d, J = 8.4 Hz, 2H), 6.62 (t, J = 2.3

Hz, 1H), 6.22 (d, J = 10.5 Hz, 1H), 4.06-4.14 (m, 2H), 3.04 (dd, J = 18.6,

2.3 Hz, 1H), 2.66-2.75 (m, 2H), 2.47-2.56 (m, 2H), 2.40-2.45 (m, 5H), 2.26

(dd, J = 18.6, 2.3 Hz, 1H), 2.11-2.18 (m, 1H), 1.22 (t, J = 7.1 Hz, 3H), 1.10

(t, J = 7.3 Hz, 3H); 13C-NMR (100 MHz, CDCl3) δ 194.51, 176.56, 163.41,

147.37, 145.54, 140.28, 135.11, 133.86, 129.56, 129.53, 128.78, 67.66, 60.49, 52.40, 43.83, 42.51,

37.64, 34.03, 30.87, 21.71, 14.16, 8.59 (one carbon overlapped); HRMS (ESI) calcd for

C24H27NO6SNa: m/z ([M+Na]+) 480.1451, found 480.1447; IR (KBr) 2986, 2937, 1739, 1703, 1684,

1393, 1348, 1246, 1168 cm-1; [α]D20 = -74.8 (c 1.0, CHCl3 for 92% ee); Daicel Chiralpak ID column,

n-hexane/EtOH = 2/1, 1.0 mL/min, 225 nm, tR = 24.6 min (major isomer) and 41.4 min (minor

isomer).

4c: 92% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.4

Hz, 2H), 7.51 (d, J = 10.8 Hz, 1H), 7.26 (d, J = 8.4 Hz, 2H), 6.54 (t, J = 2.3

Hz, 1H), 6.28 (d, J = 10.8 Hz, 1H), 3.99-4.06 (m, 2H), 2.99-3.04 (m, 2H),

2.56-2.68 (m, 2H), 2.47 (d, J = 18.3 Hz, 1H), 2.31-2.39 (m, 5H), 1.97-2.11

(m, 1H), 1.14 (t, J = 7.1 Hz, 3H), 1.09 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.9

Hz, 3H); 13C-NMR (100 MHz, CDCl3) δ 194.86, 176.47, 163.25, 146.73,

145.34, 140.63, 134.92, 133.49, 130.86, 129.59, 128.92, 71.21, 60.55, 52.86, 42.64, 40.32, 38.01,

36.01, 34.55, 21.78, 18.48, 16.91, 14.24; HRMS (ESI) calcd for C25H29NO6SNa: m/z ([M+Na]+)

494.1608, found 494.1603; IR (KBr) 2970, 1743, 1707, 1688, 1637, 1395, 1343, 1248, 1167 cm-1;

[α]D20 = -113.2 (c 1.0, CHCl3 for 96% ee); Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0

mL/min, 250 nm, tR = 27.8 min (major isomer) and 45.9 min (minor isomer).

4d: 61% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.2

Hz, 2H), 7.34-7.38 (m, 3H), 6.63 (t, J = 2.3 Hz, 1H), 6.38 (d, J = 10.5 Hz,

1H), 6.10 (dd, J = 17.4, 10.5 Hz, 1H), 5.47 (d, J = 10.1 Hz, 1H), 5.31 (d, J =

17.4 Hz, 1H), 4.10-4.17 (m, 2H), 2.98 (dd, J = 18.3 Hz, 2.3 Hz, 1H),

2.57-2.69 (m, 2H), 2.48-2.52 (m, 3H), 2.37-2.47 (m, 4H), 1.24 (t, J = 7.1 Hz,

3H); 13C-NMR (100 MHz, CDCl3) δ 194.63, 176.10, 163.25, 145.75,

144.57, 140.42, 138.20, 135.54, 134.32, 131.27, 129.79, 128.84, 117.63, 66.91, 60.65, 52.65, 48.12,

42.52, 37.57, 32.63, 22.08, 14.28; HRMS (ESI) calcd for C24H25NO6SNa: m/z ([M+Na]+) 478.1295,

found 478.1293; IR (KBr) 2986, 2943, 1736, 1702, 1679, 1640, 1350, 1267, 1243, 1168, 1109,

1085 cm-1; [α]D19 = -138.2(c 0.6, CHCl3 for 91% ee); Daicel Chiralpak ID column, n-hexane/EtOH

= 2/1, 1.0 mL/min, 225 nm, tR = 26.8 min. (major isomer) and 39.0 min min. (minor isomer).

Page 10: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-10

4e: 78% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.78 (d, J

= 8.2 Hz, 2H), 7.67 (d, J = 10.5 Hz, 1H), 7.37-7.43 (m, 5H), 7.30 (d,

J = 8.2 Hz, 2H), 6.57-6.65 (m, 1H), 6.52 (d, J = 10.5 Hz, 1H),

4.11-4.17 (m, 2H), 3.00 (dd, J = 18.5, 2.3 Hz, 1H), 2.83-2.88 (m, 1H),

2.56 (s, 2H), 2.41-2.51 (m, 5H), 2.32 (dd, J = 18.5, 2.3 Hz, 1H), 1.25

(t, J = 7.1 Hz, 3H); 13C-NMR (100 MHz, CDCl3) δ 194.95, 176.90,

163.59, 145.75, 145.65, 140.59, 140.02, 135.23, 134.19, 131.15, 129.48, 129.24, 129.06, 128.84,

125.91, 68.93, 60.63, 53.16, 52.88, 42.85, 37.79, 33.43, 21.82, 14.27; HRMS (ESI) calcd for

C28H27NO6SNa: m/z ([M+Na]+) 528.1451, found 528.1445; IR (KBr) 3063, 2980, 2938, 2378, 2346,

1738, 1711, 1683, 1360, 1265, 1244 cm-1; [α]D25 = -108.7 (c 1.0, CHCl3 for 94% ee); Daicel

Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 213 nm, tR = 55.0 min (major isomer)

and 69.2 min (minor isomer).

4f: 54% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.80 (d,

J = 8.7 Hz, 2H), 7.64 (d, J = 10.5 Hz, 1H), 7.35 (d, J = 7.8 Hz,

1H), 7.31 (d, J = 8.7 Hz, 2H), 6.89-6.97 (m, 3H), 6.61 (t, J = 2.1

Hz, 1H), 6.51 (d, J = 10.5 Hz, 1H), 4.10-4.16 (m, 2H), 3.82 (s,

3H), 3.00 (dd, J = 18.5, 2.2 Hz, 1H), 2.83-2.88 (m, 1H),

2.52-2.55 (m, 2H), 2.41-2.50 (m, 5H), 2.29-2.33 (m, 1H), 1.25 (t,

3H); 13C-NMR (150 MHz, CDCl3) δ 195.02, 177.03, 163.72, 159.84, 145.75, 145.51, 142.23,

140.06, 135.19, 134.15, 131.12, 130.18, 129.51, 129.23, 118.51, 114.02, 111.78, 68.90, 60.65, 55.45,

53.13, 52.69, 42.83, 37.75, 33.48, 21.76, 14.29; HRMS (ESI) calcd for C29H29NO7SNa: m/z

([M+Na]+) 558.1557, found 558.1552; IR (KBr) 2932, 2374, 2347, 2307, 1743, 1706, 1688, 1544,

1509, 1364, 1264 cm-1; [α]D20 = +76.2 (c 1.0, CHCl3 for 92% ee); Daicel Chiralpak IC column,

n-hexane/EtOH = 2/1, 1.0 mL/min, 212 nm, tR = 22.5 min (minor isomer) and 26.4 min (major

isomer).

4g: 75% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.76 (d, J

= 8.2 Hz, 2H), 7.66 (d, J = 10.3 Hz, 1H), 7.30 (d, J = 8.2 Hz, 2H),

7.01 (s, 1H), 6.89 (s, 2H), 6.64 (t, J = 2.1 Hz, 1H), 6.51 (d, J = 10.3

Hz, 1H), 4.12-4.17 (m, 2H), 3.02 (dd, J = 18.6, 2.1 Hz, 1H),

2.81-2.83 (m, 1H), 2.54-2.63 (m, 2H), 2.46-2.51 (m, 1H), 2.43-2.45

(m, 4H), 2.37 (dd, J = 18.6, 2.1 Hz, 1H), 2.30 (s, 6H), 1.26 (t, J = 6.9

Hz, 3H); 13C-NMR (150 MHz, CDCl3) δ 195.13, 176.92, 163.47,

145.97, 145.52, 140.07, 138.49, 135.33, 135.18, 134.12, 130.93, 130.44, 129.31, 129.18, 123.68,

68.82, 60.65, 53.08, 52.57, 42.44, 37.81, 33.22, 21.72, 21.46, 14.20; HRMS (ESI) calcd for

C32H35NO6SNa: m/z ([M+Na]+) 584.2077, found 584.2075; IR (KBr) 2986, 2931, 2367, 2312, 1744,

Page 11: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-11

1717, 1708, 1688, 1638, 1599, 1507, 1362, 1245 cm-1; [α]D21 = -69.4 (c 1.0, CHCl3 for 92% ee);

Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 254 nm, tR = 16.5 min (major

isomer) and 20.4 min (minor isomer).

4h: 70% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.74 (d,

J = 8.7 Hz, 2H), 7.68 (d, J = 10.5 Hz, 1H), 7.40 (d, J = 8.7 Hz, 2H),

7.27-7.31 (m, 4H), 6.62 (t, J = 2.1 Hz, 1H), 6.50 (d, J = 10.5 Hz,

1H), 4.11-4.17 (m, 2H), 3.01 (dd, J = 18.8, 2.1 Hz, 1H), 2.84-2.88

(m, 1H), 2.47-2.56 (m, 3H), 2.44 (s, 3H), 2.30-2.43 (m, 2H), 1.34

(s, 9H), 1.25 (t, J = 7.1 Hz, 3H); 13C-NMR (150 MHz, CDCl3) δ

195.20, 176.83, 163.68, 151.79, 145.93, 145.51, 140.10, 137.28, 135.40, 134.04, 130.95, 129.43,

129.17, 125.94, 125.67, 68.77, 60.64, 53.15, 52.72, 42.74, 37.77, 34.72, 33.48, 31.36, 21.82, 14.29;

HRMS (ESI) calcd for C28H27NO6SNa: m/z ([M+Na]+) 528.1451, found 528.1445; IR (KBr) 2970,

2378, 2312, 1742, 1712, 1687, 1506, 1362, 1244, 1166 cm-1; [α]D25 = -69.5 (c 1.0, CHCl3 for 98%

ee); Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 254 nm, tR = 18.5 min (minor

isomer) and 20.5 min (major isomer).

4i: 81% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.78 (d, J

= 8.2 Hz, 2H), 7.65 (d, J = 10.5 Hz, 1H), 7.37-7.40 (m, 2H), 7.32 (d,

J = 8.2 Hz, 2H), 7.10-7.14 (m, 2H), 6.62 (t, J = 2.3 Hz, 1H), 6.52 (d,

J = 10.5 Hz, 1H), 4.11-4.17 (m, 2H), 3.01 (dd, J = 18.8, 2.3 Hz, 1H),

2.79-2.84 (m, 1H), 2.53-2.56 (m, 2H), 2.44-2.46 (m, 5H), 2.34 (dd, J

= 18.8, 2.3 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H); 13C-NMR (175 MHz,

CDCl3) δ 194.91, 177.15, 163.94, 162.98 (JC-F = 284 Hz), 146.20, 145.50, 140.24, 136.68 (d, JC-F =

2.6 Hz) , 135.28, 134.41, 131.57, 129.83, 129.43, 128.08 (d, JC-F = 9.2 Hz), 116.35 (d, J C-F = 20.8

Hz), 68.62, 60.95, 53.29, 53.16, 43.03, 38.03, 33.50, 22.12, 14.55; 19F-NMR (565 MHz, CDCl3) δ

-113.62; HRMS (ESI) calcd for C28H26FNO6SNa: m/z ([M+Na]+) 546.1357, found 546.1352; IR

(KBr) 3363, 2925, 2345, 1712, 1686, 1509, 1361, 1247, 1168, 1086, 866, 760, 665, 577, 560, 546

cm-1; [α]D22 = -117.83 (c 0.6, CHCl3 for 87% ee); Daicel Chiralpak IC column, n-hexane/EtOH =

2/1, 1.0 mL/min, 254 nm, tR = 15.1 min. (minor isomer) and 22.3 min (major isomer).

4j: 85% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.79 (d, J

= 8.4 Hz, 2H), 7.63 (d, J = 10.5 Hz, 1H), 7.41 (d, J = 8.4 Hz, 2H),

7.32-7.36 (m, 4H), 6.62 (t, J = 2.3 Hz, 1H), 6.53 (d, J = 10.5 Hz,

1H), 4.11-4.16 (m, 2H), 3.01 (dd, J = 18.8, 2.3 Hz, 1H), 2.77-2.81

(m, 1H), 2.52-2.55 (m, 2H), 2.41-2.48 (m, 5H), 2.34 (dd, J = 18.8,

2.3 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H); 13C-NMR (175 MHz, CDCl3)

δ 194.48, 176.62, 163.45, 145.92, 144.86, 139.88, 139.17, 134.87, 134.85, 131.38, 129.53, 129.22,

129.12, 127.23, 68.29, 60.62, 52.97, 52.72, 42.75, 37.70, 33.15, 21.79, 14.22 (one carbon

Page 12: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-12

overlapped); HRMS (ESI) calcd for C28H26ClNO6SNa: m/z ([M+Na]+) 562.1062, found 562.1052;

IR (KBr) 2961, 2926, 2854, 1739, 1712, 1692, 1493, 1363, 1246, 1167, 1083, 664, 504, 473 cm-1;

[α]D22 = -125.8 (c 0.45, CHCl3 for 87% ee); Daicel Chiralpak IC column, n-hexane/EtOH = 2/1, 1.0

mL/min, 230 nm, tR = 15.0 min (minor isomer) and 23.7 min (major isomer).

4k: 58% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.81 (d,

J = 8.2 Hz, 2H), 7.71 (d, J = 10.5 Hz, 1H), 7.59-7.67 (m, 4H),

7.38-7.52 (m, 5H), 7.31 (d, J = 8.2 Hz, 2H), 6.63 (t, J = 2.3 Hz, 1H),

6.55 (d, J = 10.5 Hz, 1H), 4.10-4.18 (m, 2H), 3.04 (dd, J = 18.8, 2.3

Hz, 1H), 2.87-2.92 (m, 1H), 2.44-2.61 (m, 7H), 2.36 (dd, J = 18.8,

2.3 Hz, 1H) 1.25 (t, J = 7.1 Hz, 3H); 13C-NMR (150 MHz, CDCl3)

δ 194.94, 176.90, 163.60, 145.82, 145.56, 141.74, 140.05, 140.02, 139.50, 135.18, 134.20, 131.24,

129.54, 129.27, 129.03, 127.93, 127.72, 127.22, 126.36, 68.81, 60.67, 53.16, 52.85, 42.87, 37.81,

33.46, 21.86, 14.31; HRMS (ESI) calcd for C34H31NO6SNa: m/z ([M+Na]+) 604.1764, found

604.1760; IR (KBr) 2921, 2367, 2306, 1746, 1720, 1711, 1687, 1510, 1487, 1362, 1246, 1166 cm-1;

[α]D21 = -34.0 (c 1.0, CHCl3 for 93% ee) ; Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0

mL/min, 200 nm tR = 43.5 min (major isomer) and 50.7 min (minor isomer).

4l: 60% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ

7.88-7.92 (m, 2H), 7.75-7.82 (m, 5H), 7.54-7.60 (m, 2H), 7.46 (d, J

= 8.7 Hz, 1H), 7.29 (d, J = 7.8 Hz, 2H), 6.59-6.63 (m, 2H),

4.02-4.13 (m, 2H), 3.01-3.09 (m, 1H), 2.85-2.89 (m, 1H), 2.49-2.65

(m, 2H), 2.32-2.45 (m, 5H), 2.25-2.31 (m, 1H), 1.26 (t, J = 7.1 Hz,

3H) (two carbons overlapped); 13C-NMR (100 MHz, CDCl3) δ

195.00, 177.31, 163.67, 145.79, 145.58, 140.06, 137.62, 135.21, 134.20, 133.13, 132.84, 131.38,

129.48, 129.32, 128.42, 127.78, 127.11, 125.55, 123.01, 69.14, 60.65, 53.19, 52.47, 42.90, 37.90,

33.34, 21.83, 14.28; HRMS (ESI) calcd for C32H29NO6SNa: m/z ([M+Na]+) 555.17, found 555.65;

IR (KBr) 2926, 2374, 2310, 1745, 1712, 1688, 1364, 1244, 1167, 811, 668 cm1; [α]D25 = -74.5 (c

1.0, CHCl3 for 96% ee); Daicel Chiralpak IE column, n-hexane/EtOH = 2/1, 1.0 mL/min, 230 nm,

tR = 53.7 min (minor isomer) and 75.7 min (major isomer).

4m: 59% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.27 (d, J =

10.5 Hz, 1H), 6.71 (t, J = 2.3 Hz, 1H), 6.12 (d, J = 10.5 Hz, 1H), 4.16 (q,

J = 7.2 Hz, 2H), 3.37 (s, 3H), 3.11 (dd, J = 18.8, 2.3 Hz, 1H), 2.76-2.85

(m, 1H), 2.59-2.68 (m, 4H), 2.51 (dd, J = 18.8, 2.3 Hz, 1H), 1.91 (s, 3H),

1.26 (t, J = 7.2 Hz, 3H); 13C-NMR (100 MHz, CDCl3) δ 194.06, 177.71,

163.59, 147.68, 140.40, 134.09, 128.85, 63.82, 60.76, 52.76, 49.08, 43.07,

42.42, 38.01, 33.33, 27.18, 14.30; HRMS (ESI) calcd for C17H21NO6SNa:

m/z ([M+Na]+) 390.0982, found 390.0980; IR (KBr) 2931, 2855, 2361, 2345, 2318, 1748, 1717,

Page 13: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-13

1705, 1689, 1681, 1508, 1257, 1131, 969 cm-1; [α]D21 = -176.3 (c 1.0, CHCl3 for 88% ee); Daicel

Chiralpak IB column, n-hexane/EtOH = 2/1, 1.0 mL/min, 245 nm, tR = 11.3 min (major isomer)

and 14.0 min (minor isomer).

4n: 64% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.2

Hz, 2H), 7.48 (dd, J = 10.5, 1.8 Hz, 1H), 7.30-7.37 (m, 7H), 6.67 (t, J =

2.3 Hz, 1H), 6.14 (d, J = 10.5 Hz, 1H), 5.10-5.01 (m, 2H), 2.99 (dd, J =

20.4, 2.3 Hz, 1H), 2.77 (dd, J = 18.5, 7.6 Hz, 1H), 2.55-2.59 (m, 2H),

2.47-2.52 (m, 1H), 2.37-2.44 (m, 5H), 1.96 (s, 3H); 13C-NMR (100 MHz,

CDCl3) δ 194.19, 176.38, 163.40, 148.16, 145.62, 141.03, 135.91, 135.82,

135.71, 135.65, 133.70, 129.74, 128.72, 128.61, 128.27, 66.40, 63.77,

52.55, 49.09, 42.48, 37.62, 33.43, 27.17, 21.82; HRMS (ESI) calcd for C28H27NO6SNa: m/z

([M+Na]+) 528.1451, found 528.1447; IR (KBr) 2959, 2373, 2340, 2312, 1746, 1716, 1707, 1687,

1679, 1544, 1509, 1362, 1246, 1173, 1083 cm-1; [α]D20 = -81.6 (c 1.0, CHCl3 for 94% ee); Daicel

Chiralpak IC column, n-hexane/EtOH = 2/1, flow rate 1.0 mL/min, 217 nm: 16.8 min. (major

isomer) and 28.8 min (minor isomer).

4o: 45% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 8.03 (d, J =

8.2 Hz, 2H), 7.45-7.48 (m, 1H), 7.34 (d, J = 8.2 Hz, 2H), 6.59 (t, J =

2.1 Hz, 1H), 6.23 (d, J = 10.5 Hz, 1H), 4.15 (q, J = 7.0 Hz, 2H),

3.00-3.04 (m, 1H), 2.82-2.94 (m, 3H), 2.52-2.69 (m, 3H), 2.42-2.48 (m,

4H), 1.25 (t, J = 7.0 Hz, 3H); 13C-NMR (150 MHz, CDCl3) δ 193.77,

175.57, 163.52, 145.85, 143.94, 139.50, 135.03, 134.31, 129.65, 129.24,

129.04, 81.00, 76.42, 60.71, 57.32, 53.33, 49.82, 42.98, 37.04, 34.66, 21.86, 14.28; HRMS (ESI)

calcd for C24H23NO6SNa: m/z ([M+Na]+) 476.1138, found 476.1135; IR (KBr) 2373, 2312, 1747,

1708, 1690, 1544, 1508, 1362, 1249, 1173 cm-1; [α]D20 = -15.4 (c 1.0, CHCl3 for 92% ee); Daicel

Chiralpak IE column, n-hexane/EtOH = 2/1, 1.0 mL/min, 212 nm, tR = 35.8 min. (minor isomer)

and 57.8 min(major isomer).

4p: 54% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 8.01

(d, J = 9.2 Hz, 2H), 7.49 (dd, J = 10.8, 1.4 Hz, 1H), 7.00 (d, J =

9.2 Hz, 2H), 6.63 (t, J = 2.1 Hz, 1H), 6.14 (d, J = 10.8 Hz, 1H),

4.09-4.15 (m, 2H), 3.89 (s, 3H), 2.93-3.01 (m, J = 17.9 Hz, 1H),

2.77 (dd, J = 18.5, 7.6 Hz, 1H), 2.52-2.60 (m, 2H), 2.38-2.49 (m,

3H), 1.95 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H); 13C-NMR (100 MHz,

CDCl3) δ 194.28, 176.36, 164.13, 163.48, 148.35, 140.31,

134.30, 131.12, 128.70, 114.24, 63.66, 60.61, 55.85, 52.58, 49.09, 42.34, 37.64, 33.44, 27.15, 14.34

(one carbon overlapped); HRMS (ESI) calcd for C23H25NO7SNa: m/z ([M+Na]+) 482.1244, found

482.1239; IR (KBr) 2980, 2373, 2312, 1744, 1710, 1685, 1594, 1497, 1362, 1262, 1163, 1088, 1018,

Page 14: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-14

675 cm-1; [α]D19 = -83.1 (c 1.0, CHCl3 for 92% ee); Daicel Chiralpak ID column, n-hexane/EtOH =

2/1, 1.0 mL/min, 240 nm, tR = 40.9 min, (major isomer) and 76.3 min (minor isomer).

4q: 89% yield; white solid; 1H-NMR (400 MHz, CDCl3) δ 7.39-7.47 (m,

6H), 6.69-6.72 (m, 1H), 6.51 (d, J = 10.5 Hz, 1H), 4.18 (q, J = 7.2 Hz,

2H), 3.33 (s, 3H), 3.13-3.19 (m, 1H), 2.89-2.91 (m, 1H), 2.67-2.77 (m,

2H), 2.45-2.53 (m, 3H), 1.28 (t, J = 7.2 Hz, 3H); 13C-NMR (150 MHz,

CDCl3) δ 194.66, 178.21, 163.60, 144.79, 140.45, 140.16, 134.17, 131.50,

129.31, 128.96, 125.22, 68.75, 60.79, 53.44, 52.88, 42.95, 42.83, 38.22,

33.06, 14.32; HRMS (ESI) calcd for C22H23NO6SNa: m/z ([M+Na]+) 452.1138, found 452.1135; IR

(KBr) 2931, 2367, 2345, 2318, 1744, 1716, 1706, 1688, 1680, 1648, 1543, 1509, 1423, 1360, 1248,

1165 cm-1; [α]D20 = -87.0 (c 1.0, CHCl3 for 88% ee); Daicel Chiralpak IB column, n-hexane/EtOH =

2/1, 1.0 mL/min, 254 nm, tR = 15.7 min (major isomer) and 19.3 min (minor isomer).

4r: 76% yield; white yellowish solid; 1H-NMR (400 MHz,

CDCl3) δ 7.80 (d, J = 8.2 Hz, 2H), 7.62 (dd, J = 10.5, 1.4 Hz, 1H),

7.56 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.7

Hz, 2H), 6.61 (t, J = 2.3 Hz, 1H), 6.53 (d, J = 10.5 Hz, 1H),

4.11-4.16 (m, 2H), 3.01 (dd, J = 18.5, 2.3 Hz, 1H), 2.77-2.79 (m,

1H), 2.52-2.55 (m, 2H), 2.43-2.45 (m, 5H), 2.34 (dd, J = 18.5, 2.3

Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H); 13C-NMR (150 MHz, CDCl3) δ 194.51, 176.69, 163.59, 146.00,

144.87, 139.92, 139.86, 135.01, 134.15, 132.26, 131.48, 129.61, 129.21, 127.60, 123.08, 68.42,

60.60, 53.08, 52.83, 42.86, 37.87, 33.24, 21.84, 14.28; HRMS (ESI) calcd for C28H26BrNO6SNa:

m/z ([M+Na]+) 606.0556, found 606.0553; IR (KBr) 2367, 2312, 1745, 1715, 1705, 1687, 1543,

1510, 1491, 1363, 1245 cm-1; [α]D20 = -105.5 (c 1.0, CHCl3 for 86% ee); Daicel Chiralpak IC

column, n-hexane/EtOH = 2/1, 1.0 mL/min, 245 nm, tR = 13.9 min (minor isomer) and 21.9 min

(major isomer).

4s: 73% yield; orange solid; 1H-NMR (400 MHz, CDCl3) δ 7.78 (d, J =

7.8 Hz, 2H), 7.65 (d, J = 10.5 Hz, 1H), 7.29-7.41 (m, 12H), 6.66 (s, 1H),

6.51 (d, J = 10.5 Hz, 1H), 5.12 (m, 2H), 2.97-3.05 (m, 1H), 2.82-2.88

(m, 1H), 2.55-2.60 (m, 2H), 2.40-2.51 (m, 5H), 2.27-2.38 (m, 1H); 13C-NMR (100 MHz, CDCl3) δ 194.91, 176.83, 163.36, 145.78, 145.61,

140.74, 140.60, 135.83, 135.18, 134.87, 133.80, 131.15, 129.51, 129.22,

129.08, 128.85, 128.62, 128.29, 125.90, 68.94, 66.42, 53.12, 52.92,

42.98, 37.77, 33.47, 21.84; HRMS (ESI) calcd for C33H29NO6SNa: m/z ([M+Na]+) 590.1608, found

590.1603; IR (KBr) 2964, 2921, 2373, 2312, 1744, 1598, 1489, 1460, 1389, 1363, 1246, 1164, 1081

cm-1; [α]D20 = -60.9 (c 1.0, CHCl3 for 90% ee); Daicel Chiralpak IC column, n-hexane/EtOH = 2/1,

1.0 mL/min, 217 nm, 23.7 min, (minor isomer) and 31.2 min (major isomer); (R,R,R)-4s was

previously synthesized and characterized.3

Page 15: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-15

Gaussian process regression with GPy

Gaussian process regression was carried out based on experimental data (Table S4-S6) with GPy.

Table S4. Screening of flow rate and temperature (2.0 equiv. of 2a was used).[a]

entry flow rate (mL/min) NMR yield (%)[c]

1

2

3

4

1.0

1.5

2.0

2.5

5 3.0

49

72

58

55

43

temp. (°C)

90

80

70

60

100

O

Me N

O1a 2a (2.0 equiv.)

4a

89-93% ee[b]

(S)-5a (20 mol %) O

NMe

O

Ts

Ts

+•

CO2Et

H CO2Etmicro mixerl = 1 m

toluene (0.01 M), temp.

full conversion

PPh2

NHBz

toluene

toluene flow rate

[a] Reaction conditions: 1a (0.03 mmol), 2a (2.0 equiv.) and catalyst (S)-5a (20 mol%),in dry toluene (3 mL). [b] Enantiomeric excess was determined by HPLC analysis

(Daicel Chiralpak ID). [c] 1,3,5-Trimethoxybenzene was used as an internal standard.

φ = 1 mm

(A)

Page 16: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-16

Optimizer: L-BFGS-B

Parameters:

GP_regression. | value | constraints |

priors

rbf.variance | 1.1158823807134526 | +ve |

rbf.lengthscale | 0.4336905033416461 | +ve |

Gaussian_noise.variance | 0.001002572382707438 | +ve |

Page 17: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-17

Fig. S3. Gaussian process regression GPy for Table S4. (A) Source code of GPR; (B) Estimated yield from Table S4

(entries 1-5); (C) Predicted yield for flow rates in the yellow ring in Fig. S3B; (D) Predicted yield for temperatures in

the yellow ring in Fig. S3B.

Table S5. Screening of quantity of 2a and temperature (flow rate: 1.7 mL/min).[a]

(A)

(B) (C) (D)

Page 18: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-18

Page 19: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-19

Optimizer: L-BFGS-B

Parameters:

GP_regression. | value | constraints |

priors

rbf.variance | 1.100572205236196 | +ve |

rbf.lengthscale | 0.3747925937891553 | +ve |

Gaussian_noise.variance | 0.001002216349538893 | +ve |

Fig. S4. Gaussian process regression GPy for Table S5. (A) Source code of GPR; (B) Estimated yield from Table S5

(entries 1-5); (C) Predicted yield for equivalents of 2a in the yellow ring in Fig. S4B; (D) Predicted yield for

temperatures in the yellow ring in Fig. S4B

Table S6. Screening of flow rate and quantity of 2a (at 80 °C).[a]

(B) (C) (D)

Page 20: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-20

(A)

Page 21: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-21

Optimizer: L-BFGS-B

Parameters:

GP_regression. | value | constraints |

priors

rbf.variance | 1.046759848795677 | +ve |

rbf.lengthscale | 1.1471099131952978 | +ve |

Gaussian_noise.variance | 0.0009988100555326674 | +ve |

Fig. S5. Gaussian process regression GPy for Table S6. (A) Source code of GPR; (B) Estimated yield from Table S6

(entries 1-5); (C) Predicted yield for flow rates in the yellow ring in Fig. S5B; (D) Predicted yield for equivalents of 2a

in the yellow ring in Fig. S5B

X-ray structure of 4e

Fig. S6. ORTEP drawing of compound (S,R,R)-4e with ellipsoids at 50% probability (H atoms are omitted for clarity).

References

1. K. Kishi, F. A. Arteaga, S. Takizawa and H. Sasai, Chem. Commun., 2017, 53, 7724–7727.

2. A micromixing device, ‘Comet X-01’, is available from Techno Applications Co., Ltd.,

34-16-204, Hon, Denenchofu, Oota, Tokyo, 145-0072, Japan.

3. H. Jin, Q. Zhang, E. Li, P. Jia, N. Li and Y. Huang, Org. Biomol. Chem., 2017, 15, 7097–7101.

(B) (C) (D)

Page 22: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-22

1H-NMR (400 MHz, CDCl3) chart of 13g ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

010

.011

.012

.013

.014

.015

.016

.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.66

67.

645

7.26

77.

246

7.00

86.

952

6.78

06.

755

6.06

46.

038

5.41

7

2.42

5

2.26

26.

12

3.26

2.42

2.05

2.01

2.01

1.98

1.00

1.00

13C-NMR (100 MHz, CDCl3) chart of 13g

abun

danc

e0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

185.

377

149.

279

144.

550

139.

592

137.

809

137.

771

131.

154

129.

953

128.

208

128.

074

123.

784

59.9

98

21.9

2621

.697

Page 23: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-23

1H-NMR (400 MHz, CDCl3) chart of 1c ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

010

.011

.012

.013

.014

.015

.016

.017

.018

.019

.020

.021

.022

.023

.024

.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.55

67.

534

7.23

07.

210

7.07

37.

047

6.93

06.

905

6.88

86.

863

6.50

16.

498

6.45

6

6.04

76.

021

5.91

95.

915

5.89

45.

890

2.61

32.

596

2.57

92.

561

2.40

4

0.81

60.

798

5.99

3.00

2.04

2.02

1.99

1.98

1.04

1.01

0.98

0.97

13C-NMR (100 MHz, CDCl3) chart of 1c

abun

danc

e-0

.01

00.

010.

020.

030.

040.

050.

060.

070.

080.

090.

10.

110.

120.

130.

140.

150.

160.

170.

180.

190.

20.

210.

22

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

185.

091

171.

085

147.

153

145.

694

137.

008

134.

939

130.

868

130.

410

129.

934

128.

933

67.8

44

32.4

04

21.9

83

17.4

16

Page 24: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-24

1H-NMR (400 MHz, CDCl3) chart of 1g ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

010

.011

.012

.013

.014

.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.61

97.

597

7.30

87.

304

7.28

87.

283

7.27

57.

264

7.25

66.

960

6.93

56.

919

6.89

26.

867

6.25

16.

248

6.20

96.

205

6.03

16.

006

5.80

85.

805

5.78

25.

779

2.43

9

2.21

9

0.00

0

6.01

4.32

3.00

2.40

2.03

2.01

1.11

1.04

1.02

13C-NMR (100 MHz, CDCl3) chart of 1g

abun

danc

e0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

X : parts per Million : Carbon13

190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

185.

234

169.

922

148.

564

145.

923

139.

344

138.

458

136.

713

133.

757

131.

030

130.

735

130.

039

128.

856

127.

769

123.

212

65.8

99

22.0

4021

.754

Page 25: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-25

1H-NMR (400 MHz, CDCl3) chart of 1l ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

010

.011

.012

.013

.014

.015

.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.78

67.

763

7.70

77.

701

7.65

67.

635

7.47

47.

466

7.45

97.

450

7.43

97.

434

7.41

77.

414

7.29

07.

270

6.20

46.

202

6.15

96.

099

6.07

35.

787

5.78

45.

761

5.75

8

2.45

0

0.00

0

5.10

3.02

2.08

2.05

2.04

2.01

1.99

1.00

1.00

0.99

13C-NMR (100 MHz, CDCl3) chart of 1l

abun

danc

e0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

185.

110

169.

722

148.

183

146.

057

136.

741

135.

969

133.

624

133.

519

133.

242

131.

326

130.

143

129.

791

128.

866

128.

504

128.

113

127.

979

127.

169

124.

785

122.

716

65.9

95

22.1

36

Page 26: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-26

1H-NMR (400 MHz, CDCl3) chart of 1o ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

010

.011

.012

.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.72

47.

705

7.32

87.

308

7.05

97.

034

6.81

96.

794

6.77

76.

752

6.48

76.

485

6.44

56.

442

6.16

46.

140

5.92

65.

923

5.90

05.

898

2.54

12.

452

0.00

0

2.94

2.03

1.99

1.99

1.94

1.00

0.96

0.95

0.91

13C-NMR (100 MHz, CDCl3) chart of 1o

abun

danc

e-0

.01

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0.25

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

184.

185

168.

453

146.

028

144.

913

137.

037

132.

527

132.

012

130.

248

128.

399

128.

360

76.6

1676

.454

56.0

12

22.0

40

Page 27: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-27

1H-NMR (400 MHz, CDCl3) chart of 1p ab

unda

nce

02.

04.

06.

08.

010

.012

.014

.016

.018

.020

.022

.024

.026

.028

.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.67

27.

651

7.14

17.

116

6.93

06.

908

6.79

66.

771

6.75

56.

730

6.49

16.

488

6.44

96.

446

6.02

55.

999

5.96

55.

962

5.93

95.

937

3.86

93.

15

2.08

2.07

2.04

2.03

1.14

1.09

1.00

13C-NMR (100 MHz, CDCl3) chart of 1p

abun

danc

e-0

.01

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

184.

796

170.

942

164.

325

150.

833

134.

472

131.

917

131.

021

130.

982

127.

655

114.

593

60.3

79

56.1

17

27.2

08

Page 28: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-28

1H-NMR (400 MHz, CDCl3) chart of 1q ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

010

.011

.012

.013

.014

.015

.016

.017

.018

.019

.020

.021

.022

.023

.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.48

17.

456

7.37

97.

366

7.36

17.

351

7.33

17.

325

7.31

97.

309

6.68

36.

658

6.64

06.

615

6.38

66.

361

6.32

06.

278

5.81

75.

792

3.22

2

0.00

0

5.23

3.00

2.14

1.99

1.01

0.99

0.96

13C-NMR (100 MHz, CDCl3) chart of 1q

abun

danc

e0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

184.

834

168.

959

148.

297

138.

667

132.

069

129.

772

129.

200

128.

618

125.

634

66.3

28

44.9

52

Page 29: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-29

abun

danc

e0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

249

176.

362

163.

558

148.

216

145.

594

140.

303

135.

697

134.

077

129.

729

128.

718

63.7

69

60.6

13

52.5

75

49.0

19

42.3

35

37.6

25

33.4

30

27.1

27

21.8

07

14.2

65

1H-NMR (400 MHz, CDCl3) chart of 4a ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.96

07.

939

7.51

07.

505

7.48

37.

479

7.35

67.

337

6.62

96.

623

6.61

9

6.16

26.

135

4.15

04.

146

4.13

24.

127

4.11

34.

110

4.09

64.

092

2.78

62.

758

2.74

02.

603

2.59

62.

577

2.49

32.

487

2.44

62.

427

2.42

0

1.95

8

1.25

31.

235

1.21

8

0.00

0

6.00

3.00

3.00

2.00

2.00

2.00

2.00

1.00

1.00

1.00

1.00

1.00

13C-NMR (100 MHz, CDCl3) chart of 4a

Page 30: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-30

1H-NMR (400 MHz, CDCl3) chart of 4b

abun

danc

e0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.94

27.

920

7.49

67.

493

7.47

07.

466

7.35

17.

330

6.62

16.

615

6.60

9

6.23

56.

209

4.14

34.

134

4.12

64.

117

4.10

94.

099

4.09

14.

081

4.07

34.

064

3.06

13.

057

3.02

13.

015

3.00

82.

731

2.72

32.

679

2.55

82.

512

2.49

12.

474

2.45

52.

436

2.14

3

1.24

21.

223

1.20

61.

113

1.09

51.

077

5.00

3.00

3.00

2.00

2.00

2.00

2.00

2.00

1.00

1.00

1.00

1.00

1.00

1.00

13C-NMR (100 MHz, CDCl3) chart of 4b

abun

danc

e0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

514

176.

560

163.

412

147.

365

145.

544

140.

281

135.

113

133.

864

129.

564

129.

526

128.

782

67.6

56

60.4

86

52.4

01

43.8

2942

.513

37.6

41

34.0

28

30.8

72

21.7

09

14.1

58

8.58

9

Page 31: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-31

1H-NMR (400 MHz, CDCl3) chart of 4c ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.83

67.

815

7.52

27.

492

7.27

07.

250

6.54

26.

536

6.53

06.

292

6.26

6

4.06

14.

052

4.04

24.

034

4.02

44.

016

4.00

63.

998

3.98

9

3.03

93.

022

3.00

32.

993

2.98

7

2.66

02.

581

2.56

02.

495

2.35

62.

101

2.06

12.

018

1.16

01.

143

1.12

51.

100

1.08

20.

983

0.96

6

5.00

3.00

3.00

3.00

2.00

2.00

2.00

2.00

2.00

1.00

1.00

1.00

1.00

1.00

13C-NMR (100 MHz, CDCl3) chart of 4c

(th

ousa

ndth

s) 10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

X : parts per Million : Carbon13

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0

194.

860

176.

467

163.

252

146.

729

145.

337

140.

627

134.

916

133.

485

130.

863

129.

586

128.

918

71.2

06

60.5

46

52.8

61

42.6

4040

.323

38.0

0636

.013

34.5

45

21.7

7818

.479

16.9

0614

.236

Page 32: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-32

1H-NMR (400 MHz, CDCl3) chart of 4d ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.96

87.

947

7.38

27.

364

7.35

57.

351

7.34

4

6.63

56.

629

6.62

36.

394

6.36

86.

132

6.10

56.

088

6.06

2

5.48

25.

457

5.32

85.

284

4.15

64.

152

4.14

84.

138

4.13

54.

120

4.11

74.

108

4.10

24.

100

3.00

73.

003

2.96

22.

957

2.67

02.

625

2.59

12.

525

2.50

52.

499

2.49

52.

452

1.25

81.

241

1.22

2

4.00

3.00

3.00

3.00

2.00

2.00

2.00

1.00

1.00

1.00

1.00

1.00

1.00

13C-NMR (100 MHz, CDCl3) chart of 4d

(th

ousa

ndth

s)10

.020

.030

.040

.050

.060

.070

.080

.090

.0

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

631

176.

095

163.

252

145.

747

144.

574

140.

417

138.

196

135.

545

134.

324

131.

273

129.

786

128.

842

117.

629

66.9

05

60.6

51

52.6

51

48.1

22

42.5

16

37.5

68

32.6

29

22.0

83

14.2

84

Page 33: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-33

1H-NMR (400 MHz, CDCl3) chart of 4e ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.78

77.

766

7.68

47.

681

7.65

87.

654

7.41

07.

407

7.39

87.

313

6.65

36.

618

6.61

26.

606

6.56

96.

532

6.50

5

4.16

54.

163

4.14

74.

144

4.12

94.

127

4.11

1

3.02

82.

981

2.97

62.

859

2.85

52.

848

2.84

42.

564

2.46

32.

444

2.42

22.

414

2.35

12.

345

1.26

61.

247

1.23

0

5.04

5.00

3.00

2.00

2.00

2.00

2.00

1.00

1.00

1.00

1.00

1.00

1.00

13C-NMR (100 MHz, CDCl3) chart of 4e

abun

danc

e0.

010.

020.

030.

040.

050.

060.

070.

080.

090.

10.

110.

120.

130.

140.

150.

160.

170.

180.

190.

20.

210.

220.

230.

24

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

945

176.

896

163.

586

145.

747

145.

652

140.

589

140.

017

135.

230

134.

191

131.

149

129.

481

129.

243

129.

061

128.

842

125.

905

68.9

27

60.6

32

53.1

5752

.880

42.8

50

37.7

87

33.4

30

21.8

16

14.2

75

Page 34: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-34

abun

danc

e0.

010.

020.

030.

040.

050.

060.

070.

080.

090.

10.

110.

120.

130.

140.

150.

160.

17

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

195.

020

177.

029

163.

720

159.

842

145.

748

145.

509

142.

234

140.

061

135.

187

134.

153

131.

118

130.

180

129.

509

129.

232

118.

508

114.

017

111.

777

68.9

01

60.6

48

55.4

4953

.132

52.6

91

42.8

29

37.7

54

33.4

84

21.7

65

14.2

87

1H-NMR (400 MHz, CDCl3) chart of 4f ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.80

77.

785

7.65

57.

652

7.62

97.

626

7.33

97.

319

7.29

7

6.91

26.

903

6.89

86.

616

6.61

26.

606

6.51

96.

493

4.16

34.

160

4.14

64.

142

4.12

74.

125

4.11

64.

109

3.83

33.

806

2.98

42.

978

2.86

12.

858

2.85

32.

850

2.54

92.

544

2.49

42.

477

2.44

42.

423

2.41

6

1.26

51.

246

1.22

9

4.56

3.04

3.02

3.00

2.04

2.00

2.00

1.99

1.12

1.08

1.001.03

1.00

1.00

0.85

13C-NMR (150 MHz, CDCl3) chart of 4f

Page 35: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-35

1H-NMR (400 MHz, CDCl3) chart of 4g

abun

danc

e0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.76

77.

753

7.67

47.

672

7.65

77.

655

7.30

57.

292

7.01

36.

886

6.64

56.

641

6.63

86.

520

6.50

3

4.17

04.

164

4.16

14.

151

4.14

84.

140

4.13

74.

129

4.12

54.

118

3.03

83.

009

3.00

5

2.82

6

2.60

22.

573

2.47

62.

465

2.44

72.

432

2.42

92.

303

1.26

71.

255

1.24

4

6.00

4.02

3.02

2.02

2.01

2.01

2.00

2.00

1.02

1.03

1.03

1.01

1.01

1.00

1.00 1.05

13C-NMR (150 MHz, CDCl3) chart of 4g

abun

danc

e0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

195.

133

176.

922

163.

470

145.

967

145.

517

140.

069

138.

489

135.

329

135.

176

134.

123

130.

935

130.

437

129.

307

129.

182

123.

677

68.8

23

60.6

46

53.0

8252

.575

42.4

35

37.8

10

33.2

24

21.7

2521

.457

14.1

99

Page 36: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-36

1H-NMR (400 MHz, CDCl3) chart of 4h

abun

danc

e0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.75

57.

733

7.69

57.

692

7.66

97.

666

7.39

17.

296

7.29

17.

275

7.26

9

6.62

66.

621

6.61

56.

514

6.48

8

4.16

54.

162

4.14

74.

143

4.12

94.

126

4.11

1

3.03

63.

030

2.98

92.

983

2.86

62.

861

2.85

32.

556

2.55

12.

488

2.47

22.

444

2.41

92.

411

1.34

51.

266

1.24

91.

230

9.00

4.00

3.023.09

3.02

2.06

2.05

2.02

2.01

1.04

1.03

1.01

1.00

1.04

13C-NMR (150 MHz, CDCl3) chart of 4h

abun

danc

e0.

010.

020.

030.

040.

050.

060.

070.

080.

090.

10.

110.

120.

130.

140.

150.

16

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

195.

202

176.

828

163.

682

151.

790

145.

930

145.

509

140.

099

137.

284

135.

398

134.

038

130.

946

129.

433

129.

174

125.

938

125.

670

68.7

67

60.6

38

53.1

5152

.720

42.7

43

37.7

7434

.719

33.4

8431

.358

21.8

22

14.2

87

Page 37: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-37

1H-NMR (400 MHz, CDCl3) chart of 4i ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.79

27.

770

7.66

77.

662

7.64

07.

636

7.37

77.

328

7.30

77.

138

7.11

6

6.62

26.

616

6.61

26.

533

6.50

6

4.16

54.

163

4.15

74.

148

4.14

44.

129

4.12

74.

110

3.03

63.

029

2.98

92.

983

2.81

12.

801

2.54

52.

541

2.45

82.

450

2.44

32.

434

2.36

9

1.26

61.

249

1.23

0

5.07

3.03

2.04

2.02

2.02

2.01

2.00

2.00

1.07

1.04

1.02

1.01

1.00

1.00

13C-NMR (175 MHz, CDCl3) chart of 4i

(M

illi

ons)

010

.020

.030

.040

.050

.0

X : parts per Million : 13C

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

909

177.

151

163.

937

163.

693

162.

282

146.

202

145.

500

140.

241

136.

688

136.

673

135.

285

134.

413

131.

569

129.

834

129.

435

128.

113

128.

061

116.

412

116.

294

68.6

22

60.9

47

53.2

9553

.162

43.0

35

38.0

34

33.4

99

22.1

24

14.5

53

Page 38: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-38

abun

danc

e 01.

02.

03.

04.

05.

06.

07.

0

X : parts per Million : Fluorine19

50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 -170.0 -180.0 -190.0

-63.

596

-63.

720

-63.

751

-113

.622

19F-NMR (565 MHz, CDCl3) chart of 4i

Page 39: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-39

1H-NMR (400 MHz, CDCl3) chart of 4j ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.80

47.

784

7.64

67.

643

7.62

07.

616

7.41

87.

401

7.39

67.

355

7.33

87.

333

7.31

7

6.62

36.

619

6.61

36.

542

6.51

6

4.16

54.

163

4.14

74.

144

4.12

94.

127

4.11

14.

109

3.03

63.

030

2.99

02.

983

2.80

12.

792

2.78

12.

538

2.53

42.

454

2.44

22.

434

2.37

02.

364

1.26

61.

249

1.23

0

5.00

4.06

3.04

2.03

2.02

2.00

2.00

1.00

1.00

1.00

1.00

1.02

0.99

13C-NMR (175 MHz, CDCl3) chart of 4j

(M

illi

ons)

010

.020

.030

.040

.050

.0

X : parts per Million : 13C

210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

484

176.

623

163.

453

145.

918

144.

861

139.

875

139.

174

134.

867

134.

845

131.

381

129.

527

129.

217

129.

121

127.

230

68.2

86

60.6

18

52.9

7352

.722

42.7

51

37.6

98

33.1

48

21.7

88

14.2

17

Page 40: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-40

1H-NMR (400 MHz, CDCl3) chart of 4k ab

unda

nce

01.

02.

03.

04.

05.

06.

0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.82

77.

807

7.65

17.

630

7.62

67.

604

7.49

77.

479

7.47

07.

459

7.44

97.

324

7.30

4

6.63

26.

627

6.62

16.

560

6.53

4

4.17

04.

163

4.15

24.

134

4.11

7

3.06

03.

054

3.01

32.

897

2.88

42.

577

2.57

32.

521

2.44

9

2.04

7

1.27

11.

254

1.23

6

7.00

5.03

3.99

3.04

2.00

1.98 2.01

0.99

0.95 1.

02

1.01

1.00

13C-NMR (150 MHz, CDCl3) chart of 4k

abun

danc

e0.

010.

020.

030.

040.

050.

060.

070.

080.

090.

10.

110.

120.

130.

140.

150.

160.

170.

180.

190.

20.

21

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

943

176.

905

163.

596

145.

825

145.

557

141.

736

140.

051

140.

023

139.

496

135.

178

134.

201

131.

242

129.

538

129.

270

129.

031

127.

930

127.

719

127.

221

126.

359

68.8

05

60.6

67

53.1

6052

.854

42.8

67

37.8

12

33.4

55

21.8

60

14.3

06

Page 41: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-41

1H-NMR (400 MHz, CDCl3) chart of 4l

13C-NMR (100 MHz, CDCl3) chart of 4l

abun

danc

e0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.91

97.

897

7.80

07.

792

7.78

47.

780

7.77

17.

757

7.75

47.

573

7.56

57.

558

7.55

07.

469

7.30

07.

281

6.63

06.

622

6.59

5

4.17

44.

158

4.15

64.

139

4.12

3

3.07

93.

032

2.94

7

2.60

82.

603

2.47

92.

463

2.45

22.

443

2.38

52.

379

2.33

82.

332

1.27

61.

257

1.24

1

4.62

4.28

2.99

1.96

1.95 2.

00

1.79

1.68

1.17

1.15

0.87

0.86

0.84

0.71

(th

ousa

ndth

s) 10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

812

176.

906

163.

863

145.

785

145.

585

140.

064

137.

623

135.

211

134.

201

133.

133

132.

837

131.

378

129.

481

129.

319

128.

423

127.

784

127.

107

125.

553

123.

007

69.1

37

60.8

03

53.1

9552

.470

42.8

97

38.0

06

33.3

44

21.8

26

14.2

84

O

TsN

CO2Et

O

H

4l

Page 42: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-42

1H-NMR (400 MHz, CDCl3) chart of 4m ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

010

.011

.012

.013

.014

.015

.016

.017

.018

.019

.020

.021

.022

.0

X : parts per Million : Proton

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.28

37.

280

7.25

77.

253

6.72

56.

719

6.71

46.

708

6.70

2

6.13

36.

107

4.18

84.

170

4.15

24.

134

3.37

3

3.08

83.

083

2.79

52.

682

2.66

92.

605

2.59

92.

595

2.59

0

1.90

6

1.28

31.

264

1.24

6

4.01

3.00 3.03

2.97

2.01

2.00

1.00

1.00

0.99

0.99

0.98

13C-NMR (100 MHz, CDCl3) chart of 4m

(th

ousa

ndth

s) 10.0

20.0

30.0

40.0

50.0

60.0

70.0

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

059

177.

707

163.

586

147.

682

140.

398

134.

086

128.

852

63.8

16

60.7

56

52.7

56

49.0

76

43.0

6942

.421

38.0

06

33.3

34

27.1

84

14.3

03

Page 43: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-43

1H-NMR (400 MHz, CDCl3) chart of 4n ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.95

17.

930

7.49

67.

470

7.34

67.

337

7.32

57.

317

6.67

26.

667

6.66

2

6.15

46.

127

5.14

75.

116

5.09

45.

063

2.96

62.

779

2.75

12.

733

2.59

32.

589

2.57

02.

552

2.52

12.

517

2.46

72.

438

2.42

5

1.95

6

7.06

4.95

3.00

2.13

2.10 2.14

1.06

1.03

1.03

1.02

1.00

0.85

13C-NMR (100 MHz, CDCl3) chart of 4n

(th

ousa

ndth

s)10

.020

.030

.0

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

192

176.

382

163.

405

148.

159

145.

623

141.

027

135.

907

135.

821

135.

707

135.

650

133.

695

129.

738

128.

718

128.

613

128.

270

66.4

00

63.7

69

52.5

46

49.0

85

42.4

78

37.6

25

33.4

30

27.1

75

21.8

16

4n

O

NO

CO2BnH

Ts

Me

4n

O

NO

CO2BnH

Ts

Me

Page 44: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-44

1H-NMR (400 MHz, CDCl3) chart of 4o ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

010

.011

.012

.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

8.03

98.

018

7.47

57.

473

7.44

77.

355

7.33

57.

261

6.59

36.

589

6.58

3

6.24

36.

217

4.17

44.

157

4.13

94.

121

3.02

02.

892

2.88

42.

868

2.84

92.

841

2.82

52.

642

2.56

42.

481

2.46

72.

452

2.43

82.

424

1.26

91.

252

1.23

4

4.13

3.29

2.98

2.70

2.19

2.13

2.00

1.01

0.99

0.98

0.94

13C-NMR (150 MHz, CDCl3) chart of 4o

abun

danc

e0.

010.

020.

030.

040.

050.

060.

070.

080.

090.

10.

110.

120.

130.

140.

150.

160.

170.

180.

19

X : parts per Million : Carbon13

210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

193.

766

175.

574

163.

519

145.

854

143.

939

139.

496

135.

034

134.

306

129.

653

129.

241

129.

040

81.0

04

76.4

17

60.7

05

57.3

16

53.3

33

49.8

19

42.9

82

37.0

3634

.662

21.8

60

14.2

77

Page 45: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-45

abun

danc

e0.

010.

020.

030.

040.

050.

060.

070.

080.

090.

10.

110.

120.

130.

140.

150.

160.

17

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

195.

020

177.

029

163.

720

159.

842

145.

748

145.

509

142.

234

140.

061

135.

187

134.

153

131.

118

130.

180

129.

509

129.

232

118.

508

114.

017

111.

777

68.9

01

60.6

48

55.4

4953

.132

52.6

91

42.8

29

37.7

54

33.4

84

21.7

65

14.2

87

1H-NMR (400 MHz, CDCl3) chart of 4p ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

010

.011

.012

.013

.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

8.01

77.

994

7.50

37.

500

7.47

77.

473

7.01

26.

989

6.63

46.

628

6.62

3

6.15

76.

130

4.14

74.

133

4.12

94.

115

4.11

14.

097

4.09

4

3.88

6

2.78

52.

757

2.73

92.

605

2.59

22.

574

2.56

12.

491

2.48

62.

444

2.42

8

1.95

5

1.25

31.

236

1.21

83.

31

3.13

2.99

2.58

2.13

2.07

2.00

1.97

1.04

1.01

1.00

1.00

0.98

13C-NMR (100 MHz, CDCl3) chart of 4p

Page 46: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-46

1H-NMR (400 MHz, CDCl3) chart of 4q ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.47

17.

449

7.44

27.

434

7.42

67.

416

7.41

17.

390

6.70

76.

519

6.49

3

4.20

54.

187

4.16

84.

151

3.33

53.

180

3.13

62.

908

2.89

62.

766

2.72

32.

678

2.67

22.

526

2.51

42.

486

2.44

6

1.29

61.

278

1.26

0

0.00

0

6.21

3.04

2.92

2.77

2.17

1.99

1.00

0.96

0.95

0.93

13C-NMR (150 MHz, CDCl3) chart of 4q

abun

danc

e0

0.1

0.2

0.3

0.4

0.5

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

656

178.

207

163.

596

144.

791

140.

453

140.

157

134.

172

131.

501

129.

308

128.

964

125.

220

68.7

48

60.7

91

53.4

3852

.883

42.9

5442

.829

38.2

24

33.0

63

14.3

15

Page 47: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-47

1H-NMR (400 MHz, CDCl3) chart of 4r ab

unda

nce

01.

02.

03.

04.

05.

06.

07.

08.

09.

010

.011

.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.80

57.

785

7.63

87.

635

7.61

27.

608

7.56

87.

546

7.33

77.

316

7.29

47.

273

6.62

06.

614

6.60

96.

540

6.51

3

4.16

24.

147

4.14

34.

128

4.12

64.

110

3.03

63.

029

2.98

92.

983

2.78

82.

784

2.77

32.

536

2.53

22.

454

2.43

92.

431

2.36

42.

359

1.26

51.

247

1.22

9

4.85

3.21

2.26

2.23

2.22

2.14

2.09

1.26

1.08

1.01

1.01

1.00

0.97

1.83

13C-NMR (150 MHz, CDCl3) chart of 4r

abun

danc

e0.

010.

020.

030.

040.

050.

060.

070.

080.

090.

10.

11

X : parts per Million : Carbon13

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0

194.

513

176.

694

163.

586

145.

997

144.

867

139.

917

139.

860

135.

005

134.

153

132.

257

131.

482

129.

605

129.

213

127.

604

123.

075

68.4

22

60.6

00

53.0

8452

.825

42.8

58

37.8

69

33.2

45

21.8

41

14.2

77

Page 48: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-48

1H-NMR (400 MHz, CDCl3) chart of 4s ab

unda

nce

00.

10.

20.

30.

40.

50.

60.

70.

80.

91.

01.

11.

21.

31.

41.

51.

61.

71.

81.

92.

02.

12.

22.

32.

42.

52.

62.

72.

82.

93.

0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.78

57.

765

7.66

87.

642

7.41

07.

401

7.36

17.

346

7.33

07.

308

7.28

8

6.65

86.

525

6.49

8

5.16

05.

130

5.11

05.

079

3.03

22.

985

2.84

92.

582

2.51

02.

494

2.46

42.

439

2.40

42.

344

2.29

7

12.3

4

4.80

2.00

1.96

1.90

1.12

0.99

0.99

0.99

0.98

0.96

13C-NMR (100 MHz, CDCl3) chart of 4s

abun

danc

e 0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

X : parts per Million : Carbon13

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

194.

907

176.

830

163.

357

145.

776

145.

613

140.

741

140.

598

135.

831

135.

183

134.

868

133.

800

131.

149

129.

510

129.

223

129.

080

128.

852

128.

623

128.

289

125.

896

68.9

3666

.419

53.1

1852

.918

42.9

83

37.7

68

33.4

68

21.8

36

Page 49: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-49

HPLC charts of 4a

HPLC Conditions: Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 215 nm, tR = 24.0 min (major

isomer) and 41.1 min (minor isomer).

HPLC chart of 4b

HPLC conditions: Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 225 nm, tR = 24.6 min (major

isomer) and 41.4 min (minor isomer).

O

TsN

CO2Et

O

Me

H

4a, 94% ee

rac-4a

rac-4b

Page 50: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-50

HPLC charts of 4c

HPLC conditions: Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 250 nm, tR = 27.8 min (major

isomer) and 45.9 min (minor isomer).

HPLC charts of 4d

HPLC conditions: Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 225 nm, tR = 26.8 min. (major

isomer) and 39.0 min min. (minor isomer).

rac-4c

rac-4d

Page 51: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-51

HPLC charts of 4e

HPLC conditions: Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 213 nm, tR = 55.0 min (major

isomer) and 69.2 min (minor isomer).

HPLC charts of 4f

HPLC conditions: Daicel Chiralpak IC column, n-hexane/EtOH = 2/1, 1.0 mL/min, 212 nm, tR = 22.5 min (minor

isomer) and 26.4 min (major isomer).

rac-4e

rac-4f

Page 52: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-52

HPLC charts of 4g

HPLC conditions: Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 254 nm, tR = 16.5 min (major

isomer) and 20.4 min (minor isomer).

HPLC charts of 4h

HPLC conditions: Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 254 nm, tR = 18.5 min (minor

isomer) and 20.5 min (major isomer).

rac-4g

rac-4h

Page 53: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-53

HPLC charts of 4i

HPLC conditions: Daicel Chiralpak IC column, n-hexane/EtOH = 2/1, 1.0 mL/min, 254 nm, tR = 15.1 min. (minor

isomer) and 22.3 min (major isomer).

HPLC charts of 4j

HPLC conditions: Daicel Chiralpak IC column, n-hexane/EtOH = 2/1, 1.0 mL/min, 230 nm, tR = 15.0 min (minor

isomer) and 23.7 min (major isomer).

rac-4i

rac-4j

Page 54: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-54

HPLC charts of 4k

HPLC conditions: Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 200 nm tR = 43.5 min (major

isomer) and 50.7 min (minor isomer).

HPLC charts of 4l

HPLC conditions: Daicel Chiralpak IE column, n-hexane/EtOH = 2/1, 1.0 mL/min, 230 nm, tR = 53.7 min (minor

isomer) and 75.7 min (major isomer).

O

TsN

CO2Et

O

H

4l, 96% ee

rac-4k

rac-4l

Page 55: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-55

HPLC charts of 4m

HPLC conditions: Daicel Chiralpak IB column, n-hexane/EtOH = 2/1, 1.0 mL/min, 245 nm, tR = 11.3 min (major

isomer) and 14.0 min (minor isomer).

HPLC charts of 4n

HPLC conditions: Daicel Chiralpak IC column, n-hexane/EtOH = 2/1, flow rate 1.0 mL/min, 217 nm: 16.8 min. (major

isomer) and 28.8 min (minor isomer).

4n, 94% ee

O

NO

CO2BnH

Ts

Me

rac-4m

rac-4n

Page 56: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-56

HPLC charts of 4o

HPLC conditions: Daicel Chiralpak IE column, n-hexane/EtOH = 2/1, 1.0 mL/min, 212 nm, tR = 35.8 min. (minor

isomer) and 57.8 min(major isomer).

HPLC charts of 4p

HPLC conditions: Daicel Chiralpak ID column, n-hexane/EtOH = 2/1, 1.0 mL/min, 240 nm, tR = 40.9 min, (major

isomer) and 76.3 min (minor isomer).

O

TsN

CO2Et

O

H

4o, 92% ee

rac-4o

rac-4q

Page 57: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-57

HPLC charts of 4q

HPLC conditions: Daicel Chiralpak IB column, n-hexane/EtOH = 2/1, 1.0 mL/min, 254 nm, tR = 15.7 min (major

isomer) and 19.3 min (minor isomer).

HPLC charts of 4r

HPLC conditions: Daicel Chiralpak IC column, n-hexane/EtOH = 2/1, 1.0 mL/min, 245 nm, tR = 13.9 min (minor

isomer) and 21.9 min (major isomer).

rac-4q

rac-4r

Page 58: 20200909 Sasai Takizawa ESI final · 2020. 9. 24. · SI-2 General methods 1H-, 13C-, and 19F-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker

SI-58

HPLC charts of 4s

HPLC conditions: Daicel Chiralpak IC column, n-hexane/EtOH = 2/1, 1.0 mL/min, 217 nm, 23.7 min, (minor isomer)

and 31.2 min (major isomer).

rac-4s