21. khtn, k16. cao quoc duy (18.04.2009)

Upload: tdtv0204

Post on 14-Jan-2016

14 views

Category:

Documents


1 download

DESCRIPTION

lv toan

TRANSCRIPT

  • I HC QUC GIA THNH PH H CH MINH TRNG I HC KHOA HC T NHIN

    FG

    CAO QUC DUY

    PHNG TRNH SNG KIRCHHOFF

    MT CHIU VI IU KIN BIN NEUMANN KHNG THUN NHT

    MT PHN BIN

    LUN VN THC S TON HC

    Chuyn Nghnh: Ton gii tch M S : 60. 46. 01

    Ngi hng dn khoa hc: TS NGUYN THNH LONG i Hc Khoa Hc T Nhin Tp.HCM

    Thnh ph H Ch Minh Nm 2009

  • Lun vn c hon thnh ti Trng i hc Khoa hc T nhin Tp.H Ch Minh

    Ngi hng dn khoa hc: TS Nguyn Thnh Long i hc Khoa hc T nhin Tp. HCM

    Ngi nhn xt 1: TS Trnh Anh Ngc i hc Khoa hc T nhin Tp. HCM

    Ngi nhn xt 2: TS L Th Phng Ngc Cao ng S phm Nha Trang

    Hc vin cao hc: Cao Quc Duy

    Lun vn s c bo v ti hi ng chm lun vn ti trng i hc Khoa hc T nhin Tp. H Ch Minh, vo lc gi ngy thng nm 2009.

    C th tm hiu lun vn ti phng Sau i Hc, th vin trng i hc Khoa hc T nhin Tp. H Ch Minh.

    Thnh Ph H Ch Minh Nm 2009

  • 1

    LI CM N

    Li u tin, ti xin by t lng knh trng v bit n su sc nht n

    Thy hng dn, TS Nguyn Thnh Long. Thy truyn t cho ti nhiu kin

    thc qu bu v tn tnh hng dn ti trong sut kha hc v nht l trong vic

    hon thnh lun vn ny.

    Xin trn trng cm n Thy Trnh Anh Ngc v C L Th Phng Ngc

    c cn thn lun vn ca ti v cho nhiu nhn xt qu bu lun vn c

    hon chnh hn.

    Xin chn thnh cm n Qu Thy C trong v ngoi khoa Ton Tin hc

    trng i hc Khoa hc T nhin Tp. H Ch Minh tn tnh ging dy v

    truyn t kin thc cho ti trong sut thi gian ti hc tp ti trng.

    Xin chn thnh cm n Phng Sau i hc to iu kin thun li cho

    ti hon thnh kha hc v lm cc th tc bo v lun vn.

    Xin chn thnh cm n Ban Gim hiu, Khoa Khoa hc C bn trng

    i hc B Ra Vng Tu to nhiu iu kin thun li v mt cng tc

    ti hon thnh lun vn.

    Xin cm n cc bn hc vin lp Cao hc Gii tch K16 v cc anh ch

    trong nhm seminar do Thy hng dn t chc ng vin v nhit tnh gip

    ti trong sut thi gian ti hc tp v lm lun vn.

    Sau cng, xin gi n gia nh ti tt c nhng tnh cm thn thng, ni

    to iu kin v gip ti vt qua nhiu kh khn trong cuc sng ti tip

    tc con ng hc vn.

  • 2

    MC LC

    Li cm n ...1

    Mc lc .2

    CHNG 0. TNG QUAN V BI TON....3

    CHNG 1. CC CNG C CHUN B ..7

    1.1. Cc k hiu v khng gian hm .7 1.2. Mt s cng c thng s dng .7

    CHNG 2. S TN TI V DUY NHT NGHIM....10

    2.1. Gii thiu ...10 2.2. Thut gii xp x tuyn tnh .11

    2.3. S tn ti v duy nht nghim .25

    CHNG 3. NGHIN CU KHAI TRIN TIM CN NGHIM YU

    CA BI TON NHIU THEO MT THAM S B.33

    CHNG 4. MINH HA BNG MT BI TON C TH 51

    KT LUN 53

    TI LIU THAM KHO 54

  • 3

    CHNG 0

    TNG QUAN V BI TON

    Trong lun vn ny, chng ti xt bi ton gi tr bin v ban u cho

    phng trnh sng phi tuyn c h s cha tch phn thuc dng di y

    ( )2( ) ( , , ), 0 1, 0 ,tt x xxu u t u f x t u x t T = < < < < (0.1) (0, ) ( ), (1, ) 0,xu t g t u t= = (0.2) 0 1( ,0) ( ), ( ,0) ( )tu x u x u x u x= = . (0.3) trong 0 1, , , ,f g u u l cc hm cho trc tha cc iu kin m ta s ch ra sau.

    Trong phng trnh (0.1), s hng phi tuyn ( )2( )xu t l hm ph thuc vo tch phn

    12 2

    0

    ( ) ( , )x xu t u x t dx= . (0.4) Phng trnh (0.1) c ngun gc t phng trnh m t dao ng phi

    tuyn ca mt dy n hi (Kirchhoff [6])

    2

    00

    ( , )2

    L

    tt xxEh uhu P y t dy u

    L y = + , (0.5)

    y, u l vng, l khi lng ring, h l thit din, L l chiu di si dy trng thi ban u, E l mun Young v 0P l lc cng trng thi ban

    u.

  • 4

    Trong [7], Carrier thit lp m hnh di dng

    20 10

    ( , )L

    tt xxu P P u y t dy u = + , (0.6)

    trong 0P , 1P l cc hng s dng.

    Bi ton (0.1) (0.4) c nhiu ngha trong vt l v c hc v c

    nhiu nh ton hc quan tm nghin cu trong thi gian gn y.

    Phng trnh (0.1) vi cc dng khc nhau ca v f v cc iu kin bin khc nhau c kho st bi nhiu tc gi, chng hn:

    Trong [9], Nguyn Thnh Long v Trn Ngc Dim kho st phng

    trnh (0.1) vi 1 , ( , , , , )x tf x t u u u v iu kin bin hn hp thun nht. Trong [10], Nguyn Thnh Long, Nguyn Cng Tm v Nguyn Th Tho

    Trc kho st phng trnh (0.1) vi 1 , ( , , , , )x tf x t u u u v iu kin bin hn hp khng thun nht.

    Khi 0f = v ( )2xu = l hm ph thuc vo 2xu vi iu kin bin hn hp hay Cauchy cng c nghin cu bi nhiu tc gi: Ebihara, Mederios,

    Minranda [15], Pohozaev [16].

    Trong [12 13], Nguyn Thnh Long v cc tc gi nghin cu

    phng trnh (0.1) vi cc s hng phi tuyn v f c dng tng qut hn ( )2, xt u hoc ( )22, , xt u u v ( )22, , , , , ,x t xf x t u u u u u vi cc iu kin bin khc nhau.

    Trong phn u ca lun vn ny, chng ti s lin kt vi phng trnh

    (0.1) mt dy qui np tuyn tnh b chn trong mt khng gian hm thch hp. S

    tn ti v duy nht nghim yu ca bi ton (0.1) (0.4) c chng minh da

  • 5

    phng php xp x Galerkin v k thut compact yu trong cc khng gian hm

    Sobolev.

    Trong phn hai ca lun vn, chng ti nghin cu khai trin tim cn

    nghim yu ca bi ton nhiu theo mt tham s b , trong s hng nhiu l cc s hng phi tuyn trn phng trnh cng dng v biu thc ca iu kin

    u nh bi ton sau

    ( )

    ( )

    ( ) ( )

    2

    1

    0 011

    1 11

    2 2

    1

    ( ) ( , , ), 0 1, 0 ,

    (0, ) ( ), (1, ) 0,

    ( ,0) ( ) ( ) ,

    ( ,0) ( ) ( ) ,

    ( ) 1 ( ) ,

    ( , , ) ( , , ) ( , , ),

    tt x xx

    xN

    kk

    kN

    kt k

    k

    x x

    u u t u F x t u x t T

    u t g t u t

    u x u x u xQ

    u x u x u x

    u t u t

    F x t u f x t u f x t u

    +

    =+

    =

    = < < <

  • 6

    Chng 3, chng ti nghin cu khai trin tim cn ca bi ton ( )Q theo mt tham s b .

    Chng 4, chng ti cho mt v d c th minh ha v khai trin tim

    cn ca bi ton ( )Q . K n l phn kt lun v sau cng l danh mc cc ti liu tham kho.

  • 7

    CHNG I

    CC CNG C CHUN B.

    1.1. Cc k hiu v khng gian hm

    Chng ti b qua nh ngha cc khng gian hm thng dng v cho

    tin li, ta k hiu:

    ( ) ( )0,1 , Q 0,T , 0T T = = > , ( ) ( ) ( ),2 , ,, ,p p m m m m p m pL L H H W W W= = = = ,

    , , ln lt ch chun v tch v hng trn 2L , X

    ch chun trn khng gian Banach X.

    Ta k hiu ( )0, ; , 1pL T X p l khng gian Banach cc hm ( ): 0,u T X o c sao cho

    ( ) ( )1

    0, ;0

    ( ) , 1T pP

    L T X Xpu u t dt p = < + < ,

    v

    ( ) ( )0, ; 0 sup ( ) ,L T X Xt Tu ess u t p = = . Ta vit

    ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )t tt x xxu t u t u t u t u t u t u t u t u t= = = = ln lt thay cho 2 2

    2 2( , ), ( , ), ( , ), ( , ), ( , )u u u uu x t x t x t x t x tt t x x

    theo th t.

    1.2. Mt s cng c thng s dng

  • 8

    Cho ba khng gian Banach 0 1, ,X X X sao cho 0 X X 1X vi cc

    php nhng lin tc sao cho

    0 1,X X phn x, (1.1)

    php nhng 0X X compact. (1.2)

    Vi 0 , 1 , 0, 1iT p i< < = ta t

    ( ) ( )0 10 10, ; : 0, ;p pdvW v L T X v L T Xdt = = .

    Trn W ta trang b chun sau

    ( ) ( )0, ; 0, ;0 10 1W L T X L T Xp pv v v= + . Khi , W l khng gian Banach v ( )0 0, ;pW L T X . Ta cng c kt qu sau lin quan n php nhng compact.

    B 1.1. [Lions [2], trang 57]. Vi cc gi thit (1.1), (1.2) v

    1 , 0, 1ip i< < = th php nhng W ( )0 0, ;pL T X l compact. Sau cng chng ti trnh by mt s kt qu v l thuyt ph.

    Ta thnh lp cc gi thit sau:

    Cho V v H l hai khng gian Hilbert tha cc iu kin sau:

    (i) Php nhng t V H l compact, (1.3)

    (ii) V tr mt trong H . (1.4)

    Cho :a V V \ l dng song tuyn tnh i xng, lin tc trn V V v cng bc trn V . Chnh xc hn, ta gi a l:

    j/ dng song tuyn tnh nu ( , )u a u v tuyn tnh trn V vi mi v V v ( , )v a u v tuyn tnh trn V vi mi u V .

    jj/ i xng nu ( , ) ( , ), ,a u v a v u u v V= .

  • 9

    jjj/ lin tc nu M sao cho ( , ) , ,V V

    a u v M u v u v V . jv/ cng bc nu 0 > sao cho 2( , ) ,

    Va u u u u V .

    Khi ta c kt qu sau m chng minh c th tm thy trong [3 , trang

    87, nh l 7.7].

    B 1.2. Di cc gi thit (1.3) v (1.4) . Khi tn ti mt c s trc

    chun { }1j j

    w= ca H gm cc hm ring jw tng ng vi cc gi tr ring j

    sao cho 1 20 ... ..., limj jj

    < = + v

    ( , ) , , , 1, 2...j j ja w v w v v V j= = Hn na, dy { } { }j j jw w = cng l mt c s trc chun ca V i

    vi tch v hng ( , ).a Ta cng c b nh gi sau m chng minh khng my kh khn:

    B 1.3. Cho dy s thc { }m tha 0 10, 0 ,m m = + 1,m trong 0 1, 0 < > l cc hng s cho trc.

    Khi , 11m

    m .

  • 10

    CHNG II

    S TN TI V DUY NHT NGHIM

    2.1. Gii thiu

    Trong chng ny, chng ti xt bi ton gi tr bin v ban u cho

    phng trnh sng phi tuyn c h s cha tch phn thuc dng di y

    ( )2( ) ( , , ), 0 1, 0 ,tt x xxu u t u f x t u x t T = < < < < (2.1) (0, ) ( ), (1, ) 0,xu t g t u t= = (2.2)

    0 1( ,0) ( ), ( ,0) ( )tu x u x u x u x= = . (2.3) trong 0 1, , , ,f g u u l cc hm cho trc tha cc iu kin m ta s ch ra sau. Trong phng trnh (2.1), s hng phi tuyn ( )2( )xu t l hm ph thuc vo tch phn

    12 2

    0

    ( ) ( , )x xu t u x t dx= . Bng cch i n hm, ta a bi ton khng thun nht (2.1) (2.3) v

    bi ton vi iu kin bin thun nht nh sau.

    Vi [ ]0,1x v 0t , ta t ( , ) ( 1) ( )x t x g t = , (2.4)

    ( , ) ( , ) ( , )v x t u x t x t= , (2.5) ( ), , ( , , ) ( , ) ( , , ) ( 1) ( )ttf x t v f x t v x t f x t v x g t= + = + , (2.6)

    0 0 1 1( ) ( ) ( ,0), ( ) ( ) ( ,0)tv x u x x v x u x x= = , (2.7) cng vi iu kin tng thch

    0 0(0) (0,0) (0), (1,0) (1) 0x xg u u u u= = = = . (2.8)

  • 11

    Khi bi ton (2.1) (2.3) tng ng vi bi ton gi tr bin ban u

    sau y

    ( )2( ) ( ) ( , , ), 0 1, 0 ,tt x xxv v t g t v f x t v x t T + = < < <

  • 12

    Ta cng ch rng iu kin (H4) khng nht thit

    ( )1 [0,1]f C + \ \ . Cho trc 0M > v * 0T > , ta t:

    ( )*

    0 0( , , )

    , sup ( , , )x t v A

    K K M f f x t v

    = = , (2.15)

    ( ) ( )*

    1 1 1 3( , , )

    , sup ( , , )x t v A

    K K M f D f D f x t v

    = = + , (2.16)

    trong ( ) { }* ** * , ( , , ) : 0 1, 0 , .A A M T x t v x t T v M= = Cho trc * 0.T > Vi mi 0M > v *(0, ],T T ta t

    ( ) ( ) ( ){ 2, 0, ; : 0, ;tW M T v L T V H v L T V = v ( )2 ,tt Tv L Q vi ( ) ( ) ( ) }2 20, ; 0, ;, , ,Tt ttL T V H L T V L Qv v v M (2.17)

    ( ) ( ) ( ){ }21 , , : 0, ;ttW M T v W M T v L T L= , (2.18) trong ( )0,TQ T= .

    ( ) ( ) ( )0 * 0 **1 1 0, 0,, C T C TM M T g g g = = + , (2.19) ( )

    ( )210 0

    0, sup ( )

    z M MK K M z

    += = , (2.20)

    ( )( )21

    1 10

    , sup ( )z M M

    K K M z +

    = = . (2.21)

    Trong lun vn ny, chng ti t

    { }1 : (1) 0V v H v= = (2.22) v s dng dng song tuyn tnh sau

    1

    0

    ( , ) ,a u v u vdx u v V= . (2.23)

  • 13

    Trn V ta s dng chun ( , )V

    v a v v v= = . Khi , ta c cc b sau:

    B 2.1. Php nhng t V ( )0C l compact v [ ]( )0 0,1 xC Vv v v = ,

    1 1

    12 xH V H

    v v v v = , vi mi v V .

    B 2.2. Dng song tuyn tnh i xng ( , )a xc nh bi (2.23) lin tc trn V V v cng bc trn V .

    Cc b 2.1 v 2.2 l cc kt qu quen thuc m chng minh ca n c

    th tm thy trong nhiu ti liu lin quan n l thuyt v khng gian Sobolev,

    chng hn trong [1].

    Ch thch:

    Trn V , ba chun sau l tng ng 1 , , ( , )H Vv v v a v v = . V l khng gian con ng ca 1H , do n cng l khng gian Hilbert

    i vi tch v hng ca 1H .

    B 2.3. Tn ti mt c s trc chun Hilbert { }1j j

    w= ca

    2L gm cc

    hm ring jw tng ng vi cc gi tr ring j sao cho 1 20 ... ..., limj j

    j

    < = + ,

    ( , ) , , 1, 2...j j ja w v w v v V j= = Hn na, dy { } { }j j jw w = cng l mt c s trc chun ca V i

    vi tch v hng ( , ).a

  • 14

    Hn na, cc jw tha bi ton bin di y

    ( )

    ( )

    trong 0,1 ,

    (0) (1) 0,

    [0,1] .

    j j j

    j j

    j

    w ww w

    w V C

    = = =

    B 2.3 c suy ra t b 1.2 vi 2H L= , , ( , )V a c xc nh bi (2.22)-(2.23).

    Ta chn s hng u tin 0 0v . Gi s

    ( )1 1 ,mv W M T . (2.24) Ta lin kt bi ton (2.9) (2.11) vi bi ton bin phn sau:

    Tm ( )1 ,mv W M T tha bi ton bin phn tuyn tnh sau y ( ), ( ) ( ), ( ),m m m mv t w t v t w F t w w V+ = , (2.25)

    0 1(0) , (0)m mv v v v= = , (2.26) trong

    ( )21 1( ) ( ) ( ) , ( ) ( , , ( ))m m m mt v t g t F t f x t v t = + = . (2.27) S tn ti ca cc mv c cho bi nh l sau y.

    nh l 2.1. Gi s cc gi thit (H1) (H4) ng. Khi tn ti mt

    hng s 0M > ph thuc vo 0 1, , ,g u u v 0T > ph thuc vo 0 1, , , ,f g u u sao cho, vi 0 0v = , tn ti mt dy qui np tuyn tnh

    { } ( )1 ,mv W M T c xc nh bi (2.25) (2.27). Chng minh nh l 2.1 Bao gm cc bc di y.

    Bc 1. Xp x Galerkin

  • 15

    Gi { }jw l c s trc chun ca V nh trong b 2.3, j j jw w = . t

    ( ) ( )

    1( ) ( )

    kk k

    m mj jj

    v t c t w=

    = (2.28) trong ( ) ( )kmjc t tha h phng trnh vi phn tuyn tnh di y

    ( ) ( )( ), ( ) ( ), ( ), , 1k km j m m j m jv t w t v t w F t w j k+ = , (2.29) vi

    ( ) ( )0 1(0) , (0)

    k km k m kv v v v= = , (2.30)

    trong

    0 0kv v trong 2V H mnh, (2.31) 1 1kv v trong V mnh. (2.32)

    B 2.4. Gi s ( )1 1 ,mv W M T , h (2.28) (2.29) c nghim duy nht ( ) ( )kmv t trn [ ]0, .T

    Chng minh b 2.4: B qua cc ch s m v k trong biu thc ca ( ) ( )kmv t , 0kv , 1kv h (2.28) (2.29) vit li nh sau

    0 1

    ( ) ( ) ( ) ( ), , 1 ,

    (0) : , , (0) : , .

    j j m j j m j

    j j j j j jV V

    c t t c t F t w j k

    c v w c v w

    + = = = = = (2.33)

    vi 1

    ( ) ( )k

    j jj

    v t c t w=

    = . Vit li h (2.33) di dng phng trnh tch phn

    0 0

    ( ) ( ) ( ) ( )t

    j j j m jc t h t d s c s ds

    = , (2.34) vi

  • 16

    0 0

    ( ) ( ), , 1t

    j j j j m jh t t d F s w ds j k

    = + + . (2.35) Ta vit li h ny theo dng phng trnh im bt ng

    ( ) [ ]( ),c t H c t= (2.36) trong

    ( )1( ) ( ),..., ( ) ,kc t c t c t= ( )1[ ]( ) [ ]( ),..., [ ]( ) ,kH c t H c t H c t=

    v

    ( )0 0

    [ ]( ) ( ) ( ) .t

    j j j m jH c t h t d s c s ds

    = (2.37) Ta t

    [ ]( )0 0, ; kY C T= \ , th Y l khng gian Banach vi chun 1 10 1

    max ( ) , ( ) ( ) .k

    jY t T jc c t c t c t

    == =

    D thy : .H Y Y Ta s nghim li rng vi 0n thch hp th 0 0

    1: ( ) :n nH H H Y Y= l nh x co. Tht vy, t (2.34), (2.35), (2.37) v (2.20), vi mi ,c d Y v mi

    [ ]0,t T , ta suy ra

    0 0

    [ ]( ) [ ]( ) ( ) ( ) ( )t

    j j j m j jH c t H d t d s c s d s ds

    20

    0 0

    ( ) ( ) ,t

    k j jK d c s d s ds

    suy ra

  • 17

    201 1

    0 0

    [ ]( ) [ ]( ) ( ) ( )t

    kH c t H d t K d c s d s ds

    212k Yt c d . (2.38) vi

    20k k K = . (2.39)

    T (2.38) v (2.39) ta suy ra

    21[ ] [ ]2kY Y

    H c H d t c d , v bng qui np ta c

    11[ ] [ ]( 1)!

    n n nk YY

    H c H d t c dn

    + +

    11 , .( 1)!

    nk Y

    T c d nn

    + + (2.40)

    Ta chn 0n sao cho

    0 1

    0

    1 1.( 1)!

    nk Tn

    +

  • 18

    vi 2 2( ) ( ) ( )( ) ( ) ( ) ( )k k km m m mX t v t t v t= + , (2.43)

    2 2( ) ( ) ( )( ) ( ) ( ) ( )k k km m m mY t v t t v t= + . (2.44) Khi , ta c b sau

    B 2.5. Ta c

    ( )2 2( ) ( ) ( ) ( ) ( )0

    ( ) ( ) ( )

    0 0 0

    ( ) (0) (0) ( ) ( ) ( )

    2 ( ), ( ) 2 ( ), ( ) ( )

    tk k k k k

    m m m m m m

    t t tk k k

    m m m m m

    S t X Y s v s v s ds

    F s v s ds F s v s ds v s ds

    = + + +

    + + +

    ( ) ( )1 2 3 4(0) (0)

    k km mX Y I I I I= + + + + + . (2.45)

    Chng minh b 2.5. Nhn (2.29) vi ( ) ( )kmjc t , sau ly tng theo j , v t (2.43) ta c

    ( ) ( ) ( ) ( ) ( )

    2( )

    1 ( ) ( ), ( ) ( ) ( ), ( )2

    1 ( ) ( )2

    k k k k km m m m m m

    km m

    d X t v t v t t v t v tdt

    t v t

    = +

    +

    2( ) ( )1( ), ( ) ( ) ( )2

    k km m m mF t v t t v t= + . (2.46)

    Trong (2.29) thay 1j jj

    w w= , sau n gin j , ta c

    ( )( ) ( )( ), ( ) ( ), ( ),k km j m m j m jv t w t v t w F t w + = (2.47) Ta cng c cc kt qu sau

    1( ) ( )

    0

    ( ), ( , ) ( )k km j m jv t w v x t w x dx =

  • 19

    1( ) ( )

    0( , ) ( ) ( ),

    xk km j m jx

    v x t w x v t w== = +

    ( ) ( ),km jv t w= . (2.48)

    ( ) ( )1( ) ( )0

    ( ), ( , ) ( )k km j m jv t w v x t w x dx = 1( ) ( )

    0( , ) ( ) ( ),

    xk km j m jx

    v x t w x v t w== = +

    ( )( ) ( )( )

    (1, ) 1 (0, ) (0)

    ( ),

    k km j j m j j

    km j

    v t w v t w

    v t w

    = ++

    ( ) ( ),km jv t w= . (2.49) 1

    0

    ( ), ( , ) ( )m j m jF t w F x t w x dx = 1

    0( , ) ( ) ( ),

    (1, ) (1) (0, ) (0) ( ),

    x

    m j m jx

    m j m j m j

    F x t w x F t w

    F t w F t w F t w

    == = +

    = + +

    ( ),m jF t w= . (2.50) T (2.47) (2.50) ta suy ra

    ( ) ( )( ), ( ) ( ), ( ),k km j m m j m jv t w t v t w F t w + = (2.51) Nhn (2.51) vi ( ) ( )kmjc t , ri ly tng theo j , ta c

    ( ) ( ) ( ) ( ) ( )( ), ( ) ( ) ( ), ( ) ( ), ( )k k k k km m m m m m mv t v t t v t v t F t v t + = (2.52) T (2.52) v (2.44) ta suy ra

    2( ) ( ) ( )1 1( ) ( ), ( ) ( ) ( )2 2

    k k km m m m m

    d Y t F t v t t v tdt

    = + . (2.53)

  • 20

    T (2.46) v (2.53) ly tch phn ( ) ( )( ) ( )k km md dX s Y sds ds

    + theo t ri cng

    vi 2( )

    0

    ( )t

    kmv s ds ta c (2.45).

    B 2.5 c chng minh. Sau y l nh gi cc tch phn trong v phi ca (2.45):

    Tch phn th nht:

    T (2.27), (2.24), (2.19) v (2.21) ta c

    ( )21 1 11 1 1

    ( ) ( ) ( ) 2 ( ) ( ), ( ) ( )

    2 ( ) ( ) ( ) ( )

    m m m m

    m m

    t v t g t v t g t v t g t

    K v t g t v t g t

    = + + + + +

    ( )21 12K M M + . (2.54) Suy ra t (2.54) v (2.45) rng

    ( )( ) ( )

    2 2( ) ( )1

    0

    2 22 ( ) ( )1 1

    0

    ( ) ( ) ( )

    2 ( ) ( )

    tk k

    m m m

    tk k

    m m

    I s v s v s ds

    K M M v s v s ds

    = +

    + +

    ( )2 ( )1 10 0

    2( )

    tk

    mK M M

    S s ds+ . (2.55)

    Tch phn th hai:

    T (2.27), (2.24) v (2.15) ta c

    [ ]1 122 2 21 0 00 0

    ( ) ( , , ( )) , 0,m mF t f x t v t dx K dx K t T , (2.56) Suy ra t (2.56) v (2.45) rng

  • 21

    ( ) ( )2

    0 0

    2( ) 2 ( )0 0

    0 0

    2 ( ), ( ) 2 ( ) ( )

    2 ( ) ( )

    t tk k

    m m m m

    t tk k

    m m

    I F s v s ds F s v s ds

    K v s ds TK v s ds

    =

    +

    2 ( )0

    0

    ( )t

    kmTK X s ds + . (2.57)

    Tch phn th ba:

    T (2.27), (2.24) v (2.16) suy ra

    ( )( )1 3 1 1( ) , , ( , ) 1 ( , )m m mF s D f D f x s v x s v x sx + + , suy ra

    ( )21 1 1 1( ) 1 ( , ) 2 1m m mV VF s K v x s K vx + + ( )212 1K M + . (2.58)

    T (2.58) v (2.44) (2.45) ta suy ra rng

    ( ) ( )3

    0 0

    2 ( ), ( ) 2 ( ) ( )t t

    k km m m mV

    I F s v s ds F s v s ds=

    ( ) ( )2 22 ( ) 2 2 ( )10 0

    ( ) ( ) 2 1 ( )t t

    k km m mV

    F s v s ds TK M v s ds + + +

    ( )2 2 ( )10

    2 1 ( )t

    kmTK M Y s ds + + . (2.59)

    Tch phn th t:

    T (2.29) suy ra ( ) ( )( ), ( ) ( ), ( ), , 1k km j m m j m jv t w t v t w F t w j k = . (2.60)

  • 22

    Nhn (2.60) vi ( ) ( )kmjc t , ri ly tng theo j , ta c ( ) ( ) ( ) ( ) ( )( ), ( ) ( ) ( ), ( ) ( ), ( )k k k k km m m m m m mv t v t t v t v t F t v t = ,

    suy ra ( ) ( )( ) ( ) ( ) ( )k km m m mv t t v t F t + . (2.61)

    Suy ra t (2.27), (2.20), (2.61) v (2.56) rng

    ( )2 22 2( ) ( )( ) 2 ( ) ( ) ( )k km m m mv t t v t F t + ( )22 ( ) 20 02 ( )kmK v t K + . (2.62)

    T (2.62), (2.44) v (2.45) suy ra rng 22( ) ( ) 20

    4 000 0

    2( ) ( ) 2t t

    k km m

    KI v s ds Y s ds TK= + . (2.63) Tip theo, ta nh gi s hng ( ) ( )(0) (0)k km mX Y+ : T (2.43), (2.44) v (2.30) ta c

    ( )( )

    2 22( ) ( ) ( ) ( )1

    2 22( ) ( )1

    (0) (0) (0) (0) (0) (0)

    (0) (0) (0) (0)

    k k k km m m m m

    k km m m

    X Y v v g v

    v v g v

    + = + + + + +

    ( )( )2 2 2 21 1 0 0 0(0)k k k kv v v g v v= + + + + . (2.64) T (2.64), (2.31) v (2.32), ta suy ra tn ti mt hng s 0M > ph thuc

    vo 0 1, , ,g u u sao cho 2

    ( ) ( )(0) (0)2

    k km m

    MX Y+ vi mi , .m k (2.65) T (2.42) (2.45), (2.55), (2.57), (2.59), (2.63) v (2.65), ta suy ra

  • 23

    ( )

    ( )

    22( ) ( ) 2 ( )1 1

    00 0 0

    22 2 ( ) ( ) 20

    1 000 0

    2( ) ( ) ( )

    2

    22 1 ( ) ( ) 2

    t tk k k

    m m m

    t tk k

    m m

    K M MMS t S s ds TK X s ds

    KTK M Y s ds Y s ds TK

    + + + +

    + + + + +

    ( ) ( )2 ( )1 20

    , ( ) ,2

    tk

    mM C M T C M S s ds + + (2.66)

    trong

    ( ) ( )( ) ( )

    2 2 21 0 1

    2 21 1 0

    20

    , 3 2 1 ,

    2 21.

    C M T TK TK M

    K M M KC M

    = + + + += + (2.67)

    Khi , t (2.67), ta lun lun chn c hng s 0T > sao cho

    ( ) ( )( )( ) ( )( )

    22

    1 2

    1 2

    , exp ,2

    2 , exp 1.T

    M C M T TC M M

    k D M T TD M

    + =

  • 24

    ( )km mv v trong ( )20, ;L T V H yu*, (2.72) ( )km mv v trong ( )0, ;L T V yu*, (2.73) ( )km mv v trong ( )2 TL Q yu, (2.74)

    v

    ( ), .mv W M T (2.75) S dng b 1.1 v tnh compact ca Lions [3], ta c php nhng

    ( ) ( )2 2 20, ; : 0, ;T dvW v L T H v L T Vdt = = ( )2 0, ;L T V l compact. M { } ( )( ) ,kmv W M T nn b chn trong ,TW do c th trch ra mt dy con ca dy { }( )kmv vn k hiu l { }( )kmv sao cho

    ( )km mv v trong ( )2 0, ;L T V mnh. (2.76)

    Ta c t (2.76) rng

    ( )

    0 0

    ( ) ( ) ( ), ( ) ( ) ( ),T T

    km m j m m jt t v t w dt t t v t w dt

    ( )( )0

    ( ) ( ) ( ) ( ) ,T

    km m m jt t v t v t w dt =

    ( )0

    0

    ( ) ( ) ( )T

    km m jK t v t v t w dt

    ( ) ( ) ( )2 2( )0 0, 0, ; 0, 0,km m jL T L T VK v v w D T . (2.77) T (2.72) (2.75) v (2.77), qua gii hn trong (2.29) (2.30) ta c mv

    tha (2.25) (2.27) trong ( )2 0,L T yu. Mt khc, t (2.24), (2.25) v (2.75) ta suy ra

  • 25

    ( ) ( )20, ;m m m mv t v F L T L = + , tc l ( )1 ,mv W M T . nh l 2.1 c chng minh hon ton.

    2.3. S tn ti v duy nht nghim

    nh l 2.2. Gi s (H1) (H4) ng. Khi tn ti mt hng s 0M > v 0T > sao cho bi ton (2.9) (2.11) c mt nghim yu duy nht

    ( )1 ,v W M T . Mt khc, dy qui np tuyn tnh { }mv xc nh bi (2.25) (2.27) hi t

    mnh ti nghim v ca bi ton (2.9) (2.11) trong khng gian hm

    ( ) ( ){ }21( ) 0, ; : 0, ;W T v L T V v L T L = Hn na, ta c nh gi sau

    ( ) ( )20, ; 0, ; ,mm m TL T L L T Vv v v v Ck m + , (2.78) trong 1Tk < v C l hng s ch ph thuc vo 0 1, , , , ,T g f u u v .Tk

    Chng minh nh l 2.2. Nhc li rng, trong phn ny chng ti dng

    chun trn V l ( , ).a Ch rng ( )1W T l khng gian Banach vi chun

    ( ) ( ) ( )21 0, ; 0, ; .W T L T L L T Vv v v = + Chng minh tn ti nghim: Trc ht, ta s chng minh dy { }mv

    Cauchy trong ( )1W T . t 1 ,m m mw v v+= khi mw tha bi ton bin phn sau

    ( )1 1( ), ( ) ( ), ( ) ( ) ( ),m m m m m mw t w t w t w t t v t w + ++ + 1( ) ( ), ,m mF t F t w w V+= , (2.79)

    (0) (0) 0m mw w= = . (2.80)

  • 26

    T (2.79) (2.80) vi ch

    ( ) ( ) ( )( ) ( ) ( )( )

    1

    0

    1

    0

    , ,

    , ,

    , ,

    m m

    xm mx

    m

    v t w v x t w x dx

    v x t w x v t w

    v t w

    ==

    =

    = =

    ta suy ra

    1( ), ( ) ( ),m m mw t w t w t w ++ ( )1 1( ) ( ) ( ), ( ) ( ), ,m m m m mt t v t w F t F t w w V + += + . (2.81)

    Trong (2.81) ly ,mw w= sau khi ly tch phn theo ,t ta c

    ( )1 121 10 0

    ( ) ( ) ( ) 2 ( ) ( ) ( ), ( )m m m m m m mp t s w s ds s s v s w s ds + += + 1

    10

    2 ( ) ( ), ( ) ,m m mF s F s w s ds++ (2.82) vi

    2 21( ) ( ) ( ) ( )m m m mp t w t t w t += + . (2.83)

    T gi thit (H3), (2.21) v (2.27) ta suy ra

    ( ) ( )2 21 1( ) ( ) ( ) ( ) ( ) ( )m m m mt t v t g t v t g t + = + +

    ( )212 2

    10

    sup ( ) ( ) ( ) ( ) ( )m mz M M

    z v t g t v t g t +

    + +

    ( )1 1 12 ( )mK M M w t + ( ) ( )11 1 12 .m W TK M M w + (2.84)

    T gi thit (H4), (2.16), (2.27) v b 2.1 ta cng suy ra

    1 1( ) ( ) ( , , ( )) ( , , ( ))m m m mF t F t f x s v t f x s v t+ =

  • 27

    3 10sup ( , , ) ( ) ( )m m

    v MD f x t v v t v t

    ( )11 12 .m W TK w (2.85) T gi thit (H3) v (2.76), (2.84) (2.85) v (2.54) ta suy ra

    ( )2 2 2 200

    1( ) ( ) 1 ( ) ( )m m m mw t w t w t w t + + +

    0

    11 ( )mp t +

    ( )( )( ) ( )1

    221 1

    0 0

    1 1 1 10 0

    11 2 ( )

    11 2 2 2 ( )

    t

    m

    t

    m mW T

    K M M w s ds

    K M M M K w w s ds

    + + + + + +

    ( ) ( ) ( ) ( )12 2 21 1 20

    , ( ) ( ) ,t

    m m mW TD M T w D M w s w s ds + + (2.86)

    vi

    ( ) ( )( )( ) ( ) ( )( )

    1 1 1 10

    22 1 1 1 1 1

    0

    1, 1 2 2 ,

    11 2 2 2 .

    D M T K M M M K T

    D M K M M K M M M K

    = + + + = + + + + +

    T (2.86) v bt ng thc Gronwall ta suy ra

    ( ) ( ) ( )( )12 2 21 1 2( ) ( ) , exp .m m m W Tw t w t D M T w TD M+ do

    ( )11( ) ( ) ,m m T m W Tw t w t k w + (2.87) vi

  • 28

    ( ) ( )( )1 22 , exp .Tk D M T TD M= T (2.87) ta suy ra

    ( ) ( )1 11m T mW T W Tw k w , v do

    ( ) ( )11 1 0 , , .1mT

    m p m W TW TT

    kv v v v m pk+

    (2.88)

    T (2.88) v ( )22.68 ta suy ra { }mv l dy Cauchy trong ( )1W T v do , tn ti mt v trong ( )1W T sao cho

    mv v trong ( )1W T mnh. (2.89) Cng v { } ( )1 ,mv W M T nn t dy { }mv ta trch ra c mt dy con

    vn k hiu l { }mv sao cho mv v trong ( )20, ;L T V H yu*, (2.90) mv v trong ( )0, ;L T V yu*, (2.91) mv v trong ( )2 TL Q yu, (2.92)

    v

    ( ), .v W M T (2.93) T (2.20) (2.21) v nh gi tng t nh trong (2.84) ta suy ra

    ( )20 0

    ( ) ( ), ( ) ( ) ( ) ( ), ( )T T

    m mt v t w t dt v t g t v t w t dt +

    ( )0

    ( ) ( ) ( ) , ( )T

    m mt v t v t w t dt

  • 29

    ( )( )20

    ( ) ( ) ( ) ( ), ( )T

    m t v t g t v t w t dt + +

    ( )0

    0

    1 1 10

    ( ) ( ) ( )

    2 ( ) ( ) ( )

    T

    m

    T

    m

    K v t v t w t dt

    K M M M v t v t w t dt

    + +

    ( ) ( ) ( )( ) ( )11 10 1 1 1 0, ;2 ,m m L T VW T W TK v v K M M M v v w + + ( )1 0, ; .w L T V (2.94)

    T (2.89) v (2.94) ta suy

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( )20 0

    , , ,T T

    m mt v t w t dt v t g t v t w t dt + ( )1 0, ;w L T V . (2.95)

    T (2.16) v b 2.1 ta suy ra

    ( )

    ( ) ( )0 0

    0

    ( ), ( ) , , ( ) , ( )

    , , ( ) , , ( ) , ( )

    T T

    m

    T

    m

    F t w t dt f x t v t w t dt

    f x t v t f x t v t w t dt

    1 10

    ( ) ( ) ( )T

    mK v t v t w t dt ( ) ( ) ( )11 11 1 0, ;2 , 0, ; .m L T VW TK v v w w L T V (2.96)

    T (2.89) v (2.96) ta suy ra

    ( )10 0

    ( ), ( ) ( , , ( )), ( ) , 0, ;T T

    mF t w t dt f x t v t w t dt w L T V . (2.97)

  • 30

    Khi , ta qua gii hn trong (2.25) (2.27) khi m+ ta thu c t (2.90) (2.93) v (2.95), (2.97) vi ch ( ) ( )2 10, ; 0, ;L T V L T V , rng tn ti

    ( ),v W M T tha phng trnh ( )2( ), ( ) ( ) ( ), ( , , ( )), , .v t w v t g t v t w f x t v t w w V+ + = (2.98)

    v tha iu kin u

    0 1(0) , (0) .v v v v= = (2.99) Mt khc, ta cng c t (2.98) v (2.93) rng

    ( ) ( )2 2( , , ( )) 0, ;v v g v f x t v t L T L = + + . (2.100) Vy, ta thu c ( )1 ,v W M T . (2.88) cho p + , ta thu c (2.78). S tn ti nghim c chng minh hon tt.

    Chng minh s duy nht nghim: Gi s 1 2,v v l hai nghim yu ca

    bi ton (2.9) (2.11) sao cho

    ( )1 , , 1, 2ii iv W M T i = (2.101) vi ,i iM T l M v T tng ng vi , 1, 2.iv i =

    Khi { }1 2 1 2( ) ( ) ( ), 0 min ,w t v t v t t T T T= = tha phng trnh bin phn sau

    ( )1

    1 2 2 1 2

    ( ), ( ) ( ),

    ( ) ( ) ( ), ( ) ( ), , ,

    w t t w t

    t t v t F t F t V

    + = +

    (2.102)

    v tha iu kin u

    (0) (0) 0w w= = , (2.103) trong

    ( )( ) ( ) ( )i it v t g t = + , ( ) ( , , ( )), 1, 2i iF t f x t v t i= = . (2.104)

  • 31

    Trong (2.102), ly w = v lp lun tng t nh trong phn chng minh tn ti nghim, ta thy

    ( )21 1 2 20 0

    ( ) ( ) ( ) 2 ( ) ( ) ( ), ( )t t

    Z t s w s ds s s v s w s ds = + 1 2

    0

    2 ( ) ( ), ( ) ,t

    F s F s w s ds+ (2.105) vi

    2 21( ) ( ) ( ) ( )Z t w t t w t= + . (2.106)

    t { }1 2max ,M M M= , nh gi tng t nh trong (2.54), (2.84), (2.85), ta c

    ( ) ( )2 211 1 1 1 1( ) 2 2t K M M K M M + + , (2.107) 1 2( ) ( )t t ( )1 12 ( )K M M w t+ , (2.108)

    11 2 1 1 2 1 1( ) ( ) ( ) ( ) ( ) 2 ( )HF t F t K v t v t K w t K w t . (2.109) T (2.105) (2.106), (2.107) (2.109) v gi thit (H3), ta suy ra

    2 2

    0

    1( ) ( ) 1 ( )w t w t Z t + +

    ( )

    ( ) ( )22

    1 10 0

    2 21 1 1

    0 0

    11 2 ( )

    11 2 2 ( ) ( )

    t

    t

    K M M w s ds

    K M M M K w s w s ds

    + + + + + + +

    ( ) ( )2 20

    , ( ) ( )t

    D M T w s w s ds + . (2.110)

  • 32

    vi ( ) ( ) ( )( )21 1 1 1 10

    1, 1 2 2 2D M T K M M K M M M K = + + + + +

    T (2.110) v bt ng thc Gronwall suy ra

    2 2( ) ( ) 0w t w t+ , ngha l 1 2v v . S duy nht nghim c chng minh hon tt v nh l 2.2 c chng

    minh hon ton.

  • 33

    CHNG III

    NGHIN CU KHAI TRIN TIM CN NGHIM YU

    CA BI TON THEO MT THAM S B

    Trong chng ny, ta lun gi thit (H1) (H2), (H4) ng, ngoi ra ta

    cn thnh lp cc gi thit b sung:

    (H5) ( )1 , ( ) 0 0,C z z+ \ ((H5) thay cho (H3)) (H6) 1f tha gi thit (H4),

    (H7) 0 1, , 1,..., 1k ku u k N= + tha gi thit (H2).

    Ta xt bi ton nhiu di y, trong l tham s b, 1

    ( )

    ( )

    ( ) ( )

    2

    1

    0 011

    1 11

    2 2

    1

    ( ) ( , , ), 0 1, 0 ,

    (0, ) ( ), (1, ) 0,

    ( ,0) ( ) ( ) ,

    ( ,0) ( ) ( ) ,

    ( ) 1 ( ) ,

    ( , , ) ( , , ) ( , , ).

    tt x xx

    xN

    kk

    kN

    kt k

    k

    x x

    u u t u F x t u x t T

    u t g t u t

    u x u x u xQ

    u x u x u x

    u t u t

    F x t u f x t u f x t u

    +

    =+

    =

    = < < <

  • 34

    ( )( )( )2

    0

    1

    1 ( ) ( ) ( , , ), 0 1, 0 ,

    (0, ) 0, (1, ) 0,( ,0) ( ),( ,0) ( ),

    tt xx

    x

    t

    v v t g t v F x t v x t T

    v t v tQv x v xv x v x

    + + = < < <

  • 35

    l 2.2, rng gii hn 0v trong cc khng gian hm thch hp ca h { }v khi 0 l nghim yu duy nht ca bi ton ( )0Q tng ng vi 0 = tha

    ( )0 1 ,v W M T (3.3) Do , u v = + (tng ng 0 0u v= + ) l nghim yu duy nht ca bi ton ( )Q (tng ng ( )0Q vi 0 = ), hn na ta c nh l sau: nh l 3.1. Gi s (H1) (H2), (H4), (H6) (H7) ng. Khi tn ti

    cc hng s 0M > v 0T > sao cho vi mi , 1 , bi ton ( )Q c duy nht mt nghim yu ( )1 ,u W M T v tha nh gi tim cn ( ) ( )20 00, ; 0, ;L T V L T Lu u u u C + , (3.4)

    trong C l hng s ch ph thuc vo ( )0 1, , , ,T M K M f ( )1 , ,K M f ( )0 , ,K M 0 1, , 1,2,..., .k ku u k N=

    Chng minh nh l 3.1

    t 0 0w u u v v = = th w tha bi ton bin phn sau

    ( )2 01

    01

    1

    11

    ( ), ( ),

    ( ) ( ), ( ) ( ), , ,

    (0) (0) ,

    (0) (0) .

    Nk

    kkN

    kk

    k

    w t w t

    u t u t f t f t V

    w u

    w u

    +

    =+

    =

    + = + = =

    (3.5)

    trong

    1( ) ( , , ( )) ( , , ( ))f t f x t v t f x t v t = + (3.6) Trong ( )1 3.5 , ly w = , ta c

  • 36

    ( ), ( ) ( ), ( )w t w t w t w t+ = ( )2 0( ) ( ), ( ) ( ) ( ), ( )u t u t w t f t f t w t + . (3.7)

    Mt khc, ta c

    ( ) 2 ( ), ( ) 2 ( ), ( ) ,d t w t w t w t w tdt = + (3.8)

    vi

    2 2( ) ( ) ( ) .t w t w t = + (3.9) T (3.7) v (3.8) ta suy ra

    ( )2( ) 2 ( ) ( ), ( )d t u t u t w tdt = 02 ( ) ( ), ( )f t f t w t+ . (3.10)

    Tch phn (3.10) theo t vi ch ( )2 21 1

    1 01 1

    0 ,N N

    k kk k

    k ku u + +

    = == + nh

    gi tng t nh trong (2.86) ta cng thu c bt ng thc sau

    ( )2 21 1

    1 01 1

    20

    0 0

    ( )

    2 ( ) ( ), ( ) 2 ( ) ( ), ( )

    N Nk k

    k kk k

    t t

    t u u

    u s u s w s ds f s f s w s ds

    + +

    = == +

    + +

    ( ) ( )1 2 2 21 0 01 0

    1 2 ( )tN

    k kk

    N u u K M w s ds +=

    + + + ( ) ( )( )1 0 1

    0

    2 2 , ( ) , ( )t

    K M f w s K M f w s ds+ + ( ) ( )1 2 2 21 0

    1

    1N

    k kk

    N u u +=

    + +

  • 37

    ( )( ) ( )220 1 00

    , ( )t

    K M f K M w s ds+ + + ( ) ( )2 21

    0

    2 , ( ) ( )t

    K M f w s w s ds+ + 21 2

    0

    ( )t

    E T E s ds + , (3.11) vi

    ( ) ( ) ( ) ( )( ) ( ) ( )

    12 2

    1 0 1 0 1 01

    2 0 1 0 1

    , , 1

    , , 2 ,

    N

    k kk

    E K M f K M M N u u

    E K M f K M M K M f

    +

    =

    = + + + + = + +

    (3.12)

    Tip theo, do (3.11) v bt ng thc Gronwall ta thu c

    ( )21 2( ) expt E T E T vi mi [ ]0,t T , do

    ( ) ( )20 00, ; 0, ;L T V L T Lu u u u C + , (3.13)

    trong ( )1 22 expC E T E T= l hng s ch ph thuc vo , , ,T M ( )0 1, ,K M f ( ) ( )1 0, , ,K M f K M , 0 1, , 1,2,..., .k ku u k N=

    nh l 3.1 c chng minh hon ton. Trong phn tip theo chng ti nghin cu khai trin tim cn ca u n

    cp 1N + theo , vi 1 . Ta s dng k hiu ( )21 1[ ] ( , , ), [ ] ( , , ), [ ] ( )xf u f x t u f u f x t u u u t = = = ,

    [ ] 1 [ ]u u = + . By gi ta gi thit thm rng

    (H8) ( ), ( ) 0 0,NC z z + \

  • 38

    (H9) ( ) ( )1 1[0,1] , [0,1]N Nf C f C+ + + \ \ \ \ v tha (H9i) 3 (1, , ) 0, 1,...,

    kD f t u k N= = , vi mi 0t v mi u\ , (H9ii) 3 1(1, , ) 0, 1,..., 1

    kD f t u k N= = , vi mi 0t v mi u\ . Gi 0u l nghim ca bi ton ( )0 ,Q ( )1 2 1, ,..., ,Nu u u W M T (vi 0M > v 0T > thch hp) l nghim ca cc bi ton ( ) ( ) ( )1 2, ,..., NQ Q Q tng ng s xc nh sau y:

    ( )1 1 1 1

    1 1 1

    1 01 1 11

    [ ], 0 1, 0 ,(0, ) 0, (1, ) 0,

    ( ,0) ( ), ( ,0) ( ),

    u u F u x t TQ u t u t

    u x u x u x u x

    = < < <

  • 39

    vi cc 0 1[ ] [ , , ,..., ]p p pf f u u u = , 0 1[ ] [ , , ,... ]p p pu u u = c xc nh bi cng thc hi qui

    ( )1 30

    1[ ] [ ]p

    p k p kk

    f p k D f up

    =

    = , (3.19) ( )1 1

    0 0

    1[ ] 2 [ ] , .p p k

    p k z j p k jk j

    p k j u up

    = =

    = (3.20) Ta cng ch rng cc [ ]p f v [ ]p l cc hm bc nht theo cc ,pu

    .pu Nu t ( )1 ,u W M T l nghim yu duy nht ca bi ton ( ),Q th 0

    N ppp

    w u u u h == l nghim yu ca bi ton ( )

    10 1

    11 1

    [ ] [ ] [ ] [ ] [ ]( , ), 0 1, 0 ,

    (0, ) (1, ) 0,( ,0) ,

    ( ,0) ,

    NN

    NN

    w w h w F w h F h w h h hE x t x t T

    w t w tw x uw x u

    ++

    ++

    + = + + + + < < <

  • 40

    ( )0

    1[ ] [ ] , 0 1.!

    p

    p p h p Np =

    = (3.25)

    Chng minh b 3.1:

    D dng thy rng

    0 00[ ] [ ] [ ]f f h f u == = = ( )0, , .f x t u (3.26)

    Vi 1p = , ta c

    ( )1 3 3 0 1 0 3 100 0

    [ ] [ ] [ ] ( ) [ ] [ ] .f f h D f h h D f u u D f u

    == = = = = = (3.27)

    Gi s tnh c [ ]k f v 3[ ]k D f vi 0, 1,..., 1k p= t cc cng thc (3.26) (3.27) v (3.23) th:

    Ta c

    ( ) ( ) ( ) ( )1 1 1 310

    [ ] [ ] [ ] ,p p k p kp

    kpp p k p k

    kf h f h C D f h h

    =

    = = suy ra

    [ ] ( ) ( ) ( )1 1 300 0 0

    1 1[ ] [ ]! !

    p k p kpk

    p pp k p kk

    f f h C D f h hp p

    == = =

    = = ( )1 1 3

    0

    1 ! [ ] !!

    pkp k p k

    kk C D f p k u

    p

    == ( )1 3

    0

    1 [ ] ,p

    k p kk

    p k D f up

    =

    = tc l (3.23) ng. Chng minh tng t (3.24) cng ng.

    Tip theo, ta cng d thy

    ( )0 00[ ] [ ] [ ]h u == = , (3.28) Vi 1p = , ta c

    ( )10

    [ ] [ ] .h

    == (3.29)

  • 41

    nhng

    ( ) ( ) ( ) ( )2 2 2[ ] ,zh h h h = = (3.30) v

    1,

    Np

    pp

    h u =

    = ( )2 2 ,h h h = suy ra

    ( )2 0 10

    2 ,h u u =

    = . (3.31)

    T (3.29) (3.31) suy ra

    ( )21 0 0 1 0 0 1[ ] 2 , 2 [ ] ,z zu u u u u = = . (3.32) Gi s ta tnh c [ ]k v [ ]k z vi 0, 1,..., 1k p= t cc cng thc

    (3.28), (3.32) v (3.25) th:

    Ta c

    [ ]( ) ( ) ( ) ( )1 1 2110

    [ ] [ ]p p k p kp

    kp zp p k p k

    kh h C h h

    =

    = = . (3.33) Mt khc, ta c

    ( ) 1 12 110

    2 , 2 ,m m j m jm

    jmm m j m j

    jh h h C h h

    =

    = = ,

    0

    ! , 0i

    ii h i u i N =

    = ,

    suy ra

    ( ) 12 100 0 0

    2 ,m j m jm

    jmm j m j

    jh C h h

    == = =

    = ( )1 1

    02 ! , !

    mj

    m j m jj

    C j u m j u

    =

    =

  • 42

    ( )1 10

    2 ! ! ,m

    jm j m j

    jj m j C u u

    == . (3.34)

    T (3.25), (3.33) v (3.34) ta suy ra

    ( ) ( )1 2100 0

    1 1[ ] [ ] ! [ ]! !

    p p kpk

    p p k zp p kk

    h k C hp p

    == =

    = = ( )1 11 1

    0 0

    2 ! [ ] ! ! ,!

    p p kk jp k z p k j p k j

    k jk C j p k j C u u

    p

    = ==

    ( )1 10 0

    12 [ ] , ,p p k

    k z j p k jk j

    p k j u up

    = ==

    tc l (3.25) ng.

    Vy, b 3.1 c chng minh. B 3.2. Gi s (H1) (H2) v (H8) (H9) ng. Khi , tn ti mt

    hng s K c lp vi sao cho ( )2

    1

    0, ,

    N

    L T LE K + , (3.35)

    trong K ch ph thuc vo , ,M T N v cc hng s

    ( )*

    30 1,0 ,0 0

    , sup [ ], 1, 2,..., 1,i

    ji

    x t T u M jK M f D f u i N

    == = +

    ( )*

    1 3 10 1,0 ,0 0

    , sup [ ], 1, 2,..., ,i

    ji

    x t T u M jK M f D f u i N

    == =

    ( ) ( )*0 1,0 ,0 0

    , sup [ ], 1, 2,...,i

    ji z

    x t T u M jK M u i N

    == = .

    Chng minh b 3.2:

    Trng hp 1N = , chng minh b 3.1 khng kh khn nn chng ti b qua v chng minh vi 2.N

  • 43

    Bng cch khai trin MacLaurin xung quanh im 0 = ca hm [ ]f h v 1[ ]f h n cp 1N + v cp N ta c

    10 1 1 1

    1[ ] [ ] [ ] [ , , ], 0 1

    Np N

    p Np

    f h f u f R f + +=

    = + <

  • 44

    Tng t, ta cng Khai trin MacLaurin xung quanh im 0 = ca hm [ ]h n cp N ta c

    1

    01

    [ ] [ ] [ ] [ , , ], 0 1N

    p Np N

    ph u R

    = = + <

  • 45

    1( , ) [ ] [ ] [ ] [ ]

    Np

    o p pp

    E x t F h f u h h F u =

    = + 1 1 1

    1 1[ ] [ ] [ ] [ ]

    pNp

    p p i p i p pp i

    f f u F u = =

    = + + ( )1 (1) (1)1 1 2[ , , , , ] [ , , , ]N N NR f f R h ++ +

    ( )1 (1) (1)1 1 2[ , , , , ] [ , , , ] .N N NR f f R h += + (3.46) Bi tnh b chn ca cc hm , , 0, 1,...,i iu u i N = trong khng gian

    ( )10, ;L T H , chng ti thu c t (3.38), (3.39), (3.41), (3.43), (3.45) v (3.46) rng

    ( )21

    0, ,,N

    L T LE K + (3.47)

    trong K l hng s ch ph thuc vo , ,M T N v cc hng s ( ),iK M f , 1, 2,..., 1i N= + , ( )1,iK M f , 1, 2,...,i N= , ( ),iK M , 1, 2,..., .i N=

    Vy, b 3.2 c chng minh.

    By gi ta xt dy hm { }mw c nh ngha nh sau

    ( )0

    1 1 1

    10 1

    11 1

    0,[ ] [ ] [ ] [ ] [ ]

    ( , ), 0 1, 0 , (3.48)(0, ) (1, ) 0,

    ( ,0) ,

    ( ,0) , 1.

    m m m m m

    m mN

    m NN

    m N

    ww w h w F w h F h w h h h

    E x t x t Tw t w t

    w x uw x u m

    ++

    ++

    + = + + + + < < <

  • 46

    1 1

    1 11

    1 0 1

    11 1 1

    [ ] ( , ), 0 1, 0 ,(0, ) (0, ) 0,

    ( ,0) ,

    ( ,0) .

    NN

    NN

    w h w E x t x t Tw t w t

    w x uw x u

    ++

    ++

    = < < <

  • 47

    ( )2 14 N + ( ) ( )( )2 211 1 10, ; 0, ;8 N L T L L T LK T w w ++ + ( ) ( )( )2 21 1 1

    0

    4t

    w s w s ds+ + , (3.53) vi 2 21 1 0 0 1(1 )N Nu K u + += + + . (3.54)

    T (3.53) v bt ng thc Gronwall ta suy ra

    ( ) ( )( )21 1w t w t+ ( ) ( ) ( )( )2 212 1 1 1 1 10, ; 0, ;4 8 exp(4 ), 0NN L T L L T LK T w w T t T ++ + + < c lp vi m v ,

    sao cho

    ( ) ( )2 21

    0, ; 0, ;,Nm m TL T L L T Lw w C m ++ (3.56)

    Tht vy, bng cch ly tch v hng hai v ca ( )13.48 vi mw , sau khi ly tch phn theo t , ta c

    ( )

    2 2,

    22 1,

    0 0

    ( ) ( ) ( )

    ( ) ( ) 2 [ ] [ ], ( )

    m m m

    t tN

    m m m m

    w t t w t

    s w s ds F w h F h w s ds

    ++ =

    + +

    ( )10 0

    2 [ ] [ ] , ( ) 2 ( , ), ( )t t

    m m mw h h h w s ds E x t w s ds + + +

  • 48

    ( ) 22 1 ,0 0

    ( ) ( ) 2 [ ] [ ] ( )t t

    Nm m m ms w s ds F w h F h w s ds + + +

    110 0

    2 [ ] [ ] ( ) 2 ( ) ,t t

    Nm m mw h h h w s ds K w s ds ++ + + (3.57)

    vi

    ( )2, 1 1 1( ) 1 [ ] 1 ( ) ( ) ,2m m mt w h w t h t = + + = + + ( nh) (3.58)

    , 1 1 1

    1 1 1

    ( ) 2 [ ] ( ) ( ), ( ) ( )

    2 [ ] ( ) ( ) ( ) ( )

    m z m m m

    z m m m

    t w h w t h t w t h t

    w h w t h t w t h t

    = + + + + + +

    ( ) 21 12 2 ,K N M + (3.59) v

    ( ) ( )2 21 1[ ] [ ]m mw h h w h h + = + ( )( )1 12 1 1 mK N M w + + , (3.60)

    ( )1 1 1 1 11 1 1 1

    [ ] [ ] [ ] [ ] [ ] [ ]

    [ ] [ ] [ ] [ ]m m m

    m m

    F w h F h f w h f h f w h f h

    f w h f h f w h f h

    + = + + + + + +

    ( )*

    3 3 1 1( , , )

    sup ( , , ) mx t u A

    D f D f x t u w +

    ( ) ( )( )1 1 1 12 , , .mK M f K M f w + (3.61) T (3.57) (3.61) ta suy ra tip

    ( )2 2 2 2,( ) ( ) 2 ( ) ( ) ( )m m m m mw t w t w t t w t+ + ( ) ( )22 22 1 11

    0 0

    2 2 ( ) 2 2 ( )t t

    N Nm mw s ds K T w s ds + + + + +

  • 49

    ( )2 22 10

    2 ( ) ( )t

    m mw s w s ds + + ( ) ( ) ( ) ( )( )2 22 2 22 1 1 2 1 10, ; 0, ;2 2N N m mL T L L T LT K w w + + + + +

    ( ) ( )22 22 1 110 0

    2 2 ( ) 2 2 ( )t t

    N Nm mw s ds K T w s ds + + + + +

    ( )2 22 10

    2 ( ) ( )t

    m mw s w s ds + + ( ) ( )2 21 2

    0

    2 1 ( ) ( ) ,t

    m mw s w s ds + + + + (3.62) vi ( ) ( )( ) ( )( )2 1 1 1 12 , , 2 1 1 .K M f K M f K N M = + + + +

    Nu ta t

    ( ) ( )2 22 2

    0, ; 0, ;,m m mL T L L T Lw w = + (3.63)

    v 1 21 = + + , (3.64) th t (3.62), (3.63) (3.64) v bt ng thc Gronwall ta c

    ( ) ( )22 1 1 2 12 2 exp(2 )N Nm mT K T + + + + . (3.65) Ta vit li (3.65) di dng

    1m m + , (3.66) vi

    ( ) ( )2

    22 1 1

    2 exp(2 )

    2 exp(2 )N NT T

    K T T

    + += = +

    (3.67)

  • 50

    T 1(3.67) ta c th chn 0T > thch hp sao cho 0 1 < . Khi , p dng b 1.3 cho dy { }m xc nh nh (3.66) (3.67)vi ch 0 0 = , ta c

    ( ) ( )2 22 2

    0, ; 0, ;,

    1m mL T L L T Lw w m + . (3.68)

    T (3.67) v (3.68) ta suy ra

    ( ) ( )2 21

    0, ; 0, ;,Nm m TL T L L T Lw w C m ++ , (3.69)

    vi

    12 2

    2

    exp(2 )41 2 exp(2 )T

    K T TCT T

    +=

    l hng s c lp vi m v .

    Mt khc, dy qui np tuyn tnh { }mw xc nh bi (3.48) hi t mnh trong khng gian hm ( )1W T ti nghim w ca bi ton (3.21). Suy ra, cho m+ trong (3.69), ta c ( ) ( )2 2

    1

    0, ; 0, ;

    NTL T L L T L

    w w C ++ , tc l

    ( ) ( )2

    1

    0 00, ; 0, ;

    N NNp p

    p p Tp pL T L L T V

    u u u u C

    +

    = = + . (3.70)

    Tm li, ta c nh l sau :

    nh l 3.2. Gi s (H1) (H3) v (H5) (H9) ng. Khi tn ti mt

    hng s 0M > v 0T > thch hp sao cho vi mi , 1 , bi ton ( )Q c duy nht mt nghim yu ( )1 ,u W M T tha nh gi tim cn n cp 1N + nh trong (3.70), cc hm 0 1, ,..., Nu u u l nghim yu ca cc bi ton

    ( )0 ,Q ( )1 ,..Q ( )..., NQ tng ng.

  • 51

    CHNG IV

    MINH HA BNG MT BI TON C TH.

    Trong chng ny, chng ti xt mt v d c th v khai trin tim cn

    cho bi ton ( )Q ng vi 510, , ( ) , 3.f f u z z N = = = Gi 0 1 2 3, , , ,u u u u u ln lt l nghim ca cc bi ton sau

    ( )

    ( )2 54

    0 01

    4

    1 11

    1 ( ) , 0 1, 0 ,

    (0, ) ( ), (1, ) 0,

    ( ,0) ( ) ( ) ,

    ( ,0) ( ) ( ) .

    tt x xx

    x

    kk

    k

    kt k

    k

    u u t u u x t T

    u t g t u t

    Q u x u x u x

    u x u x u x

    =

    =

    + = < < <

  • 52

    Trong , cc hm , 1, 2, 3pF p = c tnh tng minh nh sau 251 1 0 0 0[ ] ,F u u u u= + 242 2 0 1 0 1 0 1 0[ ] 5 , ,F u u u u u u u u= + +

    24 3

    3 3 0 2 0 1 0 2

    20 1 1 0 1 0 1 0

    [ ] 5 10

    , 2 , .

    F u u u u u u u

    u u u u u u u u

    = + + + + +

    Nu t 30

    ppp

    w u u u h == th w l nghim yu ca bi ton ( ) ( )2 2 25 5

    404

    414

    1 ( ) ( ) ( )

    ( , ), 0 1, 0 ,(0, ) (1, ) 0,

    ( ,0) ,

    ( ,0) .

    w w t h t w w h h w h h h

    E x t x t Tw t w t

    w x uw x u

    + + = + + + + < < <

  • 53

    KT LUN

    Qua lun vn ny, tc gi bc u lm quen vi cng vic nghin cu

    khoa hc mt cch nghim tc v c h thng. Tc gi cng hc tp c cch

    c ti liu v tho lun trong cc nhm sinh hot hc thut. Tc gi bc u

    tm hiu c mt s cng c ca gii tch hm phi tuyn m tc gi p dng

    trong lun vn nh phng php xp x Galerkin, phng php compact yu v

    cc k thut nh gi tin nghim qua gii hn trong cc khng gian hm

    Sobolev. Tc gi cng c lm quen vi phng php khai trin tim cn

    nghim. y l nhng kin thc v cng qu bu m tc gi hc c trong qu

    trnh lm lun vn di s s dn dt ca Thy hng dn. Tuy nhin, do nng

    lc v s hiu bit hn ch ca bn thn nn khng trnh khi nhng sai st, tc

    gi rt mong hc hi t s ng gp v ch bo ca Qu Thy C trong v ngoi

    hi ng. Tc gi xin chn thnh cm n.

  • 54

    TI LIU THAM KHO

    [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    [2] H. Brzis, Analyse Fonctionnelle, Thorie et Applications, Paris, 1983.

    [3] J. L. Lions, Quelques mthodes de rsolution des problmes aux

    limites nonlinaires, Dunod; Gauthier- Villars, Paris. 1969.

    [4] Cng Khanh, Gii tch Ton hc v cc p dng, m s 1.3.

    11/98, ti nghin cu Khoa hc C bn giai on 1998 2000, Bo co

    nghim thu (2001).

    [5] Nguyn Thnh Long, Phng trnh vi phn v h ng lc, m s

    100106, ti nghin cu Khoa hc C bn giai on 2006 2008, Bo co

    nh k kt qu thc hin ti (2007) .

    [6] Kirchhoff, G. R, Vorlesungenber Mathematiche Physik: Machanik,

    Teuber, Leipzig, 1876, Section 29.7.

    [7] Carrier, G. F, On the nonlinear vibrations problem of elastic string,

    Quart. J. Appl. Math. 3 (1945), 57 165.

    [8] Nguyen Thanh Long et al., On the nonlinear vibrations equation with

    a coefficient containing an integral, Zh. Vychisl. Mat. i Mat. Fiz. 33 (9) (1993),

    1324 1332; translation in Comput. Math. Math. Phys. 33 (9) (1993), 1171

    1178.

    [9] Nguyen Thanh Long, Tran Ngoc Diem, On the nonlinear wave

    aquation ( , , , , )tt xx x tu u f x t u u u = asosciated with the mixed homogeneous conditions, J. Math. Anal. Appl. 29 (1997), 1217 1230.

  • 55

    [10] Nguyen Thanh Long, Nguyen Cong Tam, Nguyen Thi Thao Truc,

    On the nonlinear wave aquation with the mixed nonhomogeneous conditions:

    Linear approximation and asymptotic expansion of solution,

    Demonstratio Math. 38 (2) (2005), 365 386.

    [11] Nguyen Thanh Long, Alain Pham Ngoc Dinh, Tran Ngoc Diem,

    Linear recursive schemes and asymptotic expansion associated with the

    Kirchhoff- Carrier operator, J. Math. Anal. Appl. 267 (1) (2002), 116 134.

    [12] Nguyen Thanh Long, Bui Tien Dung, On the nonlinear wave

    equation ( ) ( )2 2, , , , , ,tt x xx x t xu B t u u f x t u u u u = associated with the mixed nonhomogeneous conditions, J. Math. Anal. Appl. 292 (2) (2004), 433 458.

    [13] Nguyen Thanh Long, On the nonlinear equation

    ( ) ( )2 22 2, , , , , , , ,tt x xx x t xu B t u u u f x t u u u u u = associated with the mixed nonhomogeneous conditions, J. Math. Anal. Appl. 306 (2005), 243 268.

    [14] Ebihara, L. A .Mederios, M. M. Minranda, Local solutions for a

    nonlinear degenerate hyperbolic equation, Nonlinear Anal. 10 (1986) 27 40.

    [15] S. I. Pohozaev, On a class of quasilinear hyperbolic equation, Math.

    USSR Sb. 25 (1975) 145 158.