平成28 年度国際石油需給体制等調査(g20 省エネルギー 報告書 … · 1.1 g20...

127
http://www.pwc.com/jp/ja/advisory/ 平成 28 年度国際石油需給体制等調査(G20 省エネルギー 行動計画に係る事業) 報告書 (日本語版) 平成 28 7 委託元:資源エネルギー庁長官官房国際課 委託先:PwC アドバイザリー合同会社

Upload: others

Post on 29-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

http://www.pwc.com/jp/ja/advisory/

平成 28 年度国際石油需給体制等調査(G20 省エネルギー行動計画に係る事業)

報告書

(日本語版)

平成 28 年 7 月

委託元:資源エネルギー庁長官官房国際課

委託先:PwC アドバイザリー合同会社

Page 2: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

II

目次

1. G20 省エネルギー行動計画活動報告 3

1.1 G20 省エネルギー行動計画 電力分野への概要 3

1.2 ワークショップ開催背景と狙い 3

1.3 ワークショップ概要 3

1.4 ワークショップアジェンダ 5

2. ワークショップのサマリー 7

2.1 オープニングリマーク 7

2.2 Session 1: ポリシーとファイナンス 7

2.3 Session 2 :テクノロジー 14

2.4 クロージングリマーク 16

3. テクニカルツアー 17

3.1 スケジュールと概要 17

3.2 川崎火力へのサイト実査概要 18

3.3 磯子火力発電所へのサイト実査概要 19

参考資料 19

Page 3: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

3

1. G20 省エネルギー行動計画活動報告

1.1 G20 省エネルギー行動計画 電力分野への概要

2014 年 11 月の G20 ブリスベンサミットで合意された「省エネルギー行動計画」のうち、発電分野の活動推進のため、

リード国である日本は、高効率低排出(high-efficiency, low-emissions、以下「HELE」)技術に関する知見共有を目的

に、2015 年 5 月にトルコ・イスタンブールにてクリーンコール・ワークショップを、2015 年 7 月にトルコ・アンカラにてワー

クショップと石炭火力発電所における省エネ診断を主催した。これらの成果は 2015 年 10 月の G20 エネルギー大臣会

合に報告され、活動の進捗が歓迎された。

1.2 ワークショップ開催背景と狙い

2015 年のG20 アンタルヤサミットにおいては、「省エネルギー行動計画」を 2016 年も継続的に実施し、エネルギー

資源の効率的な利用を促進することが合意された。本合意を踏まえ、2016 年は、発電部門の高効率化に課題を抱える

新興国のエネルギー政策担当者等を招聘し、日本の最先端の火力発電施設でのテクニカルツアーと、政策担当者・技

術専門家によるワークショップの開催を実施する。これらの活動により、HELE の知見共有を図るとともに、途上国で

HELE を効率的に普及させるための政策手法や、国際的な金融支援のあり方について討議し、2016 年 6 月 30 日に

開催された G20 エネルギー大臣会合に成果を報告する。

1.3 ワークショップ概要

G20 省エネルギー行動計画ワークショップは、2016 年 6 月に東京で 2 日間にわたって開催され、初日(6 月 7 日)は

G20 からのエネルギー政策担当者及び日本の電力関係者による議論、2 日目(6 月 8 日)は都内近辺の火力発電の視

察が行われた。

サイト視察及び技術者協議には、国際機関から 2 名(国際エネルギー機関(IEA)、国際エネルギー・フォーラム

(IEF))、G20 各国から 10 名(本国及び在京大使館からの参加者を含む)、日本の電力関係者(電事連、東芝、三菱日

立パワーシステムズ、国際協力銀行)からの 24 名にて、政策、ファイナンス、技術の三視点から活発な意見交換がなさ

れた。

ワークショップ実施要綱

• 日程 :2016 年 6 月 7 日 10:00-16:30

• 場所 :東京千代田区第一ホテルアネックス 3 階

• 主催 :経済産業省(事務局:PwC アドバイザリー合同会社)

ワークショップの論点

• 途上国における HELE 技術導入を促進するために有効な政策及びファイナンス

• 途上国における HELE 技術の導入・促進における課題

Page 4: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

4

本ワークショップは、主要テーマである「Policy」、「Finance」及び「Technology」の三つで構成されており、参加国から

エネルギー政策、HELE 技術の導入状況やその課題などが議論された。主要なメッセージは以下の通りである。

Policy & Finance

ここ数十年で発展途上国における電力需要は増大の一途である。石炭は比較的廉価な燃

料であり、埋蔵量が大きく安定調達が可能である石炭は、エネルギー安全性、経済成長、

エネルギーアクセスの上、重要な資源であり、重要な電力用燃料として存続し続ける。 様々な国で石炭の効率利用が GHG 排出削減に寄与することが認識されており、HELE 技

術は低炭素社会の実現に重要な役割を果たすことができる。 Technology HELE 技術は長期的には経済的かつ信頼性を確保しつつエネルギーアクセスの向上に寄

与する技術である。 HEE 技術は、超々臨界、超臨界、及び石炭ガス化複合発電(以下、「IGCC」)などの既存

技術のみならず、石炭ガス化燃料電池複合発電技術(以下「IGFC」)といった先進技術も含

まれる。 Report to G20

ワークショップにおいて各国参加者との間で交わした議論とサイト実査の結果は、G20 エネ

ルギー大臣会合への報告書として取りまとめられた。 

本ワークショップは、ホスト国であり G20 省エネルギー行動計画電力分野ワークショップをリードしている日本である資

源エネルギー庁の木原課長からの開会の挨拶によりワークショップは始まり、司会進行は、午前中は木原課長、午後は

PwC アドバイザリー合同会社の富田宏が務めた。

写真 1: 司会の木原課長(左)および富田宏(右)

Page 5: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

5

1.4 ワークショップアジェンダ

ワークショップのアジェンダは以下の通り

Agenda of the workshop • DATE :June 7, 2016 10:00-16:30 • VENUE :3rd floor, Dai-ichi Hotel Annex, 1-5-2 Uchisaiwaicho Chiyoda-ku, Tokyo • HOST :Ministry of Economy, Trade and Industry (METI) in JapanI 10:00–10:15 Opening Session Welcome Remarks by

Mr. Shinichi Kihara, Director of International Affairs Division, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan

10:15–13:00 Session 1: Policy and Finance (Objective)

Present and discuss possible policy and finance measures to facilitate the development of HELE technologies in the countries facing challenges in deploying such technologies. (Moderator) Mr. Shinichi Kihara, Director of International Affairs Division, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan

10:15 – 10:20 Introduction by Mr. Kihara

10:20 – 10:35 Mr. Carlos Fernández Alvarez, Senior Coal Analyst, International Energy Agency (IEA)

- Trends in Efficiency in Power Generation –

10:35 – 10:50 Mr. Nag Naidu, Director & Head of Division Investments, Technology Promotion & Energy Security Division, Ministry of External Affairs, Republic of India

- HELE Technologies –

10:50 – 11:05 Mr. Trevor Holloway, Counsellor (Resources & Industry), Australian Embassy Tokyo, Australia

- Facilitating High-efficiency, Low Emission (HELE) Technologies –

11:05 – 11:20 Mr. Seaga Molepo, IPP Office, IPP OFFICE, Department of Energy, Republic of South Africa

- High Efficiency & Low Emission Technologies –

11:20 – 11:25 Briefing the Indonesian Energy Situation by the moderator

11:25 – 11:45 Coffee Break

11:45 – 12:00 Mr. Takafumi Kakudo, Director of Coal Division, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan

Page 6: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

6

- Japan’s Energy Mix and Clean Coal Technology –

12:00 – 12:15 Mr. Hiroshi Tomita, Senior Manager, PPP and Infrastructure, PwC Advisory LLC

- Energy Efficiency Improvement Potential in the Power Sector –

12:15– 12:30 Mr. Yoshitaka Hidaka, Deputy Director, Division 3, New Energy and Power Finance Department I, Infrastructure and Environment Finance Group, Japan Bank for International Cooperation (JBIC)

- Power Sector Finance in Asia -

12:30 – 13:00 General Discussion

13:00–14:30 Lunch 14:30–16:00 Session 2: Technology

(Moderator) Mr. Hiroshi Tomita, Senior Manager, PPP and Infrastructure, PwC Advisory LLC

14:30 – 14:35 Introduction by Mr. Tomita

14:35 – 14:50 Mr. Murat Hardalaç, Head of Department, General Directorate for Energy Affairs, Ministry of Energy and Natural Resources, Republic of Turkey

- General Energy Overview of Turkey –

14:50 – 15:10 Mr. Kei Imaki, Deputy General Manager, Engineering Department, the Federation of Electric Power Companies of Japan

-Coal-fired Power in Japan and Efforts to Improve Thermal Efficiency -

15:10 – 15:25 Mr. Satoshi Uchida, Director, Executive Vice President, Head of Engineering Headquarters of Mitsubishi Hitachi Power Systems Ltd. (MHPS)

- Environmental Friendly Power Generation Technology –

15:25 – 15:40 Mr. Kensuke Suzuki, Senior Manager, Strategic Marketing & Business Development Department, Thermal & Hydro Power Systems & Services Division, Energy Systems & Solutions Company, Toshiba Corporation

- Toshiba’s Activities in Facilitation of HELE Technologies –

15:40 – 16:00 General Discussion

16:15–16:30 Closing Session Workshop Summary and Closing Remarks by Mr. Shinichi Kihara, Director of International Affairs Division, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan

Page 7: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

7

2. ワークショップのサマリー

2.1 オープニングリマーク

2.1.1 木原 晋一氏、経済産業省資源エネルギー庁

東京開催でのワークショップ参加に関し、多くの国

からの参加に対し感謝。

本会合は経済産業省が主催するものであり、G20省エネ行動計画、電力分野における高効率低排出

に資する技術が主要論点である。

昨年、G20 のホスト国を担当したトルコ政府により、

G20 省エネ行動計画のワークショップ及びピアレビ

ューがアンカラとイスタンブールで開催された。

本日の成果は、中国政府が主催し 6 月 30 日北京

で開催される G20 エネルギー大臣会合へ報告され

ることとなる。

写真 2 木原 晋一氏 

本日の会合に参加各国のエネルギー政策の実務者レベルは、共通の課題を抱えながら実務にあたっていると考え

られる。共通の課題とは、「エネルギー安全性」「経済」「環境」のトリレンマである HELE 技術の促進は、経済成長

を阻害せずエネルギー安全性を確保できる施策であり、CO2 排出削減にも寄与すると考える。 

近年、国際的に重要な動きが二つあった。一つは、昨年末に UNFCCC の COP21 でパリ協定が採択されたことで、

もう一つは OECD 輸出信用部会にて、公的輸出信用アレンジメントにおける石炭火力セクター了解(以下、OECD

ルール)が決まったことである。この二点についても、議論する予定である。

2.2 Session 1: Policy と Finance

2.2.1 Carlos Fernández Alvarez 氏、国際エネルギー機関(IEA)

COP21 の開催に先立って、IEA は 2020 年までにエネルギー関連の GHG 排出をピークにする「Bridge Strategy」

を公表した。これは、既存の技術の活用及び経済成長を阻害しないという条件ででも実現可能でシナリオである。

HELE は、エネルギー消費量と汚染物質・GHG の排出削減に寄与する。旧来の亜臨界かから、超臨界・超々臨界

への移行が世界的に進んでいる。日本では、80 年代、韓国では 90 年代に同じ動きがあったが、近年は中国・イン

ドなどでその傾向が顕著である。

2015 年に合意された OECD ルールにより、OECD 加盟国の機関からの輸出信用は、超々臨界に限定されることと

なる。OECD ルールにより、気候変動と電力供給のバランスが改善すると考える。

また、二酸化炭素回収・貯蔵(以下、「CCS」)が低炭素シナリオの実現に重要な役割を果たすことと考えられ、CCS

の導入がない場合、2 度シナリオを達成するためにさらなる投資が必要となる。

Page 8: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

8

写真 3 Carlos Fernández 氏

2.2.2 Nag Naidu 氏、インド外務省

石炭火力技術の導入及び開発は、3 億人近い国民がいまだに電力にアクセスできないインドに十分かつ廉価な電

源を確保するため重要な施策である。

現時点、導入済の超臨界はインド全体の 16%に過ぎない。インドの既存の石炭火力発電所である亜臨界は非効

率であることから、超臨界または超々臨界の導入にむけた施策が進められている。

既に、第 12 次 5 ヵ年計画(2012 年から 2017 年)で超臨界の導入が進められている。2017 年以降の 5 ヵ年計画で

は、新しい亜臨界の建設を認めないことが提案されている。

インド国内では、GHG 排出、燃料および水消費量を減らすために 25 年以上前に稼働しはじめた古い石炭火力発

電所を閉鎖する計画があり、対象は 37 GW(国内総容量の 12%)の容量に相当する。中央電力庁は、古い石炭火

力発電所を段階的に閉鎖すべく、電力事業者への交渉を始めている。閉鎖の対象となる発電所は、小規模のもの、

蒸気の再熱機能がないものがあげられる。ただし、既に稼働している発電所には電力販売契約(PPA)が締結され

ており、金融機関への返済義務などで廃炉ができない事例もある。

石炭は必要悪。老朽化し環境負荷の高い発電所と比して、クリーン・コール・テクノロジーを用いた発電所のほうが

望ましい。インドにおいて CCS の実用は実験段階であり、再生可能エネルギーが急速に廉価となっている点と

CCS のコストが高い点を鑑みると、CCS の導入には議論の余地がある。

写真 4 Nag Naidu 氏

 

Page 9: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

9

 

2.2.3 Trevor Holloway 氏、オーストラリア大使館

オーストラリアにおいて、HELE 技術の導入は 2000 年に始まり、ブラックコールを利用した超臨界の石炭火力発

電所が 4 か所稼働しています。

HELE 関連の研究として、石炭用の直接噴射エンジン(Direct Injection Carbon Engine)と先進的褐炭活用

(Advanced Lignite demonstration)の二つの研究プログラムがオーストラリア政府によって進められている。前者

は 4 年前からオーストラリア連邦科学産業研究機構(CSIRO)が進めている石炭の有効利用に関するプログラムで

あり、後者では褐炭を高エネルギー製品(合成原油など)に転換する技術の研究である。

オーストラリア政府は、CCS 及び関連技術の研究・開発に 60 億ドルを拠出してきた。ゴーゴン LNG・CCS プロジェ

クトは商業ベースの CCS プラントとして世界最大規模となる見込み。また、カライド酸素燃焼プロジェクトは、日本の

政府及び日本企業と共同して取り組んでいる実証プロジェクである。

オーストラリア産の石炭は熱量が高い上に不純物が少なく、HELE 技術を活用した発電所での使用に適している。

オーストラリア国内には石炭輸出に必要なインフラが完備されており、特に地理的に近い東南アジア諸国での需要

にこたえることができる。

オーストラリアは豊富で廉価な石炭を供給することで HELE 技術の普及を支援し、また国際的 CCS 推進への取り

組みを続けていく。

 

写真 5 Trevor Holloway 氏

2.2.4 Seaga Molepo 氏、南アフリカ IPP オフィス

南アフリカの産業構造はエネルギー集約型であり、それを支えるのは豊富な国内石炭資源を活用した石炭火力発

電である。南アフリカの電化率はわずか 85%であることを受け、長期電源計画である「Integrated Resources Plan

2010-2030」で 56.5 GW(2010 年時点の国内総容量に相当)の容量拡大が計画されている。国営電力会社であ

る南アフリカ電力会社(Eskom)が国内電力の約 95%を供給しており、その約 90%は石炭火力由来。国内の石炭

火力発電所は 13 か所稼働している(再稼働 3 か所含む)すべて亜臨界である。これらの石炭火力発電所における

熱効率は 30%であり、設計値である約 33~35%水準を下回っている。ただ、現在、建設中の発電所は超臨界で

あり、その熱効率は既存発電所よりも比較的高い 38%となる。

国内で容量を増加する際、既存発電所を廃炉した上で新設するか、既存発電所のクリーンコール技術を用いたレト

ロフィットとするかの二択となる。

Page 10: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

10

国際的な気候変動への取り組みの中、多国間開発金融機関は石炭分野での支援に後ろ向きである。また、OECD

加盟国の間で、環境に配慮した石炭火力発電所(超々臨界技術など)にのみ公的輸出信用を制限する OECD ル

ールが合意された。実際、国内で建設が進んでいるメデュピ(Medupi)発電所事業において、資金調達面での影

響が出ている。

石炭火力は雇用やエネルギー供給の面で南アフリカ経済に大きな役割を果たし続ける。ただし、昨年末に国連で

採択されたパリ協定を受け、GHG 排出の観点では、HELE 技術への移行が求められている。

再生可能エネルギーのコスト競争力は急速に向上している一方、HELE 技術の導入障壁はその初期コストの高さ

である。また、IGCC や IGFC について、商業用プラントとして稼働することが途上国での展開に寄与すると考える。

 

  写真 6 Seaga Molepo 氏

 

2.2.5 覚道崇文氏、資源エネルギー庁 石炭課長

エネルギーを取り巻く国内外の環境の著しい変化に対応するため、2014 年 4 月 11 日に「エネルギー基本計画」が

閣議で決定された。

エネルギー基本計画における基本方針である、「安定供給(エネルギー安全保障)」、「コスト削減(経済性)」、「環

境」と「安全」の「3E + S」を確保することである。その中で、石炭は「安定供給性や経済性に優れた重要なベースロ

ード電源の燃料」と位置付けられている。

発電効率を大きく向上させる技術(IGCC 等)の開発をさらに進めることで、発電量当たりの温室効果ガス排出量を

抜本的に下げることを目指す。こうした高効率化技術等を海外でも導入を推進していくことにより、地球全体で環境

負荷の低減と両立していく必要がある。

我が国の石炭火力は、現在、微粉炭火力の超々臨界が最高効率の技術として実用化されている。 今後、微粉炭

火力の効率向上と先進超々臨界圧火力発電(A-USC))を進めるとともに、亜瀝青炭や褐炭も使用可能な IGCC、

IGFC の技術開発を進めることで、更なる高効率化を目指す。

炭素回収、利用および貯留(CCUS)技術は発電所から排出される CO2 をほぼゼロにするためにキーとなる技術で

ある。コストと立地確保など、CCUS の実現には多くのハードルがあるが、2030 年以降の大幅な CO2 排出量削減

に向けて、日本政府は CCUS に関連する様々な研究、開発・実証プロジェクトを推進している。

Page 11: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

11

写真 7 覚道崇文氏

2.2.6 富田宏、PwC アドバイザリー合同会社 PPP&I 部門

石炭火力及びガス火力における発電効率は年々改善されているが、国によってその発電効率は大きく異なる。燃

料資源を海外からの輸入に依存する日本は、長年、エネルギー効率の改善施策により高い水準を保っている。

日本の電力会社は稼働中発電所の効率を改善するために種々な対策を実施している。日本のような稼働中発電

所における発電効率の改善に関する技術経験を国際的に共有・移転することで、世界各国の発電効率改善に寄

与する。

PwC では毎年、G20 各国の低炭素化動向の指標である Low Carbon Economy Index(LCEI)の調査分析を行っ

ている。最新の報告書(2015 年版)では、2℃目標を達成または少なくとも 270 ギガトン CO2 を削減する必要があ

り、そのためには炭素強度(Carbon Intensity)を毎年 6.3%改善させる必要があると指摘している。しかし、G20 各

国から国連に提出された約束草案(INDC)が順守されたとしても、炭素郷土は毎年 3%の改善にとどまり、脱炭素

化に向けたさらなる動きが必要である。

新規の発電所建設にあたり高効率技術の導入を促進する国は多いが、既存発電所への効率改善を促す国は少

数派である。高効率機器の導入によるポテンシャル同様、O&M 改善による排出削減ポテンシャルは高く、各国政

府は O&M の改善を政策により促すことが必要だと考える。

 

写真 8 富田宏

Page 12: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

12

2.2.7 日高啓貴氏、株式会社国際協力銀行 電力・新エネルギー第 1 部

国際協力銀行(JBIC)は、日本政府 100%出資の政策金融機関である。その金融スキームには、日本企業による

海外への機械・設備等の輸出ならびに技術の提供に必要な資金を融資する輸出金融と、日本企業が、海外のイン

フラ事業や海外 M&A 等を行う際の資金を融資する投資金融等がある。

JBIC は、HELE 技術関連の投融資実績を数多く有しており、アフリカで最初の超々臨界石炭火力発電プロジェク

トであるサフィ火力発電プロジェクト(超々臨界、1,250MW))にプロジェクト・ファイナンスにより資金拠出(2014 年

9 月承諾)した。また、米国における炭素回収・石油増進回収プロジェクト(CO2-EOR)案件へのファイナンス実績

がある。

コンバインドサイクル発電(IGCC)等のクリーンコール技術を用いた発電所の初期コストは比較的高価になる傾向が

ある。しかし、操業フェーズで発生する費用を抑えられ、結果的にライフサイクル全体でみればコスト面のメリットが

あると考える。

 

写真 9 日高啓貴氏

2.3 2.3.1 Murat Hardalaç 氏、トルコ エネルギー天然資源省

トルコの電源は、総容量 75GW に上り、石炭火力が全体の 28%、ガス火力が 38%を構成している。90 年代以来、

設備容量は飛躍的に増加しており、その傾向は今後も続くと考えられる。今後も増加する電力需要を満たすために、

年間 100 億米ドルの投資が必要となる。

輸入石炭を使用する火力発電所を含め、現在の石炭火力発電所の総容量は 16,000MW を超える。そのうち、二

か所の発電所は超臨界だが、それ以外はすべて亜臨界である。国産石炭は低品質のため、国内産石炭を利用し

た発電所には特別な設計および機器を要する。

昨年、パリ協定が採択された COP21 が開催される前に、トルコ政府は 2030 年(2020 年から 2030 年)の温室効

果ガス排出量を Business as Usual 比で 21%削減する目標を掲げた約束草案(INDC)を国連に提出。

トルコ政府はトルコのエネルギー長期エネルギー計画である“IMPORTANT TARGETS OF TURKEY’S ENERGY

EFFICIENCY STRATEGY PAPER 2012- 2023“を策定。同計画では、全国の石炭火力発電所の平均熱効率を

Page 13: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

13

2023 年までに 45%以上(廃熱回収も含む)に向上させることを目指している。そのためには、HELE 技術、特に石

炭火力発電関連技術は重要な役割を果たすと考えている。

写真 10 Murat Hardalaç 氏 

 

 

2.3.2 Session 1 Q&A 及びジェネラルディスカッション

(経済産業省)IEA に質問。2℃目標に向けたシナリオにつき、CCS の費用はどう考えるのか。

(IEA)我々のシナリオに基づくと、2050 年までに CCS により 6G トンの CO2 を貯蔵するのがコストを抑制すること

ができる。GHG 排出削減の総費用は、CCS の導入を伴わないシナリオより CCS を伴うシナリオのほうが提言できる。

(IEA)PwC のプレゼンテーションの中で、既存設備における効率改善への取り組みの重要性が印象深かった。

(PwC)プレゼンテーションで述べた通り、エネルギー効率改善には新しい発電所と既存の発電所の二つに分類で

きる。インドには既存の発電所における効率改善を促進する制度があり、注目に値する。

(METI) OECD ルールは各国の発表で触れられている通り、注目度の高い議題。インド、トルコ、南アフリカそれぞ

れの参加者から、自国への影響につき意見をもらいたい。

(インド)インド国内での新規案件は、超臨界及び超々臨界などの HELE 技術が中心となる。また、OECD 非加盟

国からのファイナンスにも競争力がある。

(南アフリカ)OECD 公的輸出信用アレンジメントでは、輸出信用が超々臨界などに限定されている。火力発電所は

キャピタルコストが高額であり、長期のファイナンスを要するため、それらをカバーする公的輸出信用は欠かせない。

(トルコ)手短に述べると、本件でトルコは非常に難しい状況にある。

(METI)南アからの発表に A-USC が言及されていたが、南アでの A-USC の取り組みについて教えてほしい。

(南アフリカ)エネルギー省から発表されたエネルギー政策では、A-USC の導入可能性について言及されている。

これは、OECD アレンジメントの結果を受けたもの。現在、詳細な計画を検討中である。

Page 14: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

14

2.4 Session 2 :テクノロジー  

2.4.1 今木圭氏、電気事業連合会 工務部

電気事業連合会(以下、「電事連」)は、日本の電気事業を円滑に運営していくことを目的として、1952 年に全国の

主要電力会社によって設立された。

日本の電力会社は、安全を大前提として、エネルギーの安定供給、経済性、環境保全を同時達成するような“S+

3E”を達成することに取り組んでいる。とくに、火力発電分野での経済性を達成するためには、熱効率の改善と維

持に関する活動が非常に重要である。

日本の大手電力会社の発電所の技術者は、発電機の運転(オペレーション)を行う部門とメンテナンスを行う部門、

熱効率を管理する部門と、3 つのグループに分かれていることが一般的。各部門は、互いに異なる、時には相反す

るミッションを互いにけん制しながら、かつコミュニケーションを密にとりながら実施することで、緊張感が生まれ、抜

けの無い、適切なメンテナンスにつながる。

そのような組織構造により、コストとベネフィット(稼働率及び効率)を考慮にいれた最善の操業が可能となる。

 

写真 11 今木 圭氏 

 

2.4.2 内田聡氏、三菱日立パワーシステムズ株式会社

三菱日立パワーシステムズ株式会社は、2014 年に三菱重工業株式会社と株式会社日立製作所が両社の火力発

電システム事業を統合し誕生した会社である。 

ガスタービン「J シリーズ」は、日本の国家プロジェクトの一環で開発された 1,700℃級ガスタービン技術開発の成果

をもとに開発された製品で、タービン入口温度 1,600℃を達成し、高い効率性を達成した。

J シリーズは 2016 年までに全世界で 45 基納入されており、本会合 2 日目にテクニカルツアーで訪れる川崎発電

所にも世界最大級のシングル・シャフト形式のタービンが納入されている。

IGCC は、石炭をガス化することで蒸気タービンにガスタービンを組み合わせた発電(コンバインドサイクル発電)を

行うことで、従来型石炭火力から更なる高効率化を実現することができ、CO2 排出削減に貢献する最先端の技術

である。IGCC の強みの一つに、多様な炭種に対応できることが挙げられる。これまでの石炭火力では高い品質の

石炭が必要であったのに対し、IGCC では低品位炭を活用することができる。

Page 15: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

15

勿来 IGCC 発電所は 2007 年に実証プラントとして稼働を開始し、2013 年 7 月に商業運転を開始した。同発電所

は、空気吹き&乾式給炭の技術により、42.9%(LHV)の発電所熱効率を達成した。

MHPS は高効率ガス火力や石炭火力発電などの HELE 技術分野でのリーディングカンパニーであり、これらの技

術の普及により、世界的な CO2 排出削減に寄与する。

写真 12 内田聡氏 

2.4.3 鈴木健介氏、株式会社東芝 エネルギーシステムソリューション社

東芝は、最先端の発電施設をはじめとしたエネルギー分野において、国際的に製品を提供してきた実績を有する。

火力発電分野の主要製品ラインナップは蒸気タービン、発電機、及び熱交換機と制御システムであり、2015 年 12

月時点で 1,953 基、容量 188,398 MW に相当するタービンを納入している。

東芝は、顧客のニーズに応じた様々なスペックのタービン・発電機をカバーしているインテグレートサプライヤーとし

て、高効率の火力発電所の開発を継続しております。 

歴史的に、超臨界及び超々臨界の技術分野で東芝は先端的役割を果たしており、現在は先進超々臨界圧技術の

開発を進めている。A-USC の要素技術に関する研究開発は最終フェーズである 15000  時間に上る主要機器の実

験が完了し、東芝としては A-USC の提案書を提示できる段階にある。

東芝は、顧客のニーズに応じて、新規発電所の機器納入や老朽化した既存発電所のレトロフィット等、幅広いソリュ

ーションを提供していく。

写真 13 鈴木健介氏 

Page 16: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

16

2.4.4 Q&A 及びジェネラルディスカッション

(IEA)IGCC および A-USC の商業プラントは何年に提供可能となるか

(MHPS)勿来では実証実験用の部品を商用プラントとして耐えうる部品に変更し、商用プラントを稼働させた。実証

プラントを転用する形だが、商用プラントは既に商業運転を開始している。

(東芝)A-USC の実証実験は 2016 年末に完了する予定。東芝としては、A-USC 向け発電機及びタービン提供の

提案をする準備がある。

(南アフリカ)勿来発電所の IGCC プラントは、実証実験用から商業用プラントに転換されたが、費用対効果で他の

技術と競争力を持つのか。新興国のような IGCC などの新技術の導入の際、コスト及び実績が主な関心事である。

(MHPS) 発表の中でも触れたとおり、2021 年 9 月稼働予定の 540MW 規模のものが広野に、2020 年 9 月稼働

予定の 540MW 規模の福島復興電源が勿来の合計 2 か所で IGCC 技術を用いた商用プラントが計画されている。

IGCC にはすでに実績があり、必要であれば商用プラントとして途上国などにも提案することは可能である。

(南ア)電事連の発表の中で、専門性やミッションが異なる三つの部署があるという説明があったが、それは発電所

ごとに異なるチームがいるということか。

(電事連) 日本では、各発電所別に担当者が配置され、各発電所に三つの部署が存在している。

(南アフリカ)また。毎日の維持管理の際に、発電所の稼働を止めることはあるか。石炭火力などはベースロード電

源としての役割を持っているが、稼働を止める必要があれば大きな影響がある。

(電事連) 定期点検で 2-3 ヶ月稼働を止めることはあるが、日常的に行う維持管理業務が発電所の稼働に影響する

ことはない。

(南アフリカ) 毎日の維持管理の際に、発電所の稼働を止めることはあるか。石炭火力などはベースロード電源とし

ての役割を持っているが、稼働を止める必要があれば大きな影響がある。

(電事連) 定期点検で 2-3 ヶ月間稼働を止めることはあるが、日常的な維持管理が発電所の稼働に影響することは

ない。

2.5 クロージングリマーク

2.5.1 木原 晋一氏、経済産業省資源エネルギー庁

本日は様々な国からの参加いただき、皆様に改めて感謝の意を伝えたい。本日のワークショップを終わらせる前に、

本日の議論を総括したい。

ここ数十年、発展途上国における電力需要は増加の一途である。石炭は比較的廉価であり、埋蔵量が多く安定調

達が可能であるため、エネルギー安全性、経済成長、エネルギーアクセスの上、重要な資源であり続ける。

Page 17: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

17

また、様々な国において、石炭の効率的利用は GHG 排出削減に寄与すると認識されている。HELE 技術は低炭

素社会の実現に重要な役割を果たすことができると考えられている上に、長期的に経済的かつ信頼性を確保しつ

つエネルギーアクセスの向上に寄与する技術である。なお、HEE 技術は、超臨界、超々臨界、及び石炭ガス化複

合発電(IGCC)などの既存技術のみならず、石炭ガス化燃料電池複合発電技術(IGFC)といった先進技術も含ま

れる。なお、本日の会議で HELE 技術の普及にかかる政策は、各国で大きく異なることが確認された。また、途上

国においても、亜臨界から超臨界・超々臨界に移行しつつあることを確認した。

また、本会議でファイナンスの課題も確認された。昨年、OECD ルールが合意された結果、OECD 加盟国からの輸

出信用機関からの公的輸出信用は超々臨界に限定されることとなる。初期コストが高く長期のファイナンスが必要と

なる火力発電の新設へのファイナンス組成に公的輸出信用は必要不可欠である一方、OECD ルールの合意により

石炭火力発電へのファイナンス組成が難しくなる懸念が途上国より示された。

ワークショップにおいて、発電所における効率改善において日々の運用及びメンテナンスでの工夫が重要であるこ

とを確認した。電事連からの発表内容にもあったように、日本の電力会社では、火力発電所、特に石炭火力発電所

における発電効率を世界最高水準で維持するために、組織的対応が重要だと分かった。HELE 技術の新規導入

以外にも、既存の発電所における適切な O&M やレトロフィットが発電効率の改善に寄与することを確認した。

また、勿来発電所で IGCC 実証プラントが商用プラントに転換されたように、最先端技術も実現段階に近づいてい

る。今後、実績を積み重ねることで、途上国における HELE 技術が促進すると考えられる。

ワークショップにおいて各国参加者との間で交わした議論は非常に有意義であり、今後も継続して意見交換をして

いきたい。

写真 14 開場の様子

 

3. テクニカルツアー

ワークショップの翌日川崎ガス火力発電所と磯子石炭火力発電所へのテクニカルツアー(サイト実査)を実施した。

川崎ガス火力発電所は、日本で初めて 160oC 級コンバインドサイクル技術がユーティリティで導入された発電所で

あり、磯子火力発電所は超々臨界圧の技術が導入された石炭火力発電所である。

3.1 スケジュールと概要

日時: 2016 年 6 月 8 日 09:00-17:00

場所 : テクニカルツアーの訪問先は以下の通り

川崎火力発電所(ガス火力)、川崎市

Page 18: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

18

磯子火力発電所(石炭火力)、横浜市

主催 : 経済産業省

スケジュール

9:00-10:00 - Move to Kawasaki Thermal Power Plant

10:00-10:10 - Arrival at Kawasaki Thermal Power Plant

10:10-12:10 - Presentation from power company - Tour at the power plants - Q&A session and discussion

( with interpreter EN-JPN)

12:10-12:30 - Move to the restaurant

12:30-13:30 - Lunch buffet at “Washington Hotel Sakuragicho” in Yokohama City

13:30-14:00 - Move to Isogo Thermal Power Plant by

14:00-16:00 - Presentation from power company - Tour at the power plant - Q&A session and discussion

( with interpreter EN-JPN)

16:00-17:00 - Move to Dai-ichi Hotel Annex , 1-5-2 Uchisaiwaicho Chiyoda-ku, Tokyo

17:00 End of the Technical Tour

3.2 川崎火力へのサイト実査概要

東京電力グループが運営している川崎火力発電所には、「MACC(More Advanced Combined Cycle)」技術と呼

ばれる高効率機器が導入されている。

MACC 発電はガスタービン入口の燃焼ガス温度をさらに高温化した高効率・大容量の発電方式で、1,500℃級ま

で高温化することで、58.6%の熱効率を実現。また、2016 年 1 月に導入された MACCⅡでは MACCⅡ発電は、

ガスタービン入口の燃焼ガス温度を 1,600℃級に高めることで、MACC発電の熱効率 58.6%をさらに上回る、世

界最高水準の熱効率約 61%を実現(現在稼働中の発電所に限る)。

また、この発電所には最新の低 NOx バーナー(窒素酸化物) や高効率脱硝装置が導入されているなど高い環境

適合性を有している。

本ワークショップの参加者は、東京電力フュエル&パワー及び東京電力ホールディングによる施設案内の後、技術

にかかる詳細や及び LGN の調達方針等について議論がなされ、知見が共有された。

 

Page 19: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

19

3.3 磯子火力発電所へのサイト実査概要

磯子発電所は総出力 1200MW の超々臨界圧石炭火力発電所であり、横浜市街からわずか 6 キロしから離れて

いない場所に位置している。本発電所は、日本国内の発電会社に電力を供給している電源開発(J-POWER)によ

り運用されている。

日本政府は、HELE 技術である高効率石炭火力発電技術を支援する方針を掲げており、磯子発電所はその先駆

的事例である。磯子火力発電所では、最先端の蒸気条件(主蒸気/再熱蒸気温度:600C/620C)を用いたで USC

技術が用いられており、エネルギー効率は 43%(HHV)を達成している。この結果、電力排出係数(CO2 ton/

kWh)が既存発電所と比して約 17%改善し、地球温暖化対策に貢献している。

本発電所の見学後、ワークショップの参加と使用している石炭などにつき意見交換がなされ、知見が共有された。

参考資料

別添 1 参加者一覧

別添 2 発表者資料 国際エネルギー機関

別添 3 発表者資料 オーストラリア大使館

別添 4 発表者資料 南アフリカ IPP オフィス

別添 5 発表者資料 資源エネルギー庁

別添 6 発表者資料 PwC アドバイザリー合同会社

別添 7 発表者資料 トルコ エネルギー天然資源省

別添 8 発表者資料 電気事業連合会

別添 9 発表者資料 三菱日立パワーシステムズ株式会社

別添 10 発表者資料 株式会社東芝 エネルギーシステムソリューション社

<了>

Page 20: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

コンタクトパーソン Participations(actual) 管理用

Name Organization Presentation7th(Thu)

AM7th(Thu)Lunch

7th(Thu)PM

7th(Thu)Reception

8th(Wed)All day

(7日または8日のいずれかに参加す

る方)

1 Australia Mr.Trevor HollowayCounsellor (Resources & Industry),Australian Embassy Tokyo

○ ○ ○ ○ ○ ○ ○

2 Australia Ms.Masako YodaSenior Research Officer (Resources &Industry),Australian Embassy Tokyo

- ○ ○ ○ ○ × ○

3 India Mr. Nag Naidu

Director & Head of Division Investments,Technology Promotion & Energy SecurityDivision,Ministry of External Affairs

○ ○ ○ ○ ○ × ○

4 Japan Mr. Satoru Watanabe

Assistant Director,Coal Division,Agency for Natural Resourcesand Energy,Ministry of Economy, Trade and Industry of

- ○ ○ × × × ○

7 Turkey Mr. Murat HardalaçHead of Department,General Directorate for Energy Affairs,Ministry of Energy and Natural Resources

○ ○ ○ ○ ○ ○ ○

8 Turkey Mr. Musa DemirChief Commercial Counsellor,Turkish Embassy in Japan

- ○ × × × × ○

9 Turkey Ms. Izumi SaitoCommercial Section,Turkish Embassy in Japan

- ○ × × × × ○

10 South Africa Mr. Seaga MolepoIPP OFFICE,Department of Energy, Republic of South Africa

○ ○ ○ ○ ○ ○ ○

14 Mexico Dr. Sergio InclánRepresentative in Japan,Ministry of Economy in Mexico

- × × × × ○ ○

15 Mexico Mr. Javier SanchezTrade and Investment Analyst,Representative Office of the Ministry ofEconomy of Mexico in Japan

- × × × × ○ ○

16 Germany Mr. Marco SCHULDTFirst Secretary of Economic Affairs,Embassy of the Federal Republic of Germanyin Tokyo

- ○ ○ ○ ○ × ○

17 IEA Mr.Carlos Fernández AlvarezSenior Coal Analyst,International Energy Agency (IEA)

○ ○ ○ ○ ○ × ○

18 IEF Mr. Christof van AgtSenior Energy Analyst,International Energy Forum (IEF)

- ○ ○ ○ ○ ○ ○

19 Japan Mr. Yoshitaka Hidaka

Deputy Director,Division3,New Energy and Power Finance Department I,Infrastructure and Environment Finance Group,Japan Bank For International Cooperation

○ ○ × × × × ○

20 Japan Mr. Kei Imaki

Deputy General Manager,Engineering Department,The Federation of Electric Power Companies ofJapan

○ × × ○ × × ○

21 Japan Mr.Keiji Fujimoto

Deputy General Manager,Siting and Environment Department,The Federation of Electric Power Companies ofJapan

○ ○

22 Japan Mr.Jun Mitsuda

Manager,Engineering Department,The Federation of Electric Power Companies ofJapan

○ ○

23 Japan Mr. Kensuke Suzuki

Senior Manager,Strategic Marketing & Business DevelopmentDepartment,Thermal & Hydro Power Systems & ServicesDivision,Energy Systems & Solutions Company,Toshiba Corporation

○ × × ○ × × ○

24 Japan Mr. Noriaki Maruo

Senior Manager,Business Strategy and Planning Division,Energy Systems & Solutions Company,Toshiba Corporation

- × × ○ × × ○

25 Japan Mr. Satoshi Uchida Director, Executive Vice President,Head of Engineering Headquarters ofMitsubishi Hitachi Power Systems, Ltd.

- × × ○ × × ○

26 Japan Mr. Kota NagamoriDeputy Director,International Sales & Marketing Department,Mitsubishi Hitachi Power Systems, Ltd.

- × × ○ × × ○

41 Japan Mr. Yosuke Torimoto

Senior Deputy ManagerExternal Relations Group,Business Development & Strategic PlanningDepartment,Business & Strategic Planning Headquarters,Mitsubishi Hitachi Power Systems, Ltd.(MHPS)

- × × ○ × × ○

27 Japan Mr. Shinichi Kihara

Director,International Affairs Division,Agency for Natural Resources and Energy,Ministry of Economy, Trade and Industry(METI)

○ ○ ○ ○ ○ × ○

28 Japan Mr. Takafumi Kakudo

Director,Coal Division,Agency for Natural Resources and Energy,Ministry of Economy, Trade and Industry(METI)

○ ○ ○ × × × ○

29 Japan Mr. Hiroyuki Tsukada

Director for Coal Policy,Coal Division,Agency for Natural Resources and Energy,Ministry of Economy, Trade and Industry(METI)

- ○ ○ × × × ○

30 Japan Mr. Ikuhiro Inagaki

Deputy Director,International Affairs Division,Agency for Natural Resources and Energy,Ministry of Economy, Trade and Industry(METI)

- ○ ○ ○ ○ ○ ○

31 Japan Mr. Atsuhiko KIBA

Assistant Director,International Affairs Division,Agency for Natural Resources and Energy,Ministry of Economy, Trade and Industry(METI)

- ○ ○ ○ ○ ○ ○

32 Japan Mr. Masahiro Tachibana

Deputy Director,Electricity Infrastructure Division,Agency for Natural Resources and Energy,Ministry of Economy, Trade and Industry(METI)

- × × ○ × × ○

33 Japan Ms. Eri Senaga

Assistant Director,International Affairs Division,Agency for Natural Resources and Energy,Ministry of Economy, Trade and Industry(METI)

- × × × × ○ ○

34 Japan Mr. Kai Fujii

Officer,International Affairs Division,Agency for Natural Resources and Energy,Ministry of Economy, Trade and Industry(METI)

- × × × × ○ ○

35 Japan Mr. Osamu Ito

Deputy Director,Economic Security Division,Economic Affairs Bureau,Ministry of Foreign Affairs (MOFA)

- ○ ○ ○ × × ○

36 Japan Junichi Sumi

Deputy Director,Economic Security Division,Economic Affairs Bureau,Ministry of Foreign Affairs (MOFA)

- × × × × ○ ○

37 Japan Mr. Hiroshi TomitaSenior Manager,PwC Advisory LLC

○ ○ ○ ○ ○ × ○

38 Japan Mr. Yuya KatoSenior Associate,PwC Advisory LLC

- ○ ○ ○ ○ ○ ○

Country

別添1 参加者一覧

Page 21: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

コンタクトパーソン Participations(actual) 管理用

Name Organization Presentation7th(Thu)

AM7th(Thu)Lunch

7th(Thu)PM

7th(Thu)Reception

8th(Wed)All day

(7日または8日のいずれかに参加す

る方)

Country

39 Japan Mr. Shigeru OgawaSenior Associate,PwC Advisory LLC

- ○ × ○ ○ ○ ○

40 Japan 小林忍(こばやし しのぶ)通訳(Interpreter),株式会社サイマリンガル(Simalingual Ltd.)

- × × × × ○ ○

Page 22: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

© OECD/IEA 2012 

Trends in efficiency in power generation

Carlos Fernández AlvarezSenior Coal AnalystInternational Energy Agency

Tokyo, 7th June 2016

© OECD/IEA 2012 

IEA strategy to rise the level of ambition

32

33

34

35

36

37

38

2014 2020 2025 2030

Gt CO2‐eq

Bridge scenario 

INDC trajectory  

Fossil fuel subsidies reform

Methane reductions in oil and gas industry   

Rene        Renewable investments 

Phase out inefficient coal plants

Energy efficiency 

10%

9%

15%

49%

17%

With only five measures, energy‐related carbon emissions peak in 2020, using existing technologies and with no reduction of economic growth 

別添2 発表者資料 国際エネルギー機関

012640
Highlight
Page 23: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

© OECD/IEA 2012 

Reduce non‐GHG emissions  Reduce CO2 emissions *Efficiency improvement*

… those that improve efficiency, reduce specific fuel consumption and reduce specific pollutant emissions.

HELE CCS

HELE technologies are …

© OECD/IEA 2012 

Supercritical technology is key

But plant size, coal quality, cooling parameters, working conditions, maintenance, etc., also affect plant efficiency significantly

Steam conditions are the main parameters to define efficiency

Page 24: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

© OECD/IEA 2012 

Technology improves over time

EfficiencyA-USC

USC

SC

subcritical

RDK8, over 47% net efficiency (LHV) and 741 kgCO2/MWh, is considered as best practice

Other high efficiency technologies, such as IGCC/IGFC, chemical loop or DICE lag behind

© OECD/IEA 2012 

Some regional differences

Japan’s transition to SC technology was in the 80s; India is now in such transition

0

50

100

150

200

250

until 2004 2005‐09 2010‐14

China

sub

SC

USC

GW as commissioned

0

20

40

60

80

100

until 2010 2010‐14

India

sub

SC

USC

GW as commissioned

0

2

4

6

8

10

12

14

until 80 81‐99 2000‐14

Japan

sub

SC

USC

GW as commissioned

0

2

4

6

8

10

12

until 94 95‐04 2005‐14

Korea

sub

SC

USC

GW as commissioned

Page 25: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

© OECD/IEA 2012 

A good model of financing

PLANT UNIT SIZE > 500 MW ≥300 to 500 MW < 300 MW

USC12 years 12 years 12 years

SC Ineligible

10 years, and only in IDA-

eligible countries

10 years, and only in IDA-

eligible countries

Subcritical Ineligible Ineligible

10 years, and only in IDA-

eligible countries

The OECD Credit Export Group agreement shows a compromise between climate change and energy poverty

Maximum repayment terms

© OECD/IEA 2012 

ASEAN in different scenarios

0

200

400

600

800

1000

1200

2013 2020 2025 2030 2035 2040

gCO

2/kW

h

NPS

BridgeScenario

450Scenario

Emissions intensity of coal-fired power generation in Southeast Asia

Efficiency is important, but without CCS coal has not a place in a low carbon world

Page 26: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

© OECD/IEA 2012 

0

50

100

150

200

250

300

Before1950

1951‐60

1961‐70

1971‐80

1981‐90

1991‐2000

2001‐10

European Union

GW

0

50

100

150

200

250

300

Before1950

1951‐60

1961‐70

1971‐80

1981‐90

1991‐2000

2001‐10

United States

GW

0

10

20

30

40

50

60

70

Before1950

1951‐60

1961‐70

1971‐80

1981‐90

1991‐2000

2001‐10

India

GW

0

100

200

300

400

500

600

Before1950

1951‐60

1961‐70

1971‐80

1981‐90

1991‐2000

2001‐10

ChinaG

W

Coal Oil Natural gas Nuclear Hydro Biomass and waste Wind Other renewables

… and presents a challenge in many OECD countries compared with emerging economies.

Ageing power plant infrastructure is a challenge …

© OECD/IEA 2012 

Decrease generation from subcritical Install CCS* on plants over supercritical

Increase generation from high-efficiency technology (SC or better)

Glo

bal

co

al-f

ired

ele

ctri

city

g

ener

atio

n (

TW

h)

Supercritical

HELE Plants with CCS*

USC

Subcritical

*CCS (Post-combustion; Oxyfuel; Pre-combustion CO2 capture)

IGCC

* CCS fitted to SC (or better) units.

… to deliver a low-carbon scenario.

Three processes are essential …

Page 27: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

© OECD/IEA 2012 

Wrap up

Efficiency in power generation is a key aspect for a lower carbon future

Supercritical and ultra-supercritical (SC/USC) technologies are well proved-technologies for coal power generation

The world is shifting from subcritical to SC/USC, but very slowly given the existing fleet

Without Carbon Capture and Storage, any efficiency produces emissions much higher than those required in a 2 Degree Scenario

© OECD/IEA 2012 © O

EC

D/I

EA

201

6

Thank you

Page 28: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

G20 Energy Efficiency Action Plan, Electricity GenerationWorkshop On Facilitating High-efficiency, Low Emission (HELE) Technologies

Mr. Trevor Holloway Counsellor (Resources & Industry) Australian Embassy Tokyo Department of Industry, Innovation and Science

7 & 8 June 2016

• HELE in Australia

• Australian Coals and HELE

• CCS in Australia

Presentation Outline

012640
Typewritten Text
012640
Typewritten Text
012640
Typewritten Text
別添3 発表者資料 オーストラリア大使館
Page 29: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

• Flat Electricity Demand

– Manufacturing, Solar PV, Energy Efficiency

• Small Number of Supercritical Plant

– Kogan Creek, Callide, Millmerran

• Research and Development

– Direct Injection Carbon Engine, CSIRO

– Advanced Lignite Demonstration Program

HELE in Australia

• Strong Regional Demand for HELE

• Australian Export Coals – suitable for HELE

– 9% of world’s proven black coal

– High calorific content

– Low levels of impurities

Australian Coal and HELE

Page 30: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

The Story So Far in AustraliaKey CCS Projects & Key Research Initiatives

Gorgon LNGProject

Callide Oxyfuel Project

South West Hub Project CarbonNet

Project

• ANLEC R&D - accelerating deployment of CCS• NGL - R&D facility established to advance carbon storage technologies• Geoscience Australia - precompetitive exploration• CCS RD&D - $25 million for research, development and demonstration activities

Projects

Research & Exploration

CO2CRC Otway Project

International collaboration on CCS

• Global CCS Institute

• Carbon Sequestration Leadership Forum

• IEA Clean Coal Centre/ IEA Greenhouse Gas

• Australia-China Joint Coordination Group on Clean Coal Technology

Page 31: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

CCS Challenges and Australian ApproachChallenges Australia's Approach

Economic barriers to the commercialisation of CCS include the high cost of deployment and lack of incentives for investment.

Improving our understanding of Australia’s CCS resourcesStrategic partnering, domestic and international to reduce cost/

Social barriers in terms of enhancing the public’s perception and understanding of CCS.

Demonstrating our domestic LET capacities and capabilitiesCooperative approach to Social Licence to OperateLegal and regulatory frameworks

Evolving frameworks for policy, legislation, and regulation. The key regulatory barriers include property rights, acreage release and cross jurisdictional issues.

Strategic Partnering with jurisdictions and industry.

Addressing skills and workforce needs. Building Australian skills and capacity, National Innovation Agenda

Increase industry-led research in priority areas by facilitatingdeeper engagement between industry and researchers

Strategic partnering, 1:1 approach for project funding, Leadership Roundtable on Low Emission Fossil Fuel Technology

Department of Industry,Innovation and Science

Industry House10 Binara StreetCanberra City, ACT 2601, AustraliaTelephone +61 2 6213 6000Email [email protected]

Thank you and questions

Australian Embassy Tokyo

2-1-14 MitaMinato-ku, Tokyo 108-8361, JapanTelephone +81 3 5232 4111Email [email protected]

Page 32: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

G20 ENERGY EFFICIENCY ACTION PLAN: ELECTRICITY GENERATION

WORKSHOP: HIGH EFFICIENCY & LOW EMISSION TECHNOLOGIES

Presented by: SA Molepo

1

RSA’s Energy Environment –Overview (Primary Energy)

• The South African economy ischaracterised by its energyintensive heavy industries.

• The mainstay of this energyintensive economy is coalgeneration from an abundantindigenous coal reserves.

• The coal dependency of theSouth African energy systemshapes the composition of itsgreenhouse gas (GHG)emissions.

• The electricity sector accountsfor approximately 45% of theGHG emissions (2010).

Source: Statssa.gov.za

Source: Eskom Annual Report 2010

2

別添4 発表者資料 南アフリカ IPPオフィス

Page 33: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

RSA’s Energy Environment –Overview (Emissions)

• South African government iscommitted to attainsubstantial reductions inCO2 emissions by 2025.

• Climate change mitigationposes significant challengesfor the country’s energydevelopment to meet basicneeds and developmentgoals.

• Mitigation policies – need tobe integrated with thecountry’s developmentgoals.

Source: IRP2010‐2030

3

RSA’s Energy Environment –Overview (Access to Electricity)

• South Africa aimsto achieveuniversal access toelectricity by 2025.

• Access toelectricity isdetermined by twoimportant factors:– Number of

householdsconnected toelectricity

– Affordability ofelectricity

Source: StatsSA.gov.za (2013)

4

Page 34: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Government Policy –Energy Sector

• Energy policy is the domain of the Department of Energy (DoE).

• The key policy framework for the energy sector is captured in the 1998White Paper on Energy and the 2003 White Paper on RenewableEnergy.

• The objectives of the 1998 White Paper on Energy include:– Increasing access to affordable energy services– Improving energy governance– Stimulating economic development– Managing energy‐related environmental impacts– Securing supply through diversity through utilisation of integrated

resource planning methodologies

• The 2003 White Paper on Renewable Energy – 10,000GWh RE by 2013.

• The Energy Efficiency Strategy of 2005 – 12% national EE improvementby 2015.

5

Government Policy –Electricity Generation

• The overarching policy goal for electricity generation is derived from the1998 White Paper on Energy policy:

“securing supply through diversity.”

• The Policy‐adjusted Integrated Resources Plan 2010‐2030 plans for anew build programme totalling 56.5 GW (approx. double the totalsystem capacity of 2010).

• The new build include the following electricity generation mix:– Renewable Energy (19.3GW):

o 8.1GW allocated for procurement from IPPso 4.0GW signed 20yr PPAso ~1.8GW operational

– Hydro (2.6GW):o 2.5GW to be imported from the SADC region (as part of Inga 3)

– Pumped Storage (1.3GW):o Under construction

6

Page 35: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Government Policy –Electricity Generation

– Gas (7.3GW):o 3GW allocated for procurement from IPPso Generation may be from any gas type or source (incl. natural gas, coal 

bed methane, synthesis gas or syngas, above‐ or under‐ground coal gasification, shale gas) 

– Nuclear (9.6GW)– Coal (16.4GW):

o Construction of 9.6GW of supercritical plantso 2.5GW allocated for procurement from IPPso Evaluation of first bid submissions (Technology – FBC & PC)o Financing constraints – necessitate a shift to high‐efficiency & low 

emissions technology

7

Government Policy –Electricity Generation Mix

Source: IRP2010‐2030

8

Page 36: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Electricity Generation –Coal-Fired

• The national utility Eskom produces 95% of the country’s electricity.• About 90% of electricity produced by the utility is from coal‐fired power 

plants.• The coal generation fleet in operation is comprised of thirteen (13) 

subcritical coal fired power plants (incl. three that were recommissioned).

• The average thermal efficiency of these ageing fleet is currently around 30% (i.e. operating below optimal level of about 33‐35%).

• The emission levels of some of these power plants exceeds the set levels as per the Air Quality Act No. 39 of 2004.

• Considerations being made whether to decommission or retrofit these ageing power plants with clean coal technologies – not an easy decision given the recent inadequate supply capacity to meet demand.

• The current coal fired power plants under construction are using supercritical steam cycle technology – a relatively higher efficiency of about 38%.

9

Challenges – Climate Change Agenda

• South Africa has abundant coal reserves estimated at 53 billion tonnes and these are forecasted to last for almost 200 years at the present production rate. 

• The South African coal industry, supported by domestic coal thermal generation, contributes to the economy in terms of employment, income, energy supply and contribution to GDP. 

• Challenges facing this sector include the global climate change agenda, to which the Government have expressed commitment to reducing the greenhouse gas (GHG) emissions. The coal value chain to the economy is vulnerable to these developments due to its significant contribution to the emission levels. 

• Growing competition from renewable energy sources.• In order not to exceed the emission level targets, the policy adjusted 

IRP2010‐2030 included coal generation conditional to reduced utilisation of the current less efficient coal power generation fleet. 

• Limited availability of export credit finance for less environmentally friendly coal fired power plants.

10

Page 37: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Challenges – Financing [1]

• The key element of the Paris Agreement was to reduce global emissions through increased investments in clean energy resources and technology. 

• Continued government financing for international coal projects is perceived to be undermining this goal.

• Multilateral development banks increasingly face scrutiny for supporting coal projects.

• South Africa experienced financing difficulties with financing of Medupi coal fired power plant – currently in construction.

• Some major shareholders of the World Bank withheld support out of concern over the project’s climate impacts.

• US was quoted saying: • “without actions to offset the carbon emissions of the Medupi coal 

plant, the project is incompatible with the bank’s strategy to help countries pursue economic growth and poverty reduction in an environmentally sustainable way.”

11

Challenges – Financing [2]

• Recently, members of OECD agreed to new arrangements governing export credit financing of coal‐fired power plants . – The new rules seek to limit the availability of export credit finance 

for less environmentally friendly (below ultra‐supercritical technology) coal fired power plants.

– There are some exceptions for smaller projects located in certain qualifying emerging countries. 

– The new rules takes effect on 1 Jan 2017 and are subject to a mandatory review in 2019.

– It is expected that in 2019, the rules will further limit the ability of Export Credit Agencies to finance coal technologies.

12

Page 38: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Potential Solution – Advanced Coal-Fired Generation Technologies

• Internationally, the best current available high‐efficiency low emissions coal fired technology is the ultra‐supercritical steam cycle.

• Thermal efficiency for these advanced technology is in the order of 43%.• Further improvements to the ultra‐supercritical technology (i.e. 

advanced ultra‐supercritical (A‐USC)) with a target efficiency in the range 46‐48% are in research and development phase and could be deployed in the market beyond 2020. 

• Technologies of interest are the next generation thermal power system IGCC and IGFC (an IGCC derivative) with significantly enhanced power generation efficiency (about 48% for IGCC and 55% for IGFC) and environmental performance due to its combination with coal gasification and the CCGT system.

13

Conclusion

• It is envisaged that coal will continue to play a major role in the South African economy in terms of employment, energy supply and contribution to GDP.

• However, the vulnerability of the coal value chain introduced by the Paris Agreement as a result of the significant contribution of coal generation to GHG emission levels necessitates a shift towards high‐efficiency and low emissions (HELE) technologies.

• Barriers to the deployment of HELE technologies have to be understood to be properly managed.

• The possible high upfront costs for these technologies are likely to be problematic within an environment where renewable energy costs are fast becoming cost competitive.

• It will be necessary, for the purpose of integrated resource planning approach, to understand technology cost implications.

• The commercial provenness of technologies such as IGCC & IGFC should be demonstrated to facilitate deployment in developing countries.

14

Page 39: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

THANK YOU.

15

Page 40: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Japan’s Energy Mix andClean Coal Technology

Clean Coal Division

Agency for Natural Resources and Energy

Ministry of Economy, Trade and Industry 

Principles of Japan’s Energy Policy and Evaluation to Coal in the “Basic Energy Plan”

Based on the significant changes in the domestic and overseas circumstances surrounding energy, a new“Basic Energy Plan” was decided by the Cabinet Council on April 11 in 2014 as the one that shows thedirection of a new energy policy.

Coal was re‐evaluated as an important fuel for the base load power supply which has advantages instable supply and economic efficiency. It was positioned as an energy source to be used while reducingthe environmental burden through the efficient use of the highly‐efficient power generation, etc.

(1) Principles of the Energy Policy

“3E + S”

Stable supply (Energy security)

Cost reduction (Economic Efficiency)

Environment

Safety

・Although there is an issue of the greenhouse gases, coal involves the lowest geopolitical risk and the lowest price per unit of heat energy among fossil fuels; therefore, coal is an important energy source for the base load power supply due to its advantages in stable supply and economic efficiency.

・Further promote the introduction of the available leading‐edge technology by replacing the aging thermal power plants through the construction of new facilities and the expansion of existing plants, and the development of the technology (such as IGCC, etc.) which will significantly improve the power generation efficiency, etc.  Also promote the introduction of such technologies and use them in a way that is compatible with the reduction of the environmental burden.

(2) Position of Coal

2

Global Viewpoint• Developing energy policies with international

movement appropriately• Internationalizing energy industries by

facilitating business overseas

Economic Growth• Contribution to reinforce Japan’s locational

competitiveness• Activating Japan’s energy market through

energy system reform

別添5 発表者資料 資源エネルギー庁

Page 41: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

【Direction】(1) To improve the self-sufficiency ratio to around 25% surpassing the level before the Earthquake.(2) To reduce the electricity costs lower than today.(3) To set a high-level GHG reduction goal compared with other developed countries to lead the

world.

(Total Electricitygeneration )

1,065TWh

Energy Conservation+Renewable Energy

= about 40%

Energy conservation196TWh(▲17%)

Electricity Demand981TWh

Electricity generation mix

2030 20302013(actual results)

GDP growth1.7%/year

Electricity Demand967TWh

Hydro 8.8~9.2%

Solar PV 7.9%

Wind 1.7%

Bioenergy3.7~4.6%

Geothermal1.0~1.1%

Renewable Energy22~24%

Nuclear22~20%

LNG 27%

Coal 26%

Oil 3%

Japan’s New Energy Mix

3

Issues in Coal Utilization

Oil36.5%

Natural Gas36.5%Crude Oil2.4%

City Gas6.7%

Industrial Process3.6%

Waste2.1%

Others0.2%

Emissions from coal are about 460 million tons. About 270 million tons are derived from coal-fired thermal power generation.

Coal consumption by industrial sectors

Japan’s CO2 Emissions

Coal35.4%

CO2 Emissions/kWh by Fuels for Power Generation

India China World Oil LNG LNG(JPN Ave.) Combined*

Coal (JPN Ave.)U.S. Germany

CO2 emissions from coal‐fired power generation in foreign countries

CO2 emissions from  coal‐fired power generation in Japan

*The average of the conventional, 1300

degrees C, and 1500 degrees C classes

Source: Figures in Japan were estimated based on the report by Central Research Institute of Electric Power Industry (2009) and development goals of each research project.Figures in foreign countries were taken from “CO2 Emissions from Fuel Combustion 2012“.

Total CO2 EmissionsIn the Fiscal 2013

1,310,690,000 tons

Japan’s CO2 Emissions were about 1.31 billion tons in fiscal year 2013.  About 270 million tons of emissions were derived from the coal‐fired power generation.

Although Japan’s coal‐fired power generation has the world’s highest level of efficiency, it still emits about twice the amount of CO2 as compared to LNG‐fired power generation.

For continuous use of coal‐fired power generation in future, further higher level of efficiency and reduction of emissions by CO2 capture, etc. will be required from a longer term perspective.

Source: the report of Greenhouse Gas Inventory Office ofthe National Institute for Environmental Studies(confirmed report levels of 2013) (2015/04/23)Source: Coal Marker Survey

2014-2015

As fuel62.9%

Coke making37.1%

Electric utilities48.1%

Pulp and paper3.0%

Chemical industry3.2%

Ceramic industry, stone and 

clay5.5%

Synthetic fibers0.7%

Others2.4%

Steel industry30.8%

Others6.3%

Coal consumption in Japan (FY2013)

186,530,000 tons

4

Page 42: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

30

35

40

45

50

55

60

1960 1970 1980 1990 2000 2010 2020 2030 2040

Currently, Japan’s most efficient coal‐fired power generation is ultra super critical pressure power generation (USC). In the future, Japan will further improve the efficiency of the pulverized coal‐fired power, and accelerate the technical 

development of integrated coal gasification combined cycle (IGCC) and integrated coal gasfication fuel cell combined cycle (IGFC) system to promote even higher efficiency power generation.

<Improvement in efficiency of coal-fired power generation>

IGCC 1500℃GT IGCC

1700℃GT

year

Existing power generation technologies Future technology development

Sub‐C SC USC

4.35GW(14%)

12.5GW(39%)

15.3GW(48%)

【The installed capacities in coal-fired power generation of general and wholesale electricity utilities】

Improvement in Efficiency of Coal-Fired Power Generation

Th

erm

al e

ffic

ien

cy (

%)

(Net

, HH

V)

Integrated coal gasification fuel cell combined system (IGFC)

Advanced ultra supercritical pressure (A-USC) (steam temperature 700℃, steam pressure 24.1MPa)

Integrated coal gasification combined system (IGCC) (demonstration plant)1200℃GT

Sub critical pressure (Sub-C)(Steam pressure lower than 22.1MPa)

Supercritical pressure (SC) (steam temperature lower than 566℃, steam pressure 22.1MPa or higher)

Ultra super critical pressure (USC) (steam temperature 566℃ or higher, steam pressure 22.1MPa or higher)

0

200

400

600

800

1000系列 1

Sub-Cabout 900g/kWh SC

about 850g/kWh USCabout 800g/kWh

OILabout 700g/kWh

LNG(steam)about 480g/kWh

LNG(combined

cycle)about 375g/kWh

IGCC、A-USCabout 700g/kWh

IGFCabout 600g/kWh

Innovated IGCC/IGFC

about 530g/kWh

CO

2 em

issi

ons

(g/kWh) 5

Photos by Mitsubishi Heavy Industries, Ltd., Joban Joint Power Co., Ltd., Mitsubishi Hitachi Power Systems, Ltd., and Osaki CoolGen Corporation

65%

60%

55%

50%

45%

40%

Gas Turbine Combined Cycle (GTCC)Combined power generation utilizing gas turbine and steam turbineThermal efficiency: Approximately 52%CO2 emissions: 340 g/kWh

Thermal efficiency

GTFC

IGCC(Verification by blowing air)

A-USC

Ultra Super Critical (USC)Pulverized coal thermal power utilizing steam power

Thermal efficiency: Approximately 40%CO2 emissions: Approximately 820g/kWh

1700 deg. C-class IGCC

1700 deg. C-class GTCC

IGFC

LNG thermal power

Coal-fired thermal power

Year 2030Present

Integrated coal Gasification Combined Cycle (IGCC)

Coal-fired thermal power generated through coal gasification, utilizing the combined cycle combining gas turbine and steam turbineThermal efficiency: Approximately 46 to 50%CO2 emissions: 650 g/kWh (1700 deg. C class)Technological establishment: Around 2020

Pulverized coal thermal power utilizing high temperature and pressure steam turbineThermal efficiency: Approximately 46%CO2 emissions: Approximately 710 g/kWhTechnological establishment: Around 2016

Advanced Ultra Super Critical (A-USC)

y ( )Integrated Coal Gasification Fuel Cell

Combined Cycle (IGFC)Coal-fired thermal power utilizing the triple combined cycle combining IGCC with fuel cellThermal efficiency: Approximately 55%CO2 emissions: Approximately 590 g/kWhTechnological establishment: Around 2025

Gas Turbine Fuel Cell Combined Cycle (GTFC)

Power generation utilizing the triple combined cycle combining GTCC with fuel cellThermal efficiency: Approximately 63%CO2 emissions: Approximately 280 g/kWTechnological establishment: 2025

Combined power generation for LNG utilizing ultrahigh temperature (1700 deg. C or above) gas turbineThermal efficiency : Approximately 57%CO2 emissions: Approximately 310 g/kWhTechnological establishment: Around 2020

Ultrahigh Temperature Gas Turbine Combined Cycle

The single-cycle LNG thermal power technology for medium and small plants achieves power generation efficiency as high as that of large GTCC by utilizing humid air.Thermal efficiency: Approximately 51%CO2 emissions: 350 g/kWhTechnological establishment: Around 2017

Advanced Humid Air Gas (AHAT)

Around Year 2020

Reduction of CO2 by approximately 20%

Reduction of CO2 by approximately 30%

Reduction of CO2 by approximately 10%

* The prospect of thermal efficiencies and discharge rates in the above Figure were estimated based on various assumptions at this moment.

Reduction of CO2 by approximately 20%

Prospect of High Efficiency and Low-Carbon Next-Generation Thermal Power Generation Technology

6

Page 43: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

7

The technologies for capturing, storing or effectively utilizing CO2 emitted from power plants(CCUS) can be a key to reduce CO2 emissions from power plants to almost zero.

To realize these technologies, several hurdles should be overcome, such as ensuring low costsand storage areas.

Japan promotes various research, development and demonstration projects related to CCUStowards drastic CO2 emission reduction after 2030.

The technology for storing separatedand captured CO2 in the ground.

Although it is expected that largeamounts of CO2 can be treated, theacquisition of real operating capabilityand the selection of place available forstorage are the issues.

The research and development as wellas verification test are in the processtoward the realization of CCStechnology around 2020.

Thermal power plant Placing CO2 separation and capture systems in thermal power

up to more than 90% of CO2 can be captured withplantscaptures out being released.

CO2 capture( Carbon dioxide Capture )

Separated and captured CO2

CO2 Utilization (CCU: Carbon dioxide Capture and Utilization)CO2 storage(CCS: Carbon dioxide Capture and Storage)

The technology for producingvaluables such as alternative fuelsto oil and chemical raw materialsusing captured CO2.

The expansion of the applicationfor utilizing a large amount of CO2,the establishment of themechanism for generating profit,and the efficiency of treatmenttechnology are the issues.

An example of separation and capture system

Shielding layer

Storage layer

Storage layer

Conceptual diagram of

CCS

Shielding layer

CO2

Efforts of CCU and CCS

Source: IEA World Energy Outlook 2014

Up to 2040, the world’s total capacity of coal-fired power generation will be expanded by 1.46 times (1,805(2012)GW→2,631GW(2040)).

Particularly in Asia Pacific region, large expansion is expected.

EU(189GW→98GW)

Russia(51GW→35GW)

Middle East(0GW→1GW)

Africa(42GW→90GW)

Eastern Europe(57GW→42GW)

India(138GW→499GW)

Asia Pacific(excl. China & India)(159GW→300GW)

USA(330GW→219GW)

South America(6GW→13GW)

China(791GW→1,210GW)

Upper : Country or Region

Lower : Change in Generation Capacity (2012 → 2040)

: Year 2012, : Year 2040

Projection of Capacity of Coal-Fired Power Generation in the World

8

Page 44: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Large Middle Small

Capacity

Technology500MW > 300 – 500 MW > 300MW

USC≧593℃>240Bar 12 years 12 years 12 years

SC>550℃>221Bar - 10 years☆,☆☆ 10 years☆,☆☆

SUB-C221Bar> - - 10 years ☆

☆ Low income countries, physical/ geographical isolated areas☆☆ Low electricity rate countries (India, Indonesia, Philippines)To be implemented on January 1, 2017

Agreement on OECD’s Support for Coal-Fired Power Plants(Agreed in Nov, 2015)

Page 45: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Strictly Private and Confidential

Energy Efficiency improvement potential in the power sector

www.pwc.com/jp

7 June 2016

PwC advisory LLC

G20 ENERGY EFFICIENCY ACTION PLAN, ELECTRICITY GENERATION, Workshop on facilitating high-efficiency, low emission (HELE) technologies

PwC

Agenda

1. Efficiency of both Coal and Gas firedpower plants

2. CO2 emission reduction potential

2

別添6 発表者資料 PwCアドバイザリー合同会社

Page 46: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

PwC

1-1: Efficiency of both Coal and Gas fired power plants varies from country to country

Th

erm

al E

ffic

ien

cy(%

, LH

V, g

ener

atio

n P

oin

t)

Source : IEA (2015) & METI

• Although the efficiency of both coal and gas fired power plants have been improving over the years, big gaps can be observed and the efficiencies varies by country.

• It can be considered that the sharing and transfer of experience and technologies from the countries with higher efficiency could lead to the global efficiency improvement.

Thermal Efficiency: Coal-fired(1990-2015)

Japan shall be able to contribute with its experience in coal fired power plant operation.

Th

erm

al E

ffic

ien

cy

(%, L

HV

, gen

erat

ion

Poi

nt)

3

Thermal Efficiency: Gas-fired(1990-2015)

PwC

1-2: High efficiency as a pillar of Japanese energy policy

4

Takasago Coal-fired power plant Unit1&2 (Japan)

Appropriate O&M

Thermal efficiency

(%, HHV, generation point )

Years after commission

Sample of certain Coal-fired power plant

worsening

Design spec

Efficiency Trend After Commission in Takasago power plant.

Implementation of high efficient measures can be achieved for long years

• Japan, with its high dependency in external energy resources, has a long standing policy of focusing on the efficiency on utilization of energy

• One of the example is the implementation of HELE( i.e.,USC) and improvement of operation of coal fired power plants.As it can be observed in the illustrative example of efficiency trend after commissioning, Japanese power companies has implemented variety of measures to maintain or even improve the efficiency of their power plants.

Source: FEPC

Page 47: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

PwC 5

1st Workshop of Power WG 21-23 January 2013 Indonesia

• Site-visit peer review location: Suralaya thermal power station (coal-fired plant)• Various approach including measures proposed by the experts joining the peer-review was identified which could improve the

efficiency as much as 2%.

2nd Workshop of Power WG 14-16 October 2013 Poland

• Site-visit peer review location: Belchatow thermal power station (coal-fired plant)• Some substantial practices, including the importance of keeping thermal efficiency by the appropriate daily management, were shared

among the participating countries. the efficiency improvement as much as 2% was mentioned by experts from participating country.

3rd Workshop of Power WG 29-31 October 2014 Mongolia

• Site-visit peer review location: Combined Heat and Power 4 (CHP4) (coal-fired plant)• Shared the idea of maintenance check sheet and other best methods for plant operation and discussed how to better adopt those

measures at CHP4 plant.

4th Workshop of Power WG July 28th -29th , 2015 Turkey

• Main purpose of the site-visit is;“To maintain and improve thermal efficiency of coal-fire power plant, by exchanging and sharing best practices on operation and maintenance (O&M)”

• Related to the low setting of steam temperature, we estimated the fuel and CO2 reduction potential by improving the temperature by 20 degrees as follows;

• fuel consumption reduced by 16,000 ton/yr (-0.7%) / CO2 emission reduced by 10,000 ton/yr

• The Global Superior Energy Performance Partnership (“GSEP”) Sectoral Working Group, coordinated by Japanese parties, has been conducting an international initiative under public and private partnership, established in 2010.

• One of the most important achievement of GSEP is a finding of efficiency improvement potential by conducting a site-visit/peer review. (see the table below)

• During the Site-visit/peer-review, experts participating in the workshop discussed and identified various O&M measures for improving the efficiency of the plant in the past 4 workshops.

1-3: GSEP has identified a significant potential of improvement with improved O&M

PwC

1-4: India: Unique policy for existing power generation sector

6

India is one of the few courtiers that implemented unique regulation for existing power generation sector in developing countries.

(*): Source: NTPS presentation (2015) (**) Source: BEE homepage (2016)

Carbon Intensity

• India, with its emission o 2,074,345 kt, annual average change in carbon intensity improvement of -1.4% (2000 –2014). This figure is almost same as the world average,-1.3%(refer to “appendix” slide) and has improved to -1.6% in 2014.

PAT (Perform Archive and Trade)

• Under the Energy Conservation Rules,2012”, In dia has introduced a energy efficiency target linked with market mechanism called PAT (Perform Archive and Trade)

- Under PAT, “Designate Consumers”(Including existing power plants) have their efficiency target and are able to trade their archived efficiency improvement.

Issue on PAT scheme

◦ Price information of archived certificate is not clear(*).

◦ Though efficiently improvement is recognized, it usually takes 2 years to archive the efficiency from the time of investment decision(*).

◦ About 10%(**) of “Designate Consumers” do not comply their reporting obligation.

Page 48: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

PwC

1-5: Indonesia: National efficiency will be improved by new installation of HELE

7

Carbon Intensity

• Indonesia with its 563,985kt of CO2 emission and its annual average change in carbon intensity is -0.6%(2000 –2014 ), lower than the world average,-1.3%.(refer to “appendix” slide).

Fast Track Program (1st 2006-2009, 2nd 2010-2014,3rd 2015-2024)

• Indonesian government has implemented the “Fast Track Programs,” which is considered as the pillar to accelerate power supply, 42.1 GW, including new coal-fired and 9.1 GW combined cycle gas-fired are planned.

• Under this program, high efficient technologies such as USC has been installed with the domestic coal in order to meet the electricity demand.

Energy Efficiency policy

• Energy Efficiency policy (Regulation No70 on Energy conservation (established in 2009). Though thermal efficiency of power plants has not been improved over past 20 years, the power generation sector is not included.

Indonesia has accelerated its modernization by advancing the new investments in the power secotr

PwC

1-6: Mexico: Efficient Gas-fired technology to be implemented

Carbon Intensity

• Mexico with its 466,549 kt of CO2 emission, its annual average change in carbon intensity 2000 – 2014 is -0.2%, worse than the world average,-1.3%.(refer to “appendix” slide). Recently, annual average change the carbon intensity has improved, as -3.5% in 2014. (refer to “appendix” slide).

Power Market reform

• National constitution amendment(in 2013): Private companies are permitted to enter the power market as IPP.Thenew generation capability should increase by more than 55,000 MW (65% of the total) to meet the electric power demand of over the next 15 years.

• This requires a significant investment through an extensive technology matrix. Combined cycles would be the largest installed technology (>28,000 MW) *.

CONUEE(Ministry of Energy Efficiency)

- The National Commission for the Efficient Use of Energy (Conuee) is an agency within the Secretariat of Energy, created by the Law for the Sustainable Use of Energy published in the Official Gazette on 28 November 2008, with its objective to promote energy efficiency and serve as a technical body on sustainable use of energy.

- Main sectors of the policy for energy efficiency are transport, lighting, not including existing power plant.

8

National energy policies promotes efficient use of energy and promotion of O&M improvement could be important in future

Source: Electric Sector Works and Investment Program 2012-2026 (POISE),

Page 49: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

PwC

Agenda

1. Efficiency of both Coal and Gas fired power plants

2. CO2 emission reduction potential

9

PwC

2-1: Further measures needs to be implemented for G20 countries to achieve the global warming target

10

• Since 2009, the year of the Copenhagen Summit, PwC tracks the progress of G20 countries on their decarbonisation in its publication called “Low Carbon Economy Index”.

• The 7th LCEI (2015) expresses its view that to prevent warming in excess of 2°C, or to cap the CO2 emissions between 2010 and 2100 to no more than 270GtC (or around 990GtCO2), the global economy needs to cuts the global carbon intensity by 6.3% a year,

• However, average G20 INDCs imply a decarbonisationrate of 3% per year and further measures needs to be considered. .

Sources: PwC (2015).

Page 50: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

PwC

0-4 5-9 10-14 15<

Region Technology

Potential of efficiency improvement at O&M

Existingplants

New installment

Developedcountries

Japan

Sub-critical 0.48%

0.40%Super Critical 0.40%

Other -

Other than

Japan

Sub-critical 0.62%

0.40%Super Critical 0.59%

Other -

Developing countries - 2% 2%

BAUCase

Efficient O&M case

Potential ofefficiency

improvement

ThermalEfficiency

Year afterCommission

Estimation assumption efficiency improvement Model of Potential of efficiency improvement

Assumption of the calculation

• The estimated CO2 emission reduction that can be archived by appropriate O&M for the new installationbetween0.4% up to 2.0% depending on the countries.

2-2: Efficiency improvement in the power planta can provide large potential for CO2 emission reduction globally

11

Together with the implementation of new facilities, O&M can provide a large potential for global CO2 reduction

Sources: Research Institute of Innovative Technology for the Earth (2014)

PwC

2-3: Implementation of O&M measures can widen the CO2 Emission reduction potential

12

CO2 reduction potential by measures

• About 538 MtCO2/year of emission reduction can be archived by new HELE installation and appropriate O&M accosting to this survey.

• Within that potential, appropriate O&M can be accounted for 229 MtCO2/year or 43% and provide significant increase in the CO2 reduction opportunities.

169

22 10 9 8532 11

60

3 0 045

7 5

309

32 4 5

169

80

19

538

5714 14

299

119

35

0

300

600

OECDAmericas

OECDEurope

OECDAsia

Oceania

China India Other Asia

total Developed countries Developing countries

Emission Reduction byO&M (existing )

Emission Reduction byO&M (new andreplacement)

Emission Reduction bynew installment

Co2 reduction(Mt CO2/year)

Sources: Research Institute of Innovative Technology for the Earth (2014)

Page 51: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

PwC

2-4: Issue and consideration

13

• Variety of energy efficiency level in the global context• Many countries promotes the introduction of new technologies for new

investments but not in the existing installations.• Continuous effort is necessary to maintain highly efficient operation

Issue

Key consideration: • Potential of emission reduction from appropriate O&M can be in the same scale of

reduction from the new investments.• Incentives including appropriate government promotion on the imrpovements of

appropriate efficient O&M • Financing resources to invest in new coal fired plants may be limited and efficiency

improvement by improved O&M can be a low cost solution to achieve a fast track emission reduction which can lead to a similar effect to the new installation or repayment.

PwC

Appendix : Low Carbon Economy Index – country summary

14

• 2014 is the first year we have seen more than one country achieve a rate of 6% or above, with five countries reaching this threshold, as well as the EU as a whole. The UK leads the index with a remarkable 10.9% decarbonisation. France was not far behind, and actually reduced carbon emissions by slightly more than the UK but experienced slower GDP growth. Italy and Germany posted very strong decarbonisation rates.

• Although Italy’s emissions fell rapidly, its economy also contracted slightly. Germany however achieved fairly rapid emissions reductions as well as economic growth of 1.6%. China also recorded a rapid decarbonisation rate. And while Australia has slipped from the top spot, it still recorded a decarbonisation rate of 4.7%. At the other end of the table carbon intensity actually rose in 5 countries: South Africa, India, Brazil, Saudi Arabia and Turkey.

Sources: PwC (2015)

Page 52: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

© 2016 PricewaterhouseCoopers Aarata, PricewaterhouseCoopers Kyoto, PwC Consulting LLC, PwC Advisory LLC, PwC Tax Japan. All rights reserved. PwC refers to the PwC network member firms and/or their specified subsidiaries in Japan, and may sometimes refer to the PwC network. Each of such firms and subsidiaries is a separate legal entity. Please see www.pwc.com/structure for further details.

This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.

Page 53: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

GENERAL ENERGY OVERVIEV OF TURKEY

MINISTRY OF ENERGY AND NATURAL RESOURCESGENERAL DIRECTORATE OF ENERGY AFFAIRS

Murat HARDALACHead of Department

Energy and Environment Management7-8 Jun 2016

Contents

• Turkey’s background

• Energy resources outlook of Turkey

• Electricty vs emissions

• Energy efficiency targets of Turkey

• Paris Agreement

• Turkey’s INDC

• Offsets in energy sector in order to meet NDC

別添7 発表者資料 トルコ エネルギー天然資源省

Page 54: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

3

GENERAL ENERGY OVERVIEW OF TURKEY

ENERGY (ELECTRICITY) RESOURCE OUTLOOK

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

KÖMÜR SIVI YAKIT DOĞALGAZ HİDRO YE VE ATIKLIQUID FUEL

NATURAL GAS

RENEWABLES AND WASTE

HYDRO POWER

0.050000.0

100000.0150000.0200000.0250000.0300000.0

PRODUCTION (TWh)

COAL

Page 55: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

5

Electricity Sector

6

2015

ResourceIns. Cap.

(MW)%

Gen.(TWh)

%

NG 24.896 37 98,3 38Hydro 25.868 34 66,9 26Dom.Coal 9.023 13 34,2 13İmp.Coal 6.064 8 39,6 15Renewables 5.721 6 16,4 6The Other 1.576 2 4,2 2

TOTAL 73.148 100 259,6 100

2002

ResourceIns. Cap.

(MW)%

Gen.(TWh)

%

NG 9.702 31 52,5 41Hydro 12.241 38 33,7 26Dom. Coal 6.959 22 28,0 22Imp. Coal 480 1 4,1 3

Renewables 33.9 0 0,2 0The Other 2.761 8 10,9 8TOTAL 31.846 100 129,4 100

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

MW

Doğal Gaz Hidrolik Kömür Yenilenebilir Diğer

Installed Capacity Development

Page 56: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

7

0

50

100

150

200

250

300

350

400

450

0

20,000

40,000

60,000

80,000

100,000

120,000

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

TW

h

MW

Kurulu Güç (MW) Tüketim (TWh)

For reach to target installed capacity, 10 billion $ investment is needed annually.

Projection

Installed Capacity(MW) Consumption (TWh)

2002-2023 Installed Capacity and ConsumptionDevelopment

8

0 10 20 30 40 50 60 70

2000200120022003200420052006200720082009201020112012201320142015

DoğalGaz İthalKömür SıvıYakıtlar Elektrikİthalatı

Import Dependency at Electiricity Production

ElectricityGeneration fromimport is %55,7

Natural Gas

ImportCoal

Liquid Fuels

ElectrictyImport

Page 57: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

9

Liberalization in Electricity Sector

10

Coal Sector

Page 58: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

11

TRAKYA

Reserve: 0,5 billion tonne

K.MARAŞELBİSTAN

KONYA KARAPINAR

Reserve : 1,7 billion tonne

Reserve : 0,5 billion tonne

AFYON DİNAR

Reserve : 0,9 billion tonne

ESKİŞEHİR ALPU

Reserve : 1,5 billion tonne

Alan Rezerve (milyon ton) Santral Kapasitesi (MW)

Bolu‐Göynük 39 270

Eskişehir‐Mihal ıççık 40 294

Adana ‐Tufanbeyl i 323 600

Manisa ‐Soma ‐Daniş 153 450

Bursa ‐Davutlar 61 270

Kütahya ‐Tunçbi lek‐Domaniç 117 300

Bingöl ‐Karl ıova 80 150

Muğla ‐Milas ‐Karacahisar 85 300

RÖDOVANSLA VERİLEN KÖMÜR SAHALARI

Current Domestic Coal Installed

Capacity: ~9.000 MW

0.18

1.23 1.31

2.38 2.55

7.8

KİAŞ PrivateSector

TTK MTA TKİ EÜAŞ

Total Coal Reserve:15,4 Billion Tonnes

General Overview of Coal Sector

12 12

Germany Electricity Generation:

618 TWh Coal Rate: 286 TWh

(%46) Coal Import: 45 million

ton Energy

Production/EnergySupply: 0,40

Turkey Electricity Generation:

259,6 TWh Coal Rate: 73,8 TWh

(%28) Coal Import: 29,8

million ton Energy

Production/EnergySupply: 0,25

Japan Electricity Generation : 1.034 TWh Coal Rate : 292 TWh (%28) Coal Import : 184 milyon ton Energy Production/Energy Supply:

0,06

Countries which have energyimport dependency have 2 choices:Use all domestic resourcesUse most economic resource to

decrease import dependency

Coal Sector Strategy – 1

Page 59: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

13

Current DomesticCoal Installed

Capacity: ~9.000 MW

PotentialCapacity:

~25.000 MWIlgın

Karapınar

Tufanbeyli

Saray

Göynük

Afşin-Elbistan

Kangal

Silopi

Çan

Soma

Çayırhan

Mihalıççık

Tunçbilek

Seyitömer

Orhangazi

Amasra

Zonguldak

YatağanMilas

Base Plan: Use domestic coal

reserves with installing the best and clean coal technology.

Karlıova

Basic Problems: Low Quality Special design needs

Coal Sector Strategy – 2

Current coal installed capacity including import coal plants is more than 16.000MW.

Only two of those plants are supercritic,

The others are subcritical.

Features of Coal Power Plants

405

9273

640

6064

Solid Fuels Installed Capacity MW

Asphaltite Lignite Hard Coal (Domestic) Import Coal

Page 60: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

129.3140.5

150.6161.9

176.2191.5 198.4 194.8

211.7229.3

239.4 240.2251.9

95.5105.1 104.6

122.2131.8

155.1164.9

156.9 155.2171.6 174.5 171.0

200.4

69.0 69.1 70.783.9 85.5

100.9 101.7 96.5107.3

116.5 116.7107.7

124.5

0

50

100

150

200

250

300

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Top. Üre. (TWh) Ter. Ür. (TWh) CO2 (Mt)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

TOP.ÜRE.(TWH) 129,3 140,5 150,6 161,9 176,2 191,5 198,4 194,8 211,7 229,3 239,4 240,2 251,9

TER.ÜR. (TWh) 95,5 105,1 104,6 122,2 131,8 155,1 164,9 156,9 155,2 171,6 174,5 171,0 200,4

CO2  (Mt) 69,0 69,1 70,7 83,9 85,5 100,9 101,7 96,5 107,3 116,5 116,7 107,7 124,5

ELECTRICITY PRODUCTION AND EMISSIONS

Outcome of COP21: Paris Agreement

Page 61: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Paris Agreement

Key differences from the Kyoto Protocol Long-term temperature goal limited to 1.5-2’C increase

All Parties to contribute to mitigation through NDCs

No reference to Annex I or II

No binding emission reduction commitment obligation

Nationally Determined Contributions (not “commitment”)

Based on five-year cycles and global stocktaking ( reporting ) framework

Different mechanism? Sustainable development mechanism

Loss and Damage

Adaptation

Paris Agreement and Turkey

• Turkey listed in Annex I• Recognized “special circumstances” placing it

situation different from that of other parties included in Annex (never defined)

• No reference to Annexes in Paris Agreement• Developed and developing? No definition in PA• What is Turkey?• Will Turkey be eligible for the GCF as a

developing country or excluded?

Page 62: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Legal Status of the Paris Agreement

• Binding instrument with few clearly binding obligations

• Will be constructed through COP decisions

According to Business asUsual Scenario, by the year2030 (2020-2030)mitigation amount upto21%.

Energy, industrialprocesses, agriculture, landuse, land use change andforestry, and waste sector

Turkey’s INDC

%21

(246 Mt)

Total GHG Emissions (Mt CO2e)

Reference Scenario(BAU)

Mitigation Scenario

Page 63: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

The Offset of Planned Mitigation in Electricity Sector

Resource change in investments:

Turkey’s INDC(Intended Nationally Determined Contribution)

TERMİK22.35%

HES52.00

%

RES19.38

%

ÇÖP, BİYOKÜTLE, ATIK ISI, JEOTERMAL

6.27%

2015 ENERGY

INVESTMENTS

TERMİK87.40%

HES12.54%

RES0.06%

2005 ENERGY

INVESTMENTS

TERMİK62.85%

HES25.93%

RES10.55

%JEOTERMAL…

ÇÖP, BİYOGA

Z, …

2010ENERGY

INVESTMENTS

Energy supply security and climate changedrivers

• Tendency to local resources and renewables• Increasing the efficiency, and avoiding resource

and utilization loss• Decreasing import dependency• Raising public awareness• Improving research-development activities• Rehabilitasion of present production facilities• EU accession period and environment legislation

SUSTAINABILITY

Page 64: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

IMPORTANT TARGETS OF TURKEY’S ENERGY EFFICIENCY STRATEGY PAPER 2012- 2023

• Decreasing energy intensity and energy losses at least10% in industrial sub-sectors

• The total average cycle efficiency of the coal thermalpower plants around the country including waste heatrecovery shall be increased over forty-five percent(45%) by the year 2023.

• Annual energy consumption in the public enterprisesbuildings and facilities shall be decreased as ten percent(10%) by the year 2015 and as twenty percent (20%) bythe year 2023.

Thank you for your attention

Any question ?

Murat HARDALAC

[email protected]

Page 65: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

June 7, 2016

FEPC

Coal-fired Power in Japan and Efforts to Improve Thermal Efficiency

(The Federation of Electric Power Companies of Japan)

2

The Federation of Electric Power Companies, All Rights Reserved

Table of Contents

1 Current Status of Coal-fired Power in Japan

2 Efforts to Improve Thermal Efficiency

3 Improvement Examples of Thermal Efficiency

別添8 発表者資料 電気事業連合会

Page 66: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

3

The Federation of Electric Power Companies, All Rights Reserved

1 Current Status of Coal-fired Power in Japan 1-1 Fundamental Mission of Power Companies

[Concept of “S+3Es”]

Economy

Energy security

Environmental conservation

As required in the Basic Act on Energy Policy, the fundamental mission of power companies is to achieve “S+3Es”, for delivering stable, high-quality, inexpensive energy.

Especially to achieve “economy”, in terms of thermal power generation, maintaining and improving thermal efficiency is quite essential.

Safety

Delivering stable, high-quality,

inexpensive energy

4

The Federation of Electric Power Companies, All Rights Reserved

2.6 14.1

27.2 27.3 34.0 34.3 30.8 28.6

0.0

20.1 26.4 4.7

3.8

9.8 9.7 13.7 18.4 25.6 25.0

31.0

0.1

2.4

13.6

21.7 22.2

22.426.4 23.7 29.3

46.2

1.2

31.0 73.2

52.5

27.3 28.6 19.4

10.7 10.8 7.5 10.6

78.7

42.4

17.2 16.0 14.0 12.1 10.4 10.2 9.1 9.7 12.2

0

10

20

30

40

50

60

70

80

90

100

1955 1965 1973 1979 1985 1990 1995 2000 2005 2010 2014

Nuclear Coal LNG Oil, etc. Renewables

Thermal

62%

88%

1-2 Power Supply Situation

Reacting to the change of social situations and national policies, resource-poor Japan, which is dependent on imports for 94% of its primary energy supply, has established an optimal combination of power sources which achieves “S+3Es”.

Among various power sources, coal-fired power, as one of the most economical base load supplies, now accounts for more than 30% of total power generation.

[Trend in power generation]

[%]

Source: FEPCNote: Results of major 10 companies. Includes generation received from other companies.

Coal

[Combination of power sources]

Page 67: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

5

The Federation of Electric Power Companies, All Rights Reserved

1-3 Thermal Efficiency of Coal-fired Power

As a result of appropriate daily maintenance, coal-fired power in Japan has stably achieved the world’s highest level of efficiency. On average, the actual efficiency is maintained at the level of only 1 point below the designed value.

[International comparison of thermal efficiency of coal-fired power]

Source: Report “Comprehensive Evaluation of Voluntary Action Plan compiled by study group” (April 2014)

Note: Gross thermal efficiency (LHV based). Includes private power generation and CHP (Combined Heat and Power).Excludes peat power.

Generation (TWh)

Utilizationfactor

Thermal Efficiency

Designed Actual (FY2014) Difference

USC (Ultra-supercritical) 135 [66%] 84.3% 42.6% 41.5% ▲1.0%

SC (Supercritical) 62 [30%] 84.2% 41.3% 39.9% ▲1.4%

Sub-C (Subcritical) 27 [13%] 69.6% 39.1% 37.7% ▲1.4%

Total 204 [100%] 78.4% 41.8% 40.6 ▲1.2%

[Thermal efficiency of coal-fired power in Japan] Source: METI (Ministry of Economy, Trade and Industry)

Note: 10 major companies.Gross thermal efficiency (HHV based). Thermal efficiency is weighted average by generation amount.

Japan

6

The Federation of Electric Power Companies, All Rights Reserved

~9 10 to 19 20 to 2930 to 39 40~

[Location of coal-fired power plants]

(Data) Overview of Coal-fired Power Plant

Note: 11 major companies. As of the end of FY2014.

Number of plants: 31 (60 units)Plant capacity: 33 GW

[Age of coal-fired power units]

4(7%)

21(35%)

16(27%)

7(12%)

12(20%)

More than 30% units are above 30 years old

There are 31coal-fired power plants (60 units, 33GW) in Japan, which are widely distributed nationwide.

Among 60 units, more than 30% (19 units) are above 30 years old.

Page 68: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

7

The Federation of Electric Power Companies, All Rights Reserved

2-1 Maintenance Impact on Thermal Efficiency

[Trends of thermal efficiency at coal-fired power plants (example)]

By the extent of daily maintenance, the trends of thermal efficiency at coal-fired power plants can be widely different.

Years after commission

20

30

35

36

37

38

39

40

The

rmal

eff

icie

ncy

(%, H

HV

)

0 10 20 30 40

Old, but well-maintained plant

Relatively new, but not well-maintained plant

▲1 point

▲8 pointsThe degradation from designed

value can be widely different by the extent of daily maintenance

Designed value

Designed value

2 Efforts to Improve Thermal Efficiency

8

The Federation of Electric Power Companies, All Rights Reserved

2-2 Examples of Boiler Efficiency Degradation

Typical examples of boiler efficiency degradation are as follows;

(1) Air breathing from boiler hopper

(2) Air breathing from manholes, ducts, expansion joints

(3) Air/gas damper distortions and malfunctions

[Boiler profile (example)]

(1)

(3) (3)

(2)

Page 69: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

9

The Federation of Electric Power Companies, All Rights Reserved

Boilerefficiency

degradation

(2) Air breathing from manholes, ducts, expansion

joints

(1) Air breathing from boiler

hopper

(3) Air/gas damper distortions and malfunctions

[Main causes] [Problem] [Root causes]

Deteriorated hopper and ducts (corrosions, etc.)

Deteriorated packing, loosened bolts on manholes

Lack of maintenance on air/gas dampers

Lack of communication between operation and maintenance engineers

Engineers are too accustomed and indifferent to facility troubles

Facility factor

Human factor

[Countermeasures]

Repairing hopper and ducts

Replacing packing and bolts on manholes

Periodical functional tests and repair of air/gas dampers

Facility factor

Establishing a system to share information among engineers

Periodical education on engineers

Human factor

Typical causes and countermeasures of boiler efficiency degradation are as follows;

2-2 Examples of Boiler Efficiency Degradation (Contd.)

10

The Federation of Electric Power Companies, All Rights Reserved

Typical examples of turbine efficiency degradation are as follows;

(1) Scales on turbine surface(2) Erosions of turbine nozzles/blades(3) Deformations of turbine nozzles(4) Leakages of turbine gland steam(5) Scales on main valves(6) Valve shaft sticking(7) Scales from boiler SH/RH(8) Curved turbine shafts(9) SCC (stress corrosion

cracks) on bellows

2-3 Examples of Turbine Efficiency Degradation

(5)(6)

(7)

(5)(6)

(8) (8) (8)

(9) (9)

(9)

Main valves

Main valves

Page 70: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

11

The Federation of Electric Power Companies, All Rights Reserved

Turbineefficiency

degradation

[Causes] [Problem] [Countermeasures]

Typical causes and countermeasures of turbine efficiency degradation are as follows;

2-3 Examples of Turbine Efficiency Degradation (Contd.)

(1) Scales on turbine surface

(2) Erosions of turbine nozzles/blades

(3) Deformations of turbine nozzles

(4) Leakages of turbine gland steam

(5) Scales on main valves

(6) Valve shaft sticking

(7) Scales from boiler SH/RH

(8) Curved turbine shafts

(9) SCC (stress corrosion cracks) on bellows

Removing scales from turbine and main valves

Turbine overhauls and parts replacement

Boiler water quality control

(same as mentioned in “Boiler” section)

Facility factor

Human factor

Facility factor

(same as mentioned in “Boiler” section)

Human factor

12

The Federation of Electric Power Companies, All Rights Reserved

(Data) Main Causes of Boiler efficiency degradation

1 Air breathing into the furnace(from manholes, ducts, expansion joints, etc.)

2 Air breathing from clinker hopper and EP hoppers3 Pulverized fuel leakages4 Furnace water wall tube deteriorations, internal scale formations5 Scale formations inside the SH or RH tubes6 Slaggings on the furnace water wall tubes and ceiling tubes7 Foulings on the pendant and horizontal convection tubes8 Valve seat leaks (starting-system valves, drain valves, shut-off valves)9 Air leakages from rotary air heater

10 Element deteriorations of rotary air heater11 Fixed or leaked air dampers12 Fixed or leaked flue gas dampers13 FDF/ IDF variable vanes malfunctions14 FDF silencer deteriorations15 Corrosion on the gas ducts/EP hoppers and breathing air

Main causes of boiler efficiency degradation

Page 71: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

13

The Federation of Electric Power Companies, All Rights Reserved

16 Scales on turbine blades/ nozzles

17 Turbine gland steam leakages18 Damages on the turbine blades/ nozzles/ shafts/ bearings

(Wrong operation, water induction, etc)19 Turbine faulty assembling (lack of the gap control)

20 Turbine lubrication oil leakages, oil deteriorations, foreign materials21 SCC (stress corrosion cracks) on the turbine cross over pipe bellows22 Major turbine valves erosions, seat leaks23 Feedwater strainers cloggings

24Water leakages from the condensate system pumps/Steam leakage from thefeedwater system pumps

25 Condenser vacuum degradation26 Condenser cooling tube leakages27 Heat exchange rate degradation of feedwater heaters

Main causes of turbine efficiency degradation

(Data) Main Causes of Turbine efficiency degradation

14

The Federation of Electric Power Companies, All Rights Reserved

2-4 Organizational Mechanism to Improve Efficiency in Japan

Maintenance Div.Mission: Cost-efficientand timely maintenance

Operation Div.Mission: Stable

operation

EfficiencyMgmt Div.

Mission: Efficiencyimprovement

Balance of costvs. availability

Information of any troubles is reported through in-house IT system

Suggests facility improvement based on periodical operation data analysis

Plans optimal maintenance considering cost and benefit (i.e. availability, efficiency)

Generally in Japan, engineers of power plants are divided into three groups, including the group specializing efficiency management.

Each division makes every effort to accomplish its mission which is different and sometimes conflicting with others. Such an organizational mechanism results in optimal maintenance considering cost and benefit (i.e. availability, efficiency).

All work processes are defined in in-house manuals and standards, which help engineers equalize individual variability, and produce stable outputs.

[Japan’s organizational mechanism to improve efficiency]

Balance of costvs. efficiency

Detailed operation data (ex. condenser vacuum, fuel consumption) is shared for efficiency analysis

Page 72: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

15

The Federation of Electric Power Companies, All Rights ReservedSource: CLEAN COAL DAY IN JAPAN 2010

Before replacement(Operation start: 1967)

After replacement(Operation start: No.1 unit 2002, No. 2 unit 2009)

Purpose of replacement

Larger capacity

Better environmental performance

Higher thermal efficiency

Capacity

Sox Nox Soot and dust

Steam condition Efficiency CO2 emissions

530MW(265MW x 2)

60 ppm159 ppm50 mg/㎥N

Sub-C (Subcritical)38%100

1,200 MW(600MW x 2)

20/10ppm20/13ppm10/5mg/㎥N

USC (Ultra-supercritical)42-43% (+4~5 points)83

Unit No.1/ No.2

Note: Thermal efficiency is gross, LHV based. CO2 emissions is net based.

3 Improvement Examples of Thermal Efficiency3-1 Plant Replacement

In the below case of plant replacement, thermal efficiency is improved by 4~5 points.

16

The Federation of Electric Power Companies, All Rights Reserved

3-2 Turbine Components Replacement

Replacing high- and intermediate-pressure

passages

Replacing low-pressure components incl. longer

end blades

Longer end

blades

Improved steam guide

Three-dimensional blades Use of high-performance seal

Movingblades

Stationaryblades

High-performance AFP blades

Snubber blades

Machinedchip fins

Flowdirection

Abradable layer

Moving blade side

Nozzle side

Machined chip fins

Abradable sealSensitized

packing

By three-dimensional blades, flow distributions are optimized

Leak losses at blade tips and axial part are reduced

By longer low-pressure end blades (40→48 inches), exhaust losses are reduced

In the below case of turbine components replacement, thermal efficiency is improved by a few points.

Generally, such replacement on main equipment are planned 20~30 years after commission, considering cost and benefit carefully.

Achieved thermal efficiency improvement by 2~3 points

[Turbine components replacement (example)]

Page 73: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

17

The Federation of Electric Power Companies, All Rights Reserved

Summary

In Japan, coal-fired power, as one of the most economical base loadsupplies in an optimal combination of power sources which achieves“S+3Es”, now accounts for more than 30% of total powergeneration.

By the extent of daily maintenance, the trends of thermal efficiencyat coal-fired power plants can be widely different.

In Japan, based on in-house manuals, each engineering division triesto accomplish its mission which is sometimes conflicting with others.Such an organizational mechanism results in optimal maintenance,and finally world’s highest level of efficiency.

Page 74: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Environmental FriendlyPower Generation Technology

June 7, 2016

Mitsubishi Hitachi Power Systems, LTD.

添付9 MHPS発表資料

012640
Typewritten Text
 
012640
Typewritten Text
012640
Typewritten Text
012640
Typewritten Text
012640
Typewritten Text
012640
Typewritten Text
012640
Typewritten Text
012640
Typewritten Text
012640
Typewritten Text
Page 75: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Contents

1

1. Introduction

2. Gas Turbine Combined Cycle Power Plant

3. Integrated coal Gasification Combined Cycle system

4. Geothermal Power Plant

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.

Page 76: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

1. Introduction

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved. 2

Page 77: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

NameMITSUBISHI HITACHI

POWER SYSTEMS, LTD.

Head Office Yokohama, Kanagawa, JAPAN

RepresentativesKoji Tanaka (Chairman of the Board)

Takato Nishizawa (President and CEO)

Sales 1.4 Trillion JPY

Effective Date February 1, 2014

Employees21,000

(incl. 6,200 outside Japan)

3

Integration in the Thermal Power Generation Systems Field

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.

Mitsubishi Hitachi power Systems, Ltd (MHPS)

Page 78: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

GTCC “J” series, 1,600 degC, approaching 62%, H series GT

IGCC High reliability & High efficiency, Air-blown type / Oxygen-blown type

Geothermal Plant 104 units delivery all over the world since 1967

Environmental Friendly Power Generation Technology

4© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.

USC High efficiency, 600/620 degC , Excellent combustion technology

AQCS World leading technology, lowest level emission (NOx,SOx,PM)

Page 79: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

2. Gas Turbine Combined Cycle Power Plant

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved. 5

Page 80: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

50/60Hz             50Hz             60Hz37MW

28MW〜42MW

57MW

144MW

334MW

114MW

185MW

0 100 200 300 400

99MW〜112MW

(MW)

MHPS Gas Turbine Line up

M251 50/60 Hz

H-25 50/60 Hz

H-50 50/60 Hz

H-100 50/60 Hz

M501D 60Hz

M701D 50Hz

M501F 60Hz

M501G 60Hz

M501J 60Hz

M701F 50Hz

M701G 50Hz

M701J 50Hz

324MW(F4)/359MW(F5)

470MW

H‐25

M701J

327MW

268MW(G1)/276MW(GAC)

Model Cycle

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved. 6

28MW〜42MW

Page 81: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.

Large Frame Gas Turbine Performance (50Hz)

7

Page 82: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

High Quality Manufacturing・In-House Manufacturing of Key Components (Rotors & Blades)

Continual Development・High Technology Solutions from MHI R&D Center

・Advanced Development Tools (CFD, FEM)・New Products (ISB, F3D Blades)

Comprehensive VerificationBefore Field Application・World’s Largest Test Turbine・In-House C/C Power Plant

Advanced Technology and High Reliability

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved. 8

Page 83: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

186201

97116

39

7

5340

77

20

10

Takasago Hitachi

Europe(49)

Middle East& Africa(174)

Americas(136)

Oceania(7)

Asia(241) Japan(239)

M501F× 73M701F×129Total:202units

M501D×25M701D×97Total:122units

M501G×76M701G×11Total:87units

M501J×43M701J×2

Total:45units

H‐15×6H‐25×173H‐100×21

Total:200units

Grand Total   846 units(including 190 units of Takasago Mfd. Mid&Small Class GTs)

(*) As of May , 2016Takasago, SMW Hitachi

9

MHPS Gas Turbine Global Experience

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.

Page 84: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

1990 2000 2010

1500

1600

1700

(℃)

Turb

ine

Inle

t Te

mp

era

ture

Year

G series GT

J series GT

National Project 1700℃ GT

Applying G engine experienceProven features with high reliability

Technical Feedback from National Project

G J

Cold End Generator Drive ○ ○

2-Bearing Rotor ○ ○

4-Stage Turbine ○ ○

Individual Combustors ○ ○

Stacked Disk Type Rotor ○ ○

Cooled & Filtered Rotor Air ○ ○

Combustor Cooling Steam Steam

Blade and Vane Cooling Air Air

1500℃ GT

• EGR combustion system• Innovated material• Advanced compressor

• Innovated cooling technology• Advanced turbine• Advanced TBC

World Highest & Largest GTCC

Total 87units,Operating Hour : over 3,293,000Hr (Total) (as of March 2016)

10

J Series Gas Turbine Design Concept

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.

Page 85: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

USAJapanSouth Korea

Korea / East-West Power

(M501J x 2)

Korea / DongducheonDream Power

(M501J x 4)

Korea / Western Power

(M501J x 2)Korea / CGN YulchonGeneration

(M501J x 2)

Taiwan

Japan /MHPS T-Point

(M501J x 1)

Taiwan/ Taiwan Power Company

(M501J x 6)

M501J×43

M701J×2Total:45units

Canada

(As of May 2016)

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.

Mexico

Japan / TEPCO Kawasaki No.2 (M701J x 2)

11

J Series Gas Turbine Experience

Page 86: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Tokyo Electric Power CompanyKawasaki No.2 Power Station (M701J)

Configuration Single Shaft (Indoor) X 2 unit

Gross Power Output 1420 MW (710MW X 2)

Gas Turbine M701J

Commercial operation #1: Jan. 2016, #2: Oct. 2016

World Largest Single Shaft Unit !!! #1 unit has started commercial operation in January 2016.

#2 unit is under commissioning and will start commercial operation in October 2016.

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved. 12

Page 87: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

3. Integrated coal Gasification

Combined Cycle system

(IGCC)

13© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.

Page 88: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Higher efficiency through coal gasification process coupled with a combined cycle (CC) system.

Reduce CO2 emission by high efficiency and prevent global warming.

What is IGCC?

*Integrated coal Gasification Combined Cycle

C~ T

HRSG

Gas Turbine

Coal

Gasifier

Cleanup

AirComp.

Air

Steam Turbine

Flue Gas

Combustor

Combined Power Generation(Combination of Brayton & Rankine Cycles)

Joban Joint Power Co.Nakoso #10, 250MWg(Demo. 2007 -, Commercial 2013 -)

IGCC Projects in Japan

Fukushima Revitalization Power540MWg Nakoso (COD : Sep. 2020)540MWg Hirono (COD : Sep. 2021)

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.

Outline of IGCC System

14

Page 89: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

CO2 CirculatingWaterPlant

EfficiencyEmission

Ash

0

Fly-ash(Conventional Boiler)

Grassy Molten Slag(IGCC)

(%)

20

40

60

80

100

120

140

▲60%

▲10~20%

▲30%

Coal‐fired USC power plant (steam at 600°C)

+10~20%

Higher Efficiency and Least Environmental Impact

Utilization as a pavement material

are possible.

Utilization as a concrete aggregate

Approx. 60% decrease in volume

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved. 15

Features of IGCC system (Environmental Performance)

Page 90: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

<When PC boiler uses Coal with Low Ash Fusion Temp.>

Ash adhering on the furnace wall which causes output reduction and chunky slag formation(slagging) needs to be taken care of.⇒ Enlarged furnace volume is required.

Flexibility to “Variety of Coal”

Confirmed the gasification / IGCC operation of sub-bituminous coal with low ash fusion temp. in Indonesia, the United States, etc. at Nakoso 250MW IGCC plant.

Merits of IGCC①Combustor makes coal ash molten form and collects it on furnace wall by centrifugal force of tangential flow.

②Coal injection at Reductor works as quench to reduce gas temperature below the ash fusion temp.

⇒Preventing the slagging and allowing the use of coal with low ash fusion temp without enlarged gasifier.

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved. 16

Features of IGCC system (Fuel Flexibility)

Page 91: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Nakoso250MW IGCC

Major Specification

Output 250 MW (gross)

Gasifier Air-blown Dry Feed

Gas Clean-up MDEA (Methyldiethanol Amine)

Gas Turbine M701DA GT (1 on 1)

Plant Efficiency(Test Result)

42.9% (LHV, net)

Project Schedule

Operation Started Sep. 2007

Commercial Operation July. 2013

Nakoso 250MW IGCC Demonstration Plant achieved all the following targets.Excellent Performance (Highest Efficiency, Less Environmental impact)

Higher Reliability (World record of continuous operation)

Fine Operability (Load change rate >3%/min)

Fuel Flexibility (Verified applicability for low-rank coal)

Converted to the First Commercial IGCC Plant in Japan

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved. 17

Nakoso 250MW IGCC Plant in Japan

Page 92: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

460MW

48 %

540MW

Note: Plant performance such as output and efficiency depends on site conditions including coal properties.

250MW

38

42

44

46

48

50

50Hz(M701DA)

50

Net

Eff

icie

ncy

(L

HV

%)

Nakoso #10 250MW50Hz

(M701F)

400

500

600

300

200 Gro

ss O

utp

ut

(MW

)700Item

Specification

60Hz 50Hz

Coal Bituminous Coal

Output Gross 460 MW 540 MW

Net 410 MW 480 MW

Gasifier Oxidizer Air (O2 Enriched)

Coal Feed Dry

Acid Gas Clean-up Wet MDEA(Methyl Di-ethanol Amine)

Gas TurbineM501GAC☓1

(1 on 1)M701F ☓1

(1 on 1)

Net Efficiency (LHV)

48 %

500MW-class

48 %

42 %

60Hz(M501GAC)

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved. 18

Principal Specification of IGCC Commercial Plants

Page 93: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

4. Geothermal Power Plant

19© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.

Page 94: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Type Single Flash

PowerOutput

53,300 kW

COD Feb. 26th,2015

Mexico

Los Azufres III

Mexico

Domo de San PedroType Single Flash

PowerOutput

27,000 kW

COD Mar. 31st,2016

Power Harnessing Geothermal Energy

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved. 20

Lower emission and high availability based on well proven technology of flash cycle system for all over the world

Page 95: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

Type Binary

PowerOutput

5,000 kW

COD June. 29th,2015

Power Harnessing Low Temperature Heat Resource

Japan Sugawara Binary

Conceptual Diagram of Binary Cycle

© 2016 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved. 21

Binary expands effective use of low temperature heat resources

Page 96: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い
Page 97: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

© TOSHIBA CORPORATION 2016, All rights reserved.1 / 16

Kensuke Suzuki

Thermal & Hydro Power Systems & Services DivisionToshiba Corporation

June 2016

Toshiba’s Activities in Facilitation ofHELE Technologies

Workshop on Facilitating High-Efficiency Low-Emissions (HELE) Technologies

2 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

Shareholder’s Equity

Established In 1875 by Hisashige TANAKAPresident and CEO President and CEO

SalesSalesTotal AssetsTotal Assets

EmployeesEmployeesUSD 55,465 millionUSD 55,465 millionUSD52,789 millionUSD52,789 million

Masashi MuromachiMasashi Muromachi

USD13,044 million

Approx. 200,000 Worldwide *Approx. 200,000 Worldwide *

•As of March 31, 2015, consolidated basis, 1USD=¥120 Toshiba Headquarter Building

Masashi Muromachi

President & CEO

**

*

※1※2

※1 Currently considering restructuring with other companies※2 Plan to transfer the business

Industrial ICT Solutions Company

Energy Systems & Solutions Company

Energy

Infrastructure Systems & Solutions CompanySocial

Infrastructure

Storage & Electronic Devices Solutions Company

Toshiba TEC Corporation

Storage

Toshiba Client Solutions Co., Ltd

Toshiba Lifestyle Products & Services Corporation

※1

Toshiba’s Profile

別添10 発表者資料 株式会社東芝 エネルギーシステムソリューション社

Page 98: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

3 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

Nuclear Thermal (STG,EPC) Hydro

Smart Grid

Geothermal

Mega Solar Wind Power CCS(CO2 Capture)

Energy Systems & Solutions Company

Fuel cells

Toshiba’s Business in Energy

4 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

Total: 1,953 Units, 188,398 MW (As of Dec. 2015)

Canada10 Units

1,959 MW

USA111 Units

37,520 MW

Mexico31 Units

2,754 MW

Costa Rica1 Unit

55 MW

Antigua2 Units

18 MW

Brazil3 Units

155 MW

Venezuela7 Units

1,418 MW

Argentina3 Units

14 MW

Korea34 Units

4,220 MW

Philippines27 Units

1,114 MW

Thailand8 Units

348 MW

Australia55 Units

11,672MW

Indonesia18 Units

4,521 MWMalaysia22 Units

4,556 MW

Sri Lanka1 Unit6 MW

India25 Units

8,048 MW

2 Units118 MW

Botswana1 Unit

33 MW

Nigeria4 Units

56 MW

Egypt

6 Units1,764 MW

Cyprus2 Units

120 MW

Lebanon4 Units

130 MW

Bahrain1 Unit

65 MW

Kuwait22 Units

4,470 MW

Iran4 Units

255 MW

Bangladesh5 Units

41 MW

China 51 Units

13,637 MW

Puerto Rico1 Unit

214 MW

Pakistan3 Units

137 MW

3 UnitsPapua New Guinea

135 MW

Nauru1 Unit

0.1 MW

Myanmar2 Units

0.9 MW

Japan1,457 Units

81,903 MW

Italy4 Units

994 MW

UAE5 Units

2,358 MW

South Africa

Bulgaria3 Units

532 MW

UK1 Unit

210 MW

[ PRD-GMG-GES-0016 Rev.49]

Iceland1 Unit

34 MW

Vietnam4 Units

2,400 MW

New Zealand2 Units167MWKenya

4 Units300 MW

Turkey1 Unit30 MW

Toshiba Turbine Power Plants Supplied Globally

Page 99: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

5 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

Heat Exchanger

Generator

Control System

Steam Turbine

2015

Main Products Provided to the Thermal Power Sector

6 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

Offering Wide Range of Turbine Generators to meet Customer NeedsOffering Wide Range of Turbine Generators to meet Customer Needs

Water cooled

(MW)

Hydrogen cooled

200 ~Air cooled

1200

900

300

(MVA)Steam Turbines Generators

400 ~

600 ~

800 ~

1000 ~

AX1000

AX650

AX300

Steam Turbine & Generator Line-Up

Page 100: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

7 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

Providing Thermal Power Plant as EPC Contractor

Full EPC Solution with Toshiba Turbine GeneratorsFull EPC Solution with Toshiba Turbine Generators

Indonesia-Tanjung Jati B Coal PP 660MW

Japan-Nippon Steel & Sumitomo MetalKashima Coal PP 600MW

Malaysia-Tanjung BinCoal PP 700MW

Procurement &Manufacturing

UAE/Dubai - Jebel Ali-L 750MW C/C + Desalination

UAE/Abu Dhabi - Umm Al Nar 1,550MW C/C + Desalination

2015

Construction &Commissioning

Engineering &Design

8 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

AX Series

Steam turbine generator

BOP

Boiler

AX Series Turbine Island Package can be offered aspart of the integrated thermal power plant. Shorten the construction period by standardized design High reliability by leveraging experience in the world High efficiency by cutting-edge technologies

Product Line-upAX1000: 700-1100MWAX650 : 350- 800AX300 : 200- 400

Providing Standardized Plant Design

Page 101: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

9 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

Plant Net Efficiency (LHV)

CO

2 E

mis

sion

s (g

ram

s / k

Wh)

CO2 emissions reduction is realized by Higher Efficiency Thermal Cycles andpossible future Integration and Optimization with Carbon Capture Technologies

CO2 emissions reduction is realized by Higher Efficiency Thermal Cycles andpossible future Integration and Optimization with Carbon Capture Technologies

0

200

400

600

800

1000

1200

1400

30 35 40 45 50 55 60

A-USC

Sub Critical

USC

CO2 Reduction for Thermal Power Plants

10 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

Highly Efficient Natural Gas Combined Cycle Plants

★ Short Delivery

Nishi-Nagoya Group No.7 Ishikariwan Shinko Unit 1

Customer Chubu Electric Co. (Japan) Hokkaido Electric Co. (Japan)COD Sep. 2017 / Mar. 2018 Feb. 2019CC Type 2 x 3-3-1 (Multi shafts) 1-1-1 (Single shaft)GT 6 x GE 7HA.01 1 x GE 9HA.01 ST 2 x Tandem Compound 4Flow 1 x Tandem Compound 2Flow Output 2 x 1188MW gross (60Hz) 1 x 569MW gross (50Hz)Efficiency 62%(LHV) 62%(LHV)

Page 102: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

11 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

TSURUGA #1500MW(24.1MPag 566/566C)

HEKINAN #1700MW(24.1MPag 538/566C)

KAWAGOE #1,#2700MW(31MPag 566/566/566C)

NOSHIRO #2600MW(24.1MPag 566/593C)

HARAMACHI #11000MW(24.5MPag 566/593C)

NANAO OHTA #2700MW(24.1MPag 593/593C)

J-Power TACHIBANAWAN #1 1050MW(25MPag 600/610C)

TAIZHOU #1,2 1000MW(25MPag 600/600C)

IATAN 914MW(24.6MPag 582/582C)

MAIDURU #2 900MW(24.5MPag 595/595C)

TACHIBANAWAN700MW(24.1MPag 566/593C)

WESTON #4 583MW(24.7MPag 582/582C)

TSURUGA #2 700MW(24.1MPag 593/593C)

HEKINAN #4,#51000MW(24.1MPag 566/593C)

538/566

MST / RST (degC)

566/566

566/593

593/593

600/610

SAMCHEOK #1,2 1100MW(24.6MPag 600/600C)

TA LIN #1,2 800MW(25MPag 600/600C)

TARONG #1450MW(25MPag 566/566C)

CALLIDE #1,#2420MW(25MPag 566/566C)

Historically Leading and Paving the wayin the field of SC/USC Thermal Power Plants

Historically Leading and Paving the wayin the field of SC/USC Thermal Power Plants

Super Critical (SC) & Ultra SC (USC) Coal Power Plants

12 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

High TemperatureMaterial Rotor Forging

Material Development

0

2

4

6

8

10

12

14

16

20.69 34.48Main Steam Pressure (MPa)

Rela

tive

Impr

ovem

ent o

f Effi

cien

cy D

h /h

(%)

Base 538/566C

566/566/566C SC

Single Reheat

700/720/720C A-USCDouble Reheat

600/700C A-USC

Single Reheat

Double Reheat

600/610Csingle Reheat

27.58

A-USC is 14% more efficient than Conventional SCA-USC is 14% more efficient than Conventional SC

Going Further: Advanced USC (A-USC) Coal Power Plants Cross Section ofA-USC Turbine Design

High TemperatureMaterial Valve Casing

700C Live Can Steam Component Testing

(up to 15000 hours)A-USCSteamTestingPlatform

Page 103: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

13 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

Various rehabilitation solutions available for performance enhancementVarious rehabilitation solutions available for performance enhancement

Steam Turbine

Generator

Steam path upgrading Last stage blades upgrading Turbine modernization for OEM and other-OEM

Full Replace of Generator Stator coil / Rotor coil rewind Rotor replacement Generator modernization for OEM and other-OEM

C & I DCS, D-EHC, D-AVR conversion Central Control Room (CCR) modernization

Renovating and Modernizing Existing Power Plants

14 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

Before

Unit OutputOriginal

ManufacturerCOD

1 150MW Kharkov 1966

3 150MW Kharkov 1969

4 150MW Kharkov 1969

5 210MW LMZ 1985

6 210MW LMZ 1988

7 215MW LMZ 1990

8 215MW LMZ 1996

After

Unit Output COD

1 177.4MW 2007

3 177.4MW 2008

4 177.4MW 2009

5 225MW 2014

6 225MW 2010

7 225MW 2014

8 225MW 2011

Bulgaria Maritsa East 2 Output Enhancement

+ 107.2MWwithout additional fuel

Bulgaria Maritsa East 2 Output Enhancement

+ 107.2MWwithout additional fuel

Example of Renovating and Modernizing Work

Page 104: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

15 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

E-1 Stirpper

E-3

E-4

E-5

E-6

P-1

P-2P-3

P-6

P-7

P-8

E-7

P-9

P-10

P-11

E-8

P-12

P-14

E-11E-12

P-15

P-16

P-17

P-18

P-19

P-20

I-1

V-1 P-21

P-23

E-13

I-2

P-25 P-26P-27

E-16

P-33 P-34

I-4

V-3 P-35

P-36

I-5

P-38

E-17

P-39P-38

E-18

P-40

E-19

P-41

P

I-6P-42 P-9

T

I-7

P-43

I-8

T

I-9

P-10

T

I-10

P-45

P-11

T

I-11

T

I-12

P-46

P-13

P-47 P-7

T

I-13

P-48P-33

P

I-14 P-49

P

I-16

P-50

P-11

P-51

P-52

N2 NOxSOxCO2O2

I-1I-1I-1I-1I-1

GC

LC

GCGC

LC

Screening of Absorbents andEvaluation of SystemPerformance Improvementby Simulation

Evaluation of Basic Propertiesand Absorption Performance

Performance / DegradationEvaluation by Small Loop

Overall Demonstration atMikawa - PCC Pilot Plant

Design and Provision ofFull Scale Plant

Carbon Capture Technology Deployment

16 / 16© TOSHIBA CORPORATION 2016, All rights reserved.

Toshiba is a globally recognized manufacturer and technology company in the energy sector, with wide range of experience in providing state-of-the art power plants around the world.

Toshiba continues to work in development of technologies to further improve the efficiency of thermal power plant, as an integrated power plant supplier.

From construction of new high efficiency power plants, to retrofitting and renovating of old existing plants, Toshiba will continue to support the customer needs for High-Efficiency Low-Emissions (HELE) plant solutions.

Summary

Page 105: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

http://www.pwc.com/jp/ja/advisory/

平成28年度国際石油需給体制等調査(G20省エネルギー行動計画に係る事業)

報告書

(英語版)

平成 28 年 7 月

委託元:資源エネルギー庁長官官房国際課

委託先:PwC アドバイザリー合同会社

Page 106: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

II

Table of Contents 1. Report on G20 Energy Efficiency Action Plan, Electricity Generation Workshop 3

1.1 G20 Energy Efficiency Action Plan, Electricity Generation 3

1.2 Purpose and Background of this workshop 3

1.3 Overall of the workshop 3

1.4 Workshop Agenda 5

2. Workshop Summary 7

2.1 Opening Remarks 7

2.2 Session 1: Policy and Finance 7

2.3 Session 2: Technology 15

2.4 Closing remark 18

3. Technical Tour 20

3.1 Schedule and Venue 20

3.2 Over all of the site visit at Kawasaki Thermal Power Plant 20

3.3 Over all of the site visit at Isogo Thermal Power Plant 21

Attachments: 22

Page 107: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

3

1. Report on G20 Energy Efficiency Action Plan, Electricity

Generation Workshop

1.1 G20 Energy Efficiency Action Plan, Electricity Generation Since G20 leaders adopted the G20 Energy Efficiency Action Plan in 2014, Japan has been contributing to

lead one of the prominent efforts in the area of electricity generation and sharing highly-efficient and low

emission (hereinafter called “HELE”) technologies by conducting workshops, site visits, etc. Japan and Turkey

hosted the clean coal workshop in Istanbul in May 2015 and the workshop and energy site-visit with the

purpose of the energy efficacy consultation in Ankara in October 2015. The outcome of these workshops has

been reported to G20 Energy Ministerial.

 

1.2 Purpose and Background of this workshop It is agreed in G20 summit in held in Antalya 2015 that G20 counties continue to execute the “Energy

Efficient Action Plan” and promote the efficient use of natural resources. Based on the agreement by the G20

leaders in Turkey, this year under the Chinese Presidency, in order to further support the outcomes of the

existing efforts on energy efficiency, Japan will hold the workshop and site visits to the cutting edge power

plants near Tokyo. The outcome of the workshop and the site-visit has been submitted to the G20 thereafter.

1.3 Overall of the workshop The workshop was held in Tokyo in July 2016.On the first day of the workshop, the energy efficiency and

energy policy themes were disused by participants from abroad and energy related people in Japan. On the

second day, technical tour was held at thermal power plants near by Tokyo.

24 people participated this workshop and technical tour. Two people from international organization (IEA

and IEF), 10 people from G20 countries (including the participant from the Embassy in Tokyo) and power

sector experts in Japan (Federation of Electricity Power Companies of Japan, Toshiba, MHPS and JBIC)

discuss the three topic, Policy, Finance and Technology in the workshop.

Schedule and Venue

DATE :June 7, 2016 10:00-16:30

VENUE :3rd floor, Dai-ichi Hotel Annex, 1-5-2 Uchisaiwaicho Chiyoda-ku, Tokyo

HOST :Ministry of Economy, Trade and Industry (METI) in Japan

The aim of this workshop is to share insights and information among the policy and technical experts on the

following:

Theme of the workshop

Possible policy and finance measures to facilitate the development of HELE Technologies in the

countries facing challenges in deploying such technologies.

Page 108: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

4

Introduction of HELE technologies in the countries facing challenges in deploying such technologies.

The outline of the discussed issues of each main session in the workshop was as follows:

Policy & Finance 

While electricity demand increases significantly in the emerging countries in coming decades, coal continues to be the fuel of choice, in terms of energy security, energy access and economic development, as it is relatively low cost, reliable and often an abundant resource.

HELE can play a major role to bring us the lower carbon future as many countries recognized the efficient use of coal can contribute to reduce emission.

Technology  Strong commitments for the use of fossil fuels, in particular HELE can assist to address the energy access challenges in the longer term in an affordable and reliable manner. HELE includes not only the existing technologies such as Ultra Super Critical (hereinafter “USC”), Super Critical (hereinafter “SC”) and Integrated Gas Combined-Cycle (hereinafter “IGCC”) but also the future technologies including the Integrated Gasification Fuel Cell (hereinafter “IGFC”).

Report to G20 

Key elements of a report to the G20 was proposed and discussed. The report reflected the outcome of the workshop and the site-visit, to be submitted to the G20 thereafter.

Photo 1: Moderator Mr. Kihara(Left) and Mr. Tomita(Right)

Page 109: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

5

1.4 Workshop Agenda The agenda of the workshop is as followes

Agenda of the workshop • DATE :June 7, 2016 10:00-16:30 • VENUE :3rd floor, Dai-ichi Hotel Annex, 1-5-2 Uchisaiwaicho Chiyoda-ku, Tokyo • HOST :Ministry of Economy, Trade and Industry (METI) in Japan 10:00–10:15 Opening Session Welcome Remarks by

Mr. Shinichi Kihara, Director of International Affairs Division, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan

10:15–13:00 Session 1: Policy and Finance (Objective)

Present and discuss possible policy and finance measures to facilitate the development of HELE technologies in the countries facing challenges in deploying such technologies. (Moderator) Mr. Shinichi Kihara, Director of International Affairs Division, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan

10:15 – 10:20 Introduction by Mr. Kihara

10:20 – 10:35 Mr. Carlos Fernández Alvarez, Senior Coal Analyst, International Energy Agency (IEA)

- Trends in Efficiency in Power Generation –

10:35 – 10:50 Mr. Nag Naidu, Director & Head of Division Investments, Technology Promotion & Energy Security Division, Ministry of External Affairs, Republic of India

- HELE Technologies –

10:50 – 11:05 Mr. Trevor Holloway, Counsellor (Resources & Industry), Australian Embassy Tokyo, Australia

- Facilitating High-efficiency, Low Emission (HELE) Technologies –

11:05 – 11:20 Mr. Seaga Molepo, IPP Office, IPP OFFICE, Department of Energy, Republic of South Africa

- High Efficiency & Low Emission Technologies –

11:20 – 11:25 Briefing the Indonesian Energy Situation by the moderator

11:25 – 11:45 Coffee Break

11:45 – 12:00 Mr. Takafumi Kakudo, Director of Coal Division, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan

- Japan’s Energy Mix and Clean Coal Technology –

Page 110: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

6

12:00 – 12:15 Mr. Hiroshi Tomita, Senior Manager, PPP and Infrastructure, PwC Advisory LLC

- Energy Efficiency Improvement Potential in the Power Sector –

12:15– 12:30 Mr. Yoshitaka Hidaka, Deputy Director, Division 3, New Energy and Power Finance Department I, Infrastructure and Environment Finance Group, Japan Bank for International Cooperation (JBIC)

- Power Sector Finance in Asia -

12:30 – 13:00 General Discussion

13:00–14:30 Lunch 14:30–16:00 Session 2: Technology

(Moderator) Mr. Hiroshi Tomita, Senior Manager, PPP and Infrastructure, PwC Advisory LLC

14:30 – 14:35 Introduction by Mr. Tomita

14:35 – 14:50 Mr. Murat Hardalaç, Head of Department, General Directorate for Energy Affairs, Ministry of Energy and Natural Resources, Republic of Turkey

- General Energy Overview of Turkey –

14:50 – 15:10 Mr. Kei Imaki, Deputy General Manager, Engineering Department, the Federation of Electric Power Companies of Japan

-Coal-fired Power in Japan and Efforts to Improve Thermal Efficiency -

15:10 – 15:25 Mr. Satoshi Uchida, Director, Executive Vice President, Head of Engineering Headquarters of Mitsubishi Hitachi Power Systems Ltd. (MHPS)

- Environmental Friendly Power Generation Technology –

15:25 – 15:40 Mr. Kensuke Suzuki, Senior Manager, Strategic Marketing & Business Development Department, Thermal & Hydro Power Systems & Services Division, Energy Systems & Solutions Company, Toshiba Corporation

- Toshiba’s Activities in Facilitation of HELE Technologies –

15:40 – 16:00 General Discussion

16:15–16:30 Closing Session Workshop Summary and Closing Remarks by Mr. Shinichi Kihara, Director of International Affairs Division, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan

Page 111: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

7

2. Workshop Summary

2.1 Opening Remarks 2.1.1 Mr. Shinichi Kihara, Director of International Affairs Division, Agency for Natural

Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan First of all, he welcomed to all of participants

to this workshop in Tokyo and traveling to

Tokyo from different part of the world.

Today METI host the G20 Energy Efficiency

action plan Workshop on facilitating high-

efficiency, low-emissions (HELE)

technologies in Tokyo.

We have conducted two workshops in

Istanbul and Anker in Turkey last year hosted

by Turkey Government, as Turkish

government hosted G20.

Photo 2: Mr. Kihara 

 

We will report back the outcome of the today’s discussion to G20 Energy Mistrials in Beijing 30 June that

is hosted by Chinese Government.

All participant in this room are policy makers who face common trilemma that consist in “Energy Security”

“Economies” “Environment”. HELE technologies is the key solution to assure the energy security without

harming economic growth and reduction energy related CO2 emission. Policy, Financial support and

Technology innovation are main theme during this workshop.

Recently there were two developments around the world. The first one is the Paris Agreement adopted at

COP21 of UNFCCC. Second one is Sector Understandings for Coal-Fired Electricity Generation Projects of

Arrangement on Officially Supported Export Credits (hereinafter called "the OECD rule") that settled last

year. We would discuss the implication of those major developments during today’s session.

2.2 Session 1: Policy and Finance 2.2.1 Mr. Carlos Fernández Alvarez, Senior Coal Analyst, International Energy Agency

(IEA)

A head of COP 21, IEA proposed the “Bridge Strategy” that could deliver a peak in global energy-related

emissions by 2020. In the scenario, energy-related carbon emissions will peak in 2020, with only five

measures using existing technologies and with no reduction of economic growth.

HELE can achieve efficiency improvement and reduce pollutant emissions from specific fuel consumption.

We found the global transition from sub-critical to SC or USC technologies, which are well proved-

Page 112: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

8

technologies for coal-fired power generation. While the transition happed in the 80s and 90s in Japan and

in Korea, such transition has been observed in India and China.

As a result of agreement in the Export Credit Group of OECD in 2015, export credit from OECD member

countries agencies need to follow the OECD rule that limited to the coal-fired power plants with USC

technologies for most of the countries. The OECD rule improve the balance between climate change and

energy poverty.

In addition to such transition, Carbon Capture and Storage (hereinafter “CCS”) will play a role to deliver

low carbon scenario. Without CCS, extra investment is needed much higher than those required in a 2

Degree Scenario.

Photo 3: Mr. Carlos Fernández 

2.2.2 Mr. Nag Naidu, Director & Head of Division Investments, Technology Promotion &

Energy Security Division, Ministry of External Affairs, Republic of India

The development of modern coal technology will be critical for India to provide enough affordable

electricity to address the needs of more than 300 million people that do not currently have access to

electricity.

India’s existing coal based thermal power plants are currently based on inefficient subcritical technology.

Efforts are now being made to adopt new efficient technologies like SC and USC etc. technology

deployment is happening at a significant scale during the 12th Plan period (2012-17). Post 2017, it is

proposed that no subcritical power plants would be allowed.

At present 16% of coal based installed capacity in India is from SC. It will reach 90% by 2032, when India

envisages to have approximately 400 GW coal-based installed capacity. India plans to shut aging coal-fired

power plants which are more than 25 years old with a combined capacity of 37 GW (or about 12% of the

total installed capacity) to cut emissions and reduce the use of fuel and water. The Central Electricity

Authority will hold talks with plant owners and electricity buyers to prepare a roadmap for phasing out the

old capacity.

Page 113: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

9

While India will be phasing out small-sized, non-reheat type power units (which are inherently inefficient)

in times to come, India may still have to continue operating older design subcritical units since power

plants have signed long term power purchase agreements (PPA) and have an obligation to repay their

lenders and investors.

It is accepted that coal is a necessary evil, but clean coal technology is better than the old polluting plants.

We need to ensure that future plants are all supercritical. Other clean coal technologies such as Carbon

Capture and Storage (CCS) are at an experimental stage and their benefits, when seen in the context of

high costs and rapidly falling renewable energy cost, are debatable.

Photo 4 Mr. Nag Naidu

 

2.2.3 Mr. Trevor Holloway, Counsellor (Resources & Industry), Australian Embassy Tokyo,

Australia

HELE has been installed since 2000 in Australia. Currently, 4 power plants with SC using black coal are

operating.

Australian government have research and development both direct injection carbon engine and Advanced

Lignite demonstration program. Common wealth Scientific and Industrial Research Organization, CSIRO,

started the program for the direct injection carbon engine 4 years ago. "Advanced Lignite demonstration"

is the program to research the technology to upgrade the low energy lignite to high energy product such as

synthetic crude oil.

Australian government committed to nearly 600m USD to projects and program on CCS. Gorgon LNG and

CCS project is set to become the largest commercial scale of CCS plant over the world. Callide Oxyfuel

project is the demonstration project, collaboration with Japanese government and industry. The project

was world's first commercial scale Oxyfuel combustion technology.

Australia has affluent high quality black coal and can provide the stable, affordable and sustainable fossil

fuel internationally. Coal in Australia is well suited to HELE technology. There are excellent domestic

supply chain infrastructure to export high quality coal that contain high energy and low impurities. The

coal from Australia can meet the demand for HELE, especially in South East Asia.

Page 114: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

10

Australia continue to follow international effort to promote low emission technology, including regional

expansion of use of HELE, as well as CCS.

 

Photo 5 Mr. Trevor Holloway

2.2.4 Mr. Seaga Molepo, IPP Office, IPP OFFICE, Department of Energy, Republic of South

Africa

The South African economy is characterized by its energy intensive heavy industries. The mainstay of this

energy intensive economy is coal-fired power generation from an abundant indigenous coal reserves. Since

electrification rate in South Africa is just 85%, the "Integrated Resources Plan 2010-2030" was plotted to

expand 56.5 GW capacity (approx. double the total system capacity of 2010). The national utility Eskom

produces about 95% of the country's electricity and about 90% electricity of the utility is from coal-fired

power plants.

The coal generation fleet in operation is comprised of thirteen subcritical coal fired power plants (incl.

three that were recommissioned).The average thermal efficiency of these ageing fleet is currently around

30% (i.e. operating below optimal level of about 33-35%).The current coal-fired power plants under

construction are SC technology - a relatively higher efficiency 38%. Considerations being made whether to

decommission or retrofit these ageing power plants with clean coal technologies

Under the global climate change agenda, multilateral development banks increasingly face scrutiny for

supporting coal projects. OECD member countries agreed new arrangements to limit the availability of

export credit finance for less environmentally friendly (below USC technology) coal-fired power plants.

South Africa experienced financial difficulties with financing of Medupi coal fired power plant - currently

in construction.

It is envisaged that coal continue to play a major role in the South African economy in terms of

employment, energy supply and contribution to GDP. However, the Paris Agreement necessitates a shift

towards HELE technologies.

The high upfront cost for these technologies are likely to be problematic within an environment where

renewable energy cost are fast become competitive rapidly. In addition, the commercial proneness of

technologies such as IGCC & IGFC should be demonstrated to facilitate deployment in developing

countries.

Page 115: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

11

  Photo 6 Mr. Seaga Molepo

 

2.2.5 Mr. Takafumi Kakudo, Director of Coal Division, Agency for Natural Resources and

Energy, Ministry of Economy, Trade and Industry (METI), Japan

Based on the significant changes in the domestic and overseas circumstances surrounding energy, a new

"Basic Energy Plan" was decided by the Cabinet Council on April 11 in 2014 as the one that shows the

direction of a new energy policy.

Principles of the Energy Policy consist of "3E + S"; "Stable supply (Energy security)", "Cost reduction

(Economic Efficiency)", "Environment" and "Safety". In the policy, coal is an important energy source for

the base load power supply due to its advantages in stable supply and economic efficiency.

Currently, Japan's most efficient coal-fired power generation is USC. In the future, Japan will further

improve the efficiency of the pulverized coal-fired power, and accelerate the technical development of

IGCC and IGFC system to promote even higher efficiency power generation.

The technologies for capturing, storing or effectively utilizing CO2 emitted from power plants (Carbon

dioxide Capture, Utilization and Storage, hereinafter “CCUS”) can be a key to reduce CO2 emissions from

power plants to almost zero. To realize these technologies, several hurdles should be overcome, such as

ensuring low costs and storage areas. Japan promotes various research, development and demonstration

projects related to CCUS towards drastic CO2 emission reduction after 2030.

Photo 7 Mr. Takafumi Kakudo

 

Page 116: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

12

2.2.6 Mr. Hiroshi Tomita, Senior Manager, PPP and Infrastructure, PwC Advisory LLC

Although the efficiency of both coal and gas fired power plants have been improving over the years, big

gaps can be observed and the efficiencies varies by country.

Japan, with its high dependency in external energy resources, has a long standing policy of focusing on the

efficiency on utilization of energy. One of the example is the implementation of HELE (i.e., SC) and

improvement of operation of coal fired power plants. Japanese power companies has implemented variety

of measures to maintain or even improve the efficiency of their power plants. It can be considered that the

sharing and transfer of experience and technologies from the countries with higher efficiency could lead to

the global efficiency improvement.

PwC tracks the progress of G20 countries on their decarbonisation in its publication called “Low Carbon

Economy Index”. Latest report (2015) expresses its view that to prevent warming in excess of 2°C, or to cap

the CO2 emissions between 2010 and 2100 to no more than 270GtC, the global economy needs to cuts the

global carbon intensity by 6.3% a year, However, average G20 INDCs imply a decarbonisationrate of 3%

per year and further measures needs to be considered.

Many countries promotes the introduction of new technologies for new investments but not in the existing

installations. Potential scale of emission reduction from appropriate O&M can be as large as new

investments on high efficient power plants.

Incentives including appropriate government promotion on the improvements of appropriate efficient

O&M and continuous effort is necessary to maintain highly efficient operation.

 

Photo 8 Mr. Hiroshi Tomita

2.2.7 Mr. Yoshitaka Hidaka, Deputy Director, Division 3, New Energy and Power Finance

Department I, Infrastructure and Environment Finance Group, Japan Bank for

International Cooperation (JBIC)

Japan Bank for International Cooperation (JBIC) is public finance institution fully owned by Japanese

government. Export loan are provided to overseas importers and financial institutions to finance exports of

Japanese machinery, equipment and technology mainly to developing countries. Overseas investment

loans support Japanese foreign direct investments.

Page 117: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

13

JBIC has a lot of track records of finance for HELE projects. In September 2014, JBIC provided project

finance for the first time to USC project (“Safi”), a 1,250MW (625MW×2)USC coal-fired power project.

This project is the firstUSC coal-fired power project in Africa. JBIC provided project finance in July 2014 to

a post-combustion carbon capture-enhanced oil recovery project in the USA.

The initial cost of power plants with Clean Coal Technology or efficient Combined Cycle gas technology

tend to be more expensive than any other ordinary technology power plant. However, it is so effective in

the operation phase that the running cost will be cheaper. High Quality Technology Power Plant pays in

the long run.

Photo 9 Mr. Yoshitaka Hidaka,

2.2.8 Mr. Murat Hardalaç, Head of Department, General Directorate for Energy Affairs,

Ministry of Energy and Natural Resources, Republic of Turkey

Installed capacity in Turkey is 75 GW that consists of coal-fired power plant (28% of total capacity) and

gas-fired power plant (38%).Installed capacity has increased dramatically since 90s and the electricity

demand will continue to increase according to our projection. To meet the demand of electricity in future,

10 billion USD investment per year is required.

Capacity of coal-fired power plant installed is more than 16,000MW. Only two of those plants are SC and

the others are sub-critical. Since quality of domestic coal in Turkey is low, the power plants with domestic

coal need special design and technology.

Before Paris Agreement was adopted in COP21 UNFCCC last year, Turkish government submitted INDC

that includes the goal to reduce up to 21% by the year 2030 (2020-2030) GHG emission compared to

business as usual Scenario.

In that context, Turkish government develop the long term energy policy, "IMPORTANT TARGETS OF

TURKEY'S ENERGY EFFICIENCY STRATEGY PAPER 2012- 2023". Under the plan, the average efficiency

of the coal-fired power plants including waste heat recovery in Turkey shall be increased over 45% by 2023.

HELE technology, especially coal-fired, may play a key role to improve efficiency of power sector in Turkey.

Page 118: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

14

 

Photo 10 Mr. Murat Hardalaç  

 

2.2.9 Session 1 Q&A and general discussion

(METI) What is the cost implication about IEA trajectory of 2 degree scenario?

(IEA) Under our scenario, 6Gt of CO2 captured by CCS by 2050 is the cost efficient solution. Total cost of

GHG emission reduction under the scenario without CCS is much higher than the scenario with CCS.

(IEA) PwC‘s presentation include the impressive message, that is importance of policy to promote the

energy efficiency improvement for existing facility.

(PwC) We found two waves of energy efficiency improvement. First is to invest the new facility and Second

one is to improve the energy efficiency in existing plant. Among these thing, India has the interesting

policy to improve the energy efficiency in existing plant.

(METI) The OECD rule was mentioned by most of the presenters. We would like to discuss the impact

caused by the OECD rule for India, South Africa and Turkey.

(India) India indicates implementation of USC and manufacturing the HELE product in India has

increased. And the efforts are now being made to adopt new efficient technologies like SC, USC technology

in India. In addition, public finance from Non-OECD countries become relatively competitive. Therefore,

impact caused by the OECD rule is limited for new investor in IPP.

(South Africa) The OECD rule which limits the application to USC technologies, raises concern for the

finance needed for implementation of coal fired plant in South Africa. I am not sure whether private lender

are willing to finance the coal-fired power plants without ECA participation. It seems that the export credit

is necessary to cover high capital cost and long term finance to USC.

(Turkey) I explain shortly that the OECD rule get Turkey very difficult situation.

(METI) Could you tell us the policy in South Africa regarding the Advanced Ultra Super Critical

(hereinafter “A-USC”) since your presentation mention the A-USC?

Page 119: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

15

(South Africa) The Energy Policy mention the possibility to implement the A-USC due to the OECD rule.

Detail planning is now underway.

2.3 Session 2: Technology 2.3.1 Mr. Kei Imaki, Deputy General Manager, Engineering Department, the Federation of

Electric Power Companies of Japan

Major utilities established the Federation of Electric Power Companies (FEPC) to promote smooth

operations within the industry in 1952.

As required in the Basic Act on Energy Policy, the fundamental mission of the power companies is to

achieve "S+3Es", for delivering stable, high-quality, inexpensive energy. Among various power sources,

coal-fired power, as one of the most economical base load supplies, now accounts for more than 30% of

total power generation.

By the extent of daily maintenance, the trends of thermal efficiency at coal-fired power plants can be

widely different. Generally in Japan, engineers of power plants are divided into three groups, Operation

division, Maintenance division and Efficiency Management division. Each division makes every effort to

accomplish its mission which is different and sometimes conflicting with others.

Such an organizational mechanism results in optimal maintenance considering cost and benefit (i.e.

availability, efficiency).

 

Photo 11 Mr. Kei Imaki

 

2.3.2 Mr. Satoshi Uchida, Director, Executive Vice President, Head of Engineering

Headquarters of Mitsubishi Hitachi Power Systems Ltd. (MHPS)

Mitsubishi Hitachi Power Systems (MHPS) is a joint venture company formed by Mitsubishi Heavy

Industries and Hitachi, integrating thermal power generation systems and other related businesses.

The “J-series” gas turbine has high efficiency to enable to operate at a turbine inlet temperature of 1,600°C

developed in the Japanese National Project.

Page 120: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

16

45 units of J-series gas turbine have been installed globally as of May 2016. World Largest Single Shaft

Unit is installed in the Kawasaki power plants, where many participants of this workshop will visit

tomorrow.

Integrated coal Gasification Combined Cycle system (IGCC) is also MHPS’s cutting edge technology. The

technology can achieve higher efficiency through coal gasification process coupled with a combined cycle

(CC) system and reduce CO2 emission by high efficiency. One strong future of IGCC is the flexibility to

“Variety of Coal”. The IGCC make use of low rate coal, while higher rate coal is suitable for conventional

plants.

Nakoso 250MW IGCC demonstration plant stated the demonstration operation in Sep 2007 and its

commercial operation was started in July 2013. The plant can archive Air-blown Dry Feed and 42.9% of

plant efficiency (LHV, net). MHPS is the leading company of HELE, with the capability to provide high

efficient gas-fired and coal-fired. Those technologies can contribute to the CO2 emission reduction globally.

Photo 12 Mr. Satoshi Uchida 

2.3.3 Mr. Kensuke Suzuki, Senior Manager, Strategic Marketing & Business Development

Department, Thermal & Hydro Power Systems & Services Division, Energy Systems &

Solutions Company, Toshiba Corporation

Toshiba is a globally recognized manufacturer and technology company in the energy sector, with wide

range of experience in providing state-of-the art power plants around the world. Main products provided

to the thermal power sector are steam turbine, generator, heat exchanger and control system of power

plants. Toshiba has exported 1,953 units of turbine (equivalent to 188,398 MW) for power generation plant

as of Dec. 2015.

Toshiba continues to work in development of technologies to improve the efficiency of thermal power plant,

as an integrated power plant supplier covering wide range of turbine generators to meet customer needs.

In addition, Toshiba can provide EPC solution including the supply of Toshiba‘s turbine and generators

globally.

Page 121: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

17

Historically, Toshiba has led and paved the way in the field of SC/USC. Toshiba is developing A-USC coal

power plants technology. 700C Live Can Steam Component Testing (up to 15,000 hours) has been

conducted as a final phase of the development. Toshiba is now at the stage where it can make a proposal.

From construction of new high efficiency power plants, to retrofitting and renovating of old existing plants,

Toshiba will continue to support the customer needs for High-Efficiency Low-Emissions (HELE) plant

solutions.

Photo13 Mr. Kensuke Suzuki 

 

2.2.3.5. Q&A and general discussion

(IEA)Could you indicate us which year the IGCC and A-USC can be provided as a commercial scale in

future.

(MHPS)Commercial scale of IGCC has been stared in Nakoso power plants after the transition from

demonstration project to commercial stage .The equipment for the demonstration power plants were

exchanged to durable parts for long time use.

(Toshiba)A-USC are at last stage of demonstration phase that should be finished by the end of 2016. We

are ready to make a proposal with turbine and generator for A-USC.

(South Africa) IGCC plant in Nakoso was stared as a demonstration and converted to commercial plant.

Could you indicate how to compare Nakoso with other type of power generation technology in terms of cost

effectiveness? Economical competiveness and lack of track record are the concerns for the introduction of

the new technology such as IGCC in emerging countries.

(MHPS)Full Commercial scale of IGCC are planned. Fukushima Revitalization Power is the pure IGCC

project 540MW Nakoso (COD: Sep. 2020) and 540MW in Hirono (COD: Sep. 2021).We will propose

pure commercial scale without demonstration stage since the IGCC is already realized technology.

(South Africa) I have 2 questions to FEPC. Is it need to prepare the specialized staff for each power plant?

Page 122: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

18

(FEPC) In Japan, maintenance teams are allocated in each power station and their responsibility is only for

each power station.

(South Africa)Furthermore, dose the daily maintenance have impact for daily operation. Do we need to

stop the operation of power plant daily maintenance even though the power plant work as a base load

generation?

(FEPC) Usually the daily maintenance do not impact on the availability of the power plants except the term

for 2-3 months inspection period.

2.4 Closing remark 2.4.1 Mr. Shinichi Kihara, Director of International Affairs Division, Agency for Natural

Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan

Thank you for the participation from different countries and we could have wide range of discussion today.

I would like to wrap-up the discussion today.

While electricity demand increases significantly in the emerging countries in coming decades, coal

continues to be the fuel of choice, in terms of energy security, energy access and economic development, as

it is relatively low cost, reliable and often an abundant resource.

Some participants describe that the coal is necessary evil for our society. HELE can play a major role to

bring us the lower carbon future as many countries recognized the efficient use of coal can contribute to

reduce emission. Different countries have different priority for HELE. We found that the transition from

conventional technology such as sub-critical to SC/USC is happening. We need to move forward to the

transition more rapidly.

As the OECD member counties agreed on the OECD rule, export credits from the OECD country agencies

are limited to the coal-fired power plants with USC technologies for most of the countries. The rule which

limits the application to USC technologies, raises concern for the finance needed for implementation of

coal fired plant in emerging counties, since the export credit is necessary to cover high capital cost and long

term investment.

Strong commitments for the use of fossil fuels, in particular HELE can assist to address the energy access

challenges in the longer term in an affordable and reliable manner. HELE includes not only the existing

technologies such as SC, USC and IGCC but also the future technologies including IGFC.

One of the advanced technology has started as a demonstration plant, as IGCC power plant (Nakoso) in

Japan has been converted into a commercial plant. The workshop also recognizes that economical

competiveness is concern for the introduction of the new technology such as IGCC in emerging countries.

Since IGCC technology is in its relatively early stage, track records collected from pure commercial plant in

future shall be a boost to invest it.

Page 123: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

19

The Workshop recognized an importance of appropriate operation & maintenance to achieve the efficient

operation at exiting power plants. During the presentation of good practice by FEPC, the importance of

organizational scheme was indicated as a key role to improve and maintain the thermal efficiency and as a

result, achieving the world’ highest level of efficiency, especially in coal-fired plants. Not only introducing

new HELE technology but also renovating and modernizing of existing power plants improve the efficiency

of power plants.

This workshop found a lot of outcome. We would like to continue to exchange our opinion and keep in

touch. Thank you.

Photo 14 Participants of the workshop

 

Page 124: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

20

3. Technical Tour

After the workshop, site visit was conducted at Kawasaki Thermal Power Plant (Gas) with 160oC–grade

combined cycle technology, located in Kawasaki and Isogo Thermal Power Plant (Coal) with USC

technology, located in Yokohama, were introduced by Japanese utilities.

3.1 Schedule and Venue DATE : June 8, 2016 09:00-17:00

VENUE : the sites visit to:

Kawasaki Thermal Power Plant (Gas), located in Kawasaki

Isogo Thermal Power Plant (Coal), located in Yokohama

HOST : METI

Schedule

9:00-10:00 - Move to Kawasaki Thermal Power Plant

10:00-10:10 - Arrival at Kawasaki Thermal Power Plant

10:10-12:10 - Presentation from power company - Tour at the power plants - Q&A session and discussion

( with interpreter EN-JPN)

12:10-12:30 - Move to the restaurant

12:30-13:30 - Lunch buffet at “Washington Hotel Sakuragicho” in Yokohama City

13:30-14:00 - Move to Isogo Thermal Power Plant by

14:00-16:00 - Presentation from power company - Tour at the power plant - Q&A session and discussion

( with interpreter EN-JPN)

16:00-17:00 - Move to Dai-ichi Hotel Annex , 1-5-2 Uchisaiwaicho Chiyoda-ku, Tokyo

17:00 End of the Technical Tour

3.2 Over all of the site visit at Kawasaki Thermal Power Plant High efficient facility “MACC “(More Advanced Combined Cycle) technology was installed In Kawasaki

Thermal Power Plant, which is operated by TEPCO group.

MACC combines power generation based on a gas turbine using 1500℃ combustion gas with steam-

turbine power generation, delivering the thermal efficiency of approx. 59% (LHV). MACCⅡ, introduced in

January 2016, is capable of using 1600c combustion gas. By achieving a combustion temperature of 1,600

with the latest heat-resistant materials and cooling technologies for the gas turbine, the world's highest

thermal efficiency of 61% (among power generation facilities currently in operation) has been realized.

Page 125: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

21

The MACC is environment-friendly power technology. Environment-friendly equipment such as the latest

low NOx (nitrogen oxide) combustor, high performance NOx removal equipment, etc. have been

introduced.

After the tour in the power plants, detail spec of this technology and the LNG procurement strategy were

discussed and shard with TEPCO group and participants of the workshop.

 

3.3 Over all of the site visit at Isogo Thermal Power Plant Isogo Power Station, whose capacity is 1200MW using USC technology, is located a mere 6 kilometers

from central Yokohama. The plant is owned and operated by the J-Power Group, which supplies wholesale

electricity to Japanese major electric utility companies.

The Japanese government has repeatedly announced its official policy to support for HELE, coal-fired

power plants in the world with its advanced clean coal technologies. ISOGO is the show-case of Japanese

advanced clean coal technologies. The USC technology with world highest steam condition (primary/

reheat steam temp; 600C/620C) was employed and energy efficiency is increased to around 45% (LHV).

As the result of such high efficiency, the GHG emission factor (ton of CO2/kWh) was improved by 17%

compared to the previous plant, thus it is contributing to climate change mitigation.

After the tour in the power plants, the characteristic of coal and technical spec of this power plants were

discussed and shared with participants of the workshop.

Page 126: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

22

Attachments:

Attachment 1: Participation List

<End of Note>

Page 127: 平成28 年度国際石油需給体制等調査(G20 省エネルギー 報告書 … · 1.1 G20 省エネルギー行動計画 電力分野への概要 3 1.2 ワークショップ開催背景と狙い

(様式2)

受注事業者名PwCアドバイザリー合同会社

頁 図表番号別添6 P3 -別添6 P3 -別添6 P3 -

別添6 P11~12 -

タイトル

Energy Balances of Non-OECD Countries2015、IEACO2 Emissions from Fuel Combustion2015、IEA

主要国の石炭火力CO2削減ポテンシャルの評価: 運用補修と新設の効果、(公財)地球環境産業技術研究機

二次利用未承諾リスト

報告書の題名国際石油需給体制等調査(G20省エネルギー行動計画に係る事業)調査報告書

委託事業名国際石油需給体制等調査(G20省エネルギー行動計画に係る事業)

Energy Balances of OECD Countries 2015、IEA