2.elektornikapredavanje_uvod

33
1 ELEKTRONIK ELEKTRONIK A A Doc.d Doc.d r.sc. Slavko r.sc. Slavko Rupčić Rupčić 2. Predavanje 2. Predavanje UVOD UVOD Sveučilište J.J. Strossmayera u Osijeku Stručni studij računarstva

Upload: ismar-kunc

Post on 25-Nov-2014

115 views

Category:

Documents


4 download

DESCRIPTION

Sveučilište Mostar-studij računarstva

TRANSCRIPT

Page 1: 2.ElektornikaPredavanje_Uvod

1

ELEKTRONIKELEKTRONIKAA

Doc.dDoc.dr.sc. Slavko r.sc. Slavko RupčićRupčić

2. Predavanje2. PredavanjeUVODUVOD

Sveučilište J.J. Strossmayera u Osijeku

Stručni studij računarstva

Page 2: 2.ElektornikaPredavanje_Uvod

2

Organizacija i sadržaj predmeta

Kratka povijest poluvodičkih komponenata

Poluvodič, što je to?

Uvodne napomene

Page 3: 2.ElektornikaPredavanje_Uvod

3

Predavanja (45 sati) – (2 kontrolne zadaće - oslobađanje usmenog dijela ispita!)

Auditorne vježbe (30 sati) - (2 kontrolne zadaće - oslobađanje pismenog dijela ispita!)

Laboratorijske vježbe (30 sati) - (kolokvij - uvjet za potpis i mogućnost pristupanja ispitu)

Organizacija i sadržaj predmeta

Ispit - (pismeni + usmeni)

Page 4: 2.ElektornikaPredavanje_Uvod

4

Literatura:

1. T.Švedek, Poluvodičke komponente i osnovni sklopovi, Svezak I. Poluvodičke komponente, Graphis Zagreb, 2001.

2. B.Juzbašić, Elektronički elementi, ŠK, Zagreb 1988.

3. P.Biljanović, Elektronički sklopovi, ŠK, Zagreb,1994.

4. A.Szabo, Impulsna i digitalna elektronika, Skripta FER, Zagreb, 2000.

5. P.Biljanović, Elektronički sklopovi – Zbirka zadataka, ŠK, Zagreb,2004.

Organizacija i sadržaj predmeta

Page 5: 2.ElektornikaPredavanje_Uvod

5

1. Poluvodiči. Električka svojstva poluvodiča

2. Poluvodičke diode

3. Sklopovi sa PN diodama

4. Bipolarni spojni tranzistor (BJT) i osnovna pojačala s bipolarnim spojnim tranzistorima

5. Unipolarni tranzistor (FET) i osnovna pojačala s unipolarnim tranzistorima

6. Negativna povratna veza. Pojačala snage (A, AB i B)

7. Operacijska pojačala i sklopovi s operacijskim pojačalima

8. Osnovnove impulsne tehnike. Multivibratori

9. Osnovni logički sklopovi

10. Pasivne komponente (R, L ,C)

Organizacija i sadržaj predmeta

Page 6: 2.ElektornikaPredavanje_Uvod

6

Elektronika i elektroničke komponente – danas i sutra!

Glo

ba

lna

pro

da

ja (

10

00

mil

iju

na

$)

Svjetski bruto proizvod

ElektronikaAutomobili

Poluvodiči

Čelik

Godina

Page 7: 2.ElektornikaPredavanje_Uvod

7

Elektronika i elektroničke komponente – danas i sutra!

Gu

sto

ća

Godina Godina

Mik

rop

roce

sors

ka s

nag

a (M

IPS

)

Mik

rop

roce

sors

ka s

nag

a (G

IPS

)

Page 8: 2.ElektornikaPredavanje_Uvod

8

Elektronika i elektroničke komponente – danas i sutra!

Godina

Dim

en

zije

ko

mp

on

en

ti Konvencionalno područje

Prijelazno područje

Kvantne komponente

Atomsko područje

Page 9: 2.ElektornikaPredavanje_Uvod

9

Elektronika i elektroničke komponente – danas i sutra!

Page 10: 2.ElektornikaPredavanje_Uvod

10

Kratka povijest poluvodičkih komponenata

1839. - proučavanje vodljivosti i utjecaja svjetlosti na vodljivost selena (Se)

1870. – (Braun) zapažanje ispravljačkog djelovanja spoja metal-poluvodič

1904. (Fleming) - vakuumska elektronska cijev - dioda

DIODA

SELENAtomski (redni) broj 3; Relativna atomska masa 78,96; Naziv na hrvatskom Selen; Internacionalni naziv Selenum; Oksidacijska stanja -2, -1/0, 1, 2, 4, [6]; Talište / Vrelište (K) 490 / 958,1; Elektronegativnost 2,55 / 5,89 Ev; Konfiguracija zadnje ljuske 3d104s24p4; Element je Polumetal; Spada u grupu 16 / VIa; Spada u skupinu Halkogeni elementi

Page 11: 2.ElektornikaPredavanje_Uvod

11

Kratka povijest poluvodičkih komponenata

era elektronike

1906. (Lee de Forest) - vakuumska elektronska cijev - trioda (prva aktivna elektronička komponenta - komponenta koja može pojačavati snagu signala).

1948. (J. Bardeen i W.Brattain) - točkasti tranzistor1951. (W. Shockley) - spojni tranzistor 1951. - spojni FET (tranzistor s efektom polja)

TRIODA

TOČKASTITRANZISTOR

Page 12: 2.ElektornikaPredavanje_Uvod

12

Kratka povijest poluvodičkih komponenata

1959. - planarni proces na Si1959. - planarni tranzistor1959. - planarni IC1960. - MOS FET1960. - Schottkyjeva dioda1963. - CMOS1977. - mikroračunalo........

era -elektronike

era nanoelektronike (engl. nanoelectronics)

era mikro i nano-strojeva (engl. micro & nano-machining)

MOSFET

PLANARNI TRANZISTOR

Page 13: 2.ElektornikaPredavanje_Uvod

13

Kratka povijest poluvodičkih komponenata - detaljnije

Page 14: 2.ElektornikaPredavanje_Uvod

14

Kratka povijest poluvodičkih komponenata - detaljnije

MESFET

Page 15: 2.ElektornikaPredavanje_Uvod

15

Kratka povijest poluvodičkih komponenata

Brattain i Bardeen izumili bipolarni točkasti tranzistor u Bell Laboratoriju 1947. Shockley izumio slojni tranzistor 1949.

Page 16: 2.ElektornikaPredavanje_Uvod

16

Kratka povijest poluvodičkih komponenata

Brattain i Bardeen izumili bipolarni točkasti tranzistor u Bell Laboratoriju 1947. Shockley izumio slojni tranzistor 1949.

Page 17: 2.ElektornikaPredavanje_Uvod

17

Kratka povijest poluvodičkih komponenata

Shockley, Bardeen i Brattain dobitnici nobelove nagrade za fiziku 1956.godine.

Page 18: 2.ElektornikaPredavanje_Uvod

18

Prvi tranzistor - točkasti tranzistor (germanium) iz 1947. godine.

Shematski prikaz točkastog tranzistora.

Kratka povijest poluvodičkih komponenata

Page 19: 2.ElektornikaPredavanje_Uvod

19

Prvi MOSFET - iz 1960. godine(izumili Kahng i Atalla).

Shematski prikaz presjeka MOSFET-a.

Kratka povijest poluvodičkih komponenata

Page 20: 2.ElektornikaPredavanje_Uvod

20

Analogni integrirani krug – oscilator s pomakom faze iz 1958. godine.

Digitalni integrirani krug – digitalni sklop RTL obitelj (planarni proces) iz 1962. godine.

Kratka povijest poluvodičkih komponenata

Page 21: 2.ElektornikaPredavanje_Uvod

21

Operacijsko pojačalo - Fairchild µA 709 iz 1965. godine.

Mikroprocesor - Fairchild Clipper 100 - današnji.

Kratka povijest poluvodičkih komponenata

Page 22: 2.ElektornikaPredavanje_Uvod

22

Prvi mikroprocesor- Intel 4004. Veličina: 3 x 4 mm; 2300 tranzistora;Frekvencija takta: 108kHz iz 1971.

godine.

Prvi mikroprocesor Intel 4004. Povećani detalj.

Kratka povijest poluvodičkih komponenata

Page 23: 2.ElektornikaPredavanje_Uvod

23

Leo Esakijeva tunel dioda 1958.

Page 24: 2.ElektornikaPredavanje_Uvod

24

Silikonske nanocijevi 2009.

Page 25: 2.ElektornikaPredavanje_Uvod

25

Si nanocijevi 2009.

Silicon nanowires are attracting significant attention from the electronics industry due to the drive for ever-smaller electronic devices, from cell phones to computers. The operation of these future devices, and a wide array of additional applications, will depend on the mechanical properties of these nanowires. New research from North Carolina State University shows that silicon nanowires are far more resilient than their larger counterparts, a finding that could pave the way for smaller, sturdier nanoelectronics, nanosensors, light-emitting diodes and other applications.

Page 26: 2.ElektornikaPredavanje_Uvod

26

Carbon nanocijevi 2009.

Carbon nanotubes are promising materials for electronic devices thanks to their excellent mechanical and electrical properties. However, before real-world devices see the light of day, researchers need to be able to modify the electronic structure of the tubes so that different functionalities can be incorporated into the materials. This is difficult to do with pristine tubes because the sidewalls in these structures are extremely stable, which makes them difficult to chemically dope. Now, Kim and colleagues have come up with a simple method to overcome this problem. The scientists have produced arrays of quantum dots inside single-walled carbon nanotubes by producing a misalignment between the tube and an underlying silver substrate. The good thing about the technique is that it does not require any physical or chemical treatment on the tubes. MismatchThe team, which includes researchers from the University of Tokyo and Aix-Marseille University in France, found that the electronic properties of carbon nanotubes are strongly influenced by the way the tubes are registered on metal substrates. Quantum confinements in the form of periodic quantum-well (QW) structures are produced over the whole length of the nanotube and the size of the confined regions can be controlled by changing the mismatch between the tube and substrate. The band-structure of the nanotubes can also be manipulated depending on the degree of mismatch between the nanotube and substrate so that is resembles a superlattice in which the bandgap energy is periodically modulated. In turn, this produces periodic modulations of the nanotube's electronic structure, which then appears as 1D multiple quantum dots. "These dots are analogous to multiple quantum wells in a 3D superlattice, one of the types of QW proposed very early on in the history of semiconductor bandgap engineering," team leader Maki Kawai told nanotechweb.org.

Page 27: 2.ElektornikaPredavanje_Uvod

27

Organska elektronika

Page 28: 2.ElektornikaPredavanje_Uvod

28

Organska elektronika i nanocijevi

Resonant tunneling diodes on silicon

Page 29: 2.ElektornikaPredavanje_Uvod

29

Organska elektronika i nanocijevi

Molecular electronics aims at using individual molecules or small groups of organized molecules as the active part of electronic devices. It takes advantage of the size, the diversity, the quantum properties and the self-organization properties of organic molecules.In this framework, our goal is to develop circuits based on molecular resonant tunneling diodes (RTDs) on silicon. One of the electrodes is deoxygenated silicon, in order to improve the charge injection within the molecular system. The other electrode is a carbon nanotube, in direct contact with the organic monolayer that constitutes the “active” part of the diode. The whole device will be built thanks to lithographic techniques, both optical and electronic (Figure 1). The organic monolayer is sigma-pi-sigma type, so that the charge transfer from silicon to the carbon nanotube behaves non linearly with respect to the applied bias. That resonant tunnelling effect has already been observed on similar organic systems sandwiched between two metallic electrodes, or with silicon under high vacuum.

Page 30: 2.ElektornikaPredavanje_Uvod

30

Organska elektronika i nanocijevi

Silicon reoxidation depends on the nature of the grafted monolayer The organic monolayer is grafted on hydrogenated silicon by thermal grafting from alkenes. Infrared and photoelectron spectroscopies are used to characterize the coating, and more particularly the reoxidation of the substrate. Indeed, by comparing the XPS spectra recorded after grafting of undecenoic and hexenoic acids, with or without protection of the acid group by formation of an activated ester (Figure 2), we have shown that the reoxidation of the silicon surface after the thermal grafting depends strongly on the thickness of the grafted monolayer and on the nature of the chemical groups borne by the molecules within the monolayer.

Page 31: 2.ElektornikaPredavanje_Uvod

31

Organska elektronika i nanocijevi

Page 32: 2.ElektornikaPredavanje_Uvod

32

Organski FET

Page 33: 2.ElektornikaPredavanje_Uvod

33

Prvi tranzistor - točkasti tranzistor

(germanium) iz 1947. godine.

Brattain i Bardeen izumili bipolarni

točkasti tranzistor u Bell Laboratoriju

1947.