통권제53호 - secc.co.kr · 버즈두바이기본개요 ㆍ공사명: burj dubai main...

132
삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 삼성건설 기술연구소 홈페이지(http://www.secc.co.kr/samsungtech/html/index.htm)에서도 볼 수 있습니다 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호 통권 제 53호

Upload: vodung

Post on 24-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm) (http://www.secc.co.kr/samsungtech/html/index.htm)

    53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53

  • : Burj Dubai Main Contract(The Burj Tower)

    : Emaar Properties

    : 47 (2005. 1~2008. 11)

    - : 160 +

    - : 700m ( )

    - : 15

    :

    - : 1~39

    - : 40~108

    - : 109

    (Core Wall)

    ,

    ,

    ' 3 ' .

    800kg/ , 3

    , ,

  • Contents

    2005 53

    :

    POSEIDON PROGRAM (

    ) /4

    (Performance Based Fire

    Protection Design) /14

    /25

    MULTI-DOF(Degree Of Freedon) CONSTRUC

    TION ROBOT FOR A CURTAIN WALL

    INSTALLATION OF A SKYSCRAPER /31

    Core Wall (ACS Form) /40

    /61

    () /66

    /70

    /72

    /74

    (Alkali-Free)

    /76

    /78

    /80

    /82

    /84

    Joint /87

    /90

    , Duct /95

    /99

    Weather Seal Joint /101

    Bar /105

    Detail-2 /107

    Control Joint /110

    Open Joint /113

    /116

    /119

    /122

    /126

    /128

  • 1.

    ,

    ,

    .

    .

    ,

    .

    (

    )

    .

    . (Loading

    manual) (,

    , , )

    .

    Technology Information

    4 2005

    POSEIDON PROGRAM ( )

    TA

  • ,

    .

    2.

    2.1.

    , , , ,

    ,

    . Floating Dock

    (Cassion)

    .

    .

    2.2.

    (Dredger),

    (SCP, DCM, Pile Driver &

    Hammer ), (Floating Crane),

    (Barge), (Tug Boat)

    ,

    .

    .

    .

    .

    .

    .

    5

    POSEID

    ON PRO

    GRA

    M

    (Barge) Steel , Flat barge, Hopperbarge, Floating crane, Foating dock (Non-Proplusion) .

    =Barge= : , .

    KR(, Korean Register of Shipping), NK, ABS 1 , .

  • 2.3.

    . 3D

    .

    3.

    3.1.

    POSEIDON

    Work

    Barge Stability Calculation

    Towing Simulation

    .

    , ,

    .

    3.2. POSEIDON

    3.2.1.

    (Stability) .

    .

    (Righting Force)

    .

    3.2.2.

    ,

    (B:Center of Buoyancy)

    .

    (G:Center of

    Gravity)

    .

    3.2.3. (M: Metacenter) (1)

    ,

    .

    .

    Technology Information

    6 2005

    : , , Barge .

  • .

    (M) .

    3.2.4. (Initial stability)(2)

    1-1

    WL, W1L1 : (Water Line)

    K :

    B, B' :

    G :

    M : , B1 W1L1

    Z : G B1M

    :

    GM

    ( GZ)

    GZ = GM Sin--------1

    , GM = KM-KG=(KB+BM)-KG --2

    ,

    (M) (G)

    .

    , (M) ,

    .

    2 BM

    BM=I/

    I :

    :

    GGO

    GGO = ('/)(i/)

    ':

    :

    i :

    GM GGO GOM

    . (Mt)

    tan= Mt / GOM

    3.2.5. (Stability at large

    Heel Angle)

    1-1

    h, h1: , g, g1

    7

    POSEID

    ON PRO

    GRA

    M

    [1]

  • W1L1

    v :

    GZ = [{v(gh-g1h1)/}-GB(1-cos)}]

    GZ = {(vhh)/}-BGSin

    (Arm: GZ)

    --------------- 3

    , (M)

    (Righting

    Arm: GZ)

    . GZ

    (Curves of Statical

    Stability) . GZ

    .

    .

    3.2.6. GM

    POSEDON

    () GM

    Draft,

    Heeling Trim

    .

    GM

    (Prosedon)

    GG0

    .

    3.2.7. (Heeling)(3)

    (Free Board), ,

    (Rolling),

    , ,

    (Effect of Free Surface)

    .

    Technology Information

    8 2005

    [2]

    * , ** *** (Bmolded) . , (fresh water), Ballast water (free surface)

    .

  • .

    1) (Freeboard):

    (Deck Dege)

    GZ

    .

    2) (Sheer): (Forward)

    (Aftward)

    .

    3) (B): GM

    . GZ

    GM .

    4) (G: Center of Gravity):

    G G1

    G1Z1 .

    G1Z1 =GZ GG1 Sin

    G1 G ,

    .

    .

    5) (Change of Draught)

    G

    GZ

    .

    . 100%

    .

    3.3.

    3.3.1. (4)

    (,

    , ) (Rt)

    . ,

    .

    ,

    .

    .

    Rt

    Rt = Rf+Rw+Re+Ra+Raw

    Rf :

    Rw :

    Re :

    9

    POSEID

    ON PRO

    GRA

    M

    , ,

  • Ra :

    Raw :

    Rt .

    1) (Rf: Frictional Resistance)

    .

    .

    Rf () = 0.000136F1A1V2

    (Ton)

    A1 = (m2)

    F1 = = 0.8

    V = (Knots)

    2) (Rw:Wave-Making )

    ,

    ,

    .

    .

    Rw ()= 0.014CF2A2V2

    (Ton)

    C : 1.2

    A2 :

    V :

    F2 : . .

    3) (Re: Eddy )

    (Appendage)

    .

    4) (Ra: Wind Resistance)

    .

    .

    Ra ( ) = 0.0000195 CSCHA3

    (VW+V)2 (Ton)

    A3 :

    Technology Information

    10 2005

    1989-6 1999-106

  • VW : (Knots)

    V : (Knots)

    CS :

    CH :

    5) (Raw)

    .

    3.3.2.

    1)

    S = K (L1 + L2)

    S : (m)

    L1 : 1/2

    (m)

    L2 : (m)

    K :

    2)

    .

    .

    .

    11

    POSEID

    ON PRO

    GRA

    M

    1989-6 1999-106

  • 3.4.

    3.4.1. Work Barge Stability Calculation

    ( (Length),

    (Breadth), (Depth), )

    Stability (Displacement, Draft,

    Trim, Heeling Angle, GM )

    3.4.2. Towing Simulation

    Towing Rope

    3.4.3. Configuration

    (/

    )

    Technology Information

    12 2005

    [Poseidon ]

  • 3.5.

    (Barge)

    Caisson, Cassion

    .

    13

    POSEID

    ON PRO

    GRA

    M

    : Flat Barge, Hopper barge, Pontoon, SCP, DCM, Dredger, FloatingCrane, Floating Dock

    (1) (3)(1986), , (2) (1995), 1,(4) Crane and Rigging Handbook(1999), Ronald G. Garby(5) Principles of Naval Archititure(Vol.1),Editors Henry E. Rossell (6) (1999), (7) (1985), , (5) (2002),

    3.6. ""

    Crane barge, Floating dock Report Sample

  • 1.

    .

    .

    ,

    .

    (Code Based Design)

    .

    .

    ,

    .

    .

    .

    (Suppression)

    (Fire control)

    .

    ,

    Technology Information

    14 2005

    (Performance BasedFire Protection Design)

    ()

  • .

    2. (Performance Based FireProtection Design)?

    .

    .

    ?

    (Fire Load)

    ? (Atrium)

    ?

    (Smoke Control

    System) ?

    ?

    .

    .

    FDS (

    )

    (snapshot) .

    15

    (: Life Safety, Property Safety or

    Business Interruption)

    (, , )

    (, ,

    )

    ( , , ,

    )

    (, , ,

    (, ,

    )

    (, , ,

    )

  • 3. (EngineeringGuide to PerformanceBased Fire ProtectionDesign & Analysis)

    (Engineering Guide to

    Performance Based Fire Protection Design &

    Analysis) .

    , ,

    ,

    .

    .

    1

    2

    3

    4

    5

    6

    6.1 (Deterministic Analysis)

    6.1.1

    6.1.2

    6.1.3

    6.1.4

    Technology Information

    16 2005

  • 6.1.5

    6.1.6 //

    6.1.7 ( )

    6.1.8 / (

    )

    6.1.9

    6.1.10

    6.1.11

    6.1.12

    6.2 (Risk-Based Analysis)

    6.2.1

    6.2.2

    6.2.3

    6.2.4

    6.2.5

    6.2.6 //

    6.2.7 ( )

    6.2.8 / (

    )

    6.2.9

    6.2.10

    6.2.11

    6.2.12

    7

    8

    8.1

    8.1.1

    8.1.2

    8.1.3

    8.1.4 NFPA 101 Life Safety Code

    8.1.5 IBC Code

    8.2 Tools

    8.3 (SFPE )

    8.4 ()

    8.5

    8.6 Heat Release Rate

    8.7

    8.8

    8.8.1 I

    8.8.2 II

    8.9

    8.9.1 I ()

    8.9.2 II ()

    .

    .

    17

  • .

    .

    1 2

    3

    . 4

    . 5

    , 6

    . 7

    .

    8

    ,

    . 8.1

    8.2 Tool

    . 8.3

    .

    8.4 8.5

    Heat Release Rate

    . 8.6

    ,

    8.8 8.9

    .

    4.

    (Performance

    Based Fire Protection Design)

    .

    4.1

    FAB

    CLASS1~

    CLASS 1000

    .

    HVAC

    HEPA

    .

    . /

    . /

    .

    Technology Information

    18 2005

  • .

    4.2

    Basic Design

    .

    4.3

    4.4

    Wet Station

    , PVC

    .

    Wet Station

    .

    .

    Wet Station

    .

    //

    / /

    .

    . IPA

    .

    IPA

    , PVC

    Wet Station ,

    Process Area

    .

    19

    /

    /

    Basic Design

  • - IPA :

    - WS : Wet Station

    ,

    .

    0~75 IPA , Wet Station 1~1.5MW

    , Wet Station 180 .

    , 24MW

    .

    Technology Information

    20 2005

    4.5 -

    A B C D

    0~75s 75~180s 180~260s 180~350s

    165kW 1~1.5MW 1.5~18MW 1.5~24MW

    (kg/s) 5 14.4~17.5 17.5~85.9 85.9~100.7

    * :

    *

    1) Sprinkler

    IPA WS WS

  • 21

    * .

    * 115 .

    * Wet Station

    .

    2) Sprinkler

    4.6

    Wet station FAB

    .

    1)

  • Technology Information

    22 2005

    2)

    3)

  • , , / ,

    NFPA 204

    ,

    ,

    Sprinkler

    ,

    NFPA ,

    //

    .

    //

    .

    NFPA 204

    ,

    ,

    , Smoke

    Curtain

    .

    ,

    .

    4.7

    .

    ,

    .

    .

    ,

    ,

    ,

    .

    1,000ppm FAB

    Grating Plenum

    ,

    Plenum

    .

    1m3/min

    ()

    ,

    .

    .

    ,

    ,

    .

    23

  • Grating Plenum

    .

    , FAB

    Plenum

    , ,

    , .

    Basic Design

    .

    .

    5. (Performance Based FireProtection Design)

    , , , , ,

    (Performance Based Fire Protection Design)

    .

    , , ,

    , , (Multiplex)

    , ,

    .

    ,

    ,

    ,

    .

    10

    ,

    , ,

    , 16, 3

    /

    .

    ,

    , .

    ,

    ,

    (Performance Based Fire Protection Design)

    .

    Technology Information

    24 2005

  • 1.

    .

    (Passive Control)

    (Base Isolation System)

    , ,

    .

    .

    25

    AbstractRecently, the seismic isolation technique is widely used in high seismicity regions. A major advantage

    of using the seismic isolation is in the reduction of the earthquake damage in structures by lengtheningthe fundamental period. The additional construction cost for base isolated structures compared to

    conventional structures is the cost for the installation of isolators and a transfer floor. In this study, theschematic structural design for isolated and fixed base structure are performed for some structuralsystems and the amount of structural materials for two cases are compared for the cost evaluation.

    : , , , , Keywords : Base Isolation, Earthquake Resistant Design, Cost, Moment Resisting Frame, Shear Wall

    The Cost Estimation of Base Isolated

    Structures

    () ,

  • Technology Information

    26 2005

    ,

    ,

    . ,

    ,

    .

    .

    .

    .

    ,

    ,

    10%

    .

    .

    .

    .

    .

    ,

    .

    .

    2.

    (MRF)

    .

    2 1

    6m

    500kgf/m2, 300kgf/m2

    10, 15, 20 .

    1 (a)

    , 1 (b)

    , 1(c)

    .

    ( 1 (a)) ( 1

  • (b)) 1 (c)

    . 1

    , K

    .

    , WT.

    3 .

    MRF 10 3

    6

    . 2

    .

    (2000, )

    0.11, 1, 1.2

    .

    ,

    UBC 97

    2 . 2 UBC 97

    Sb,

    Zone 4 .

    27

    K = 42WT2g

    2

    1

  • 3.

    3.1

    (

    :5, :6)

    . (UBC97)

    2

    3.

    2 (D.L+L.L)

    .

    . 10, 15,

    20

    2 .

    UBC97 . 2 (a)

    10

    .

    .

    . 15 20

    .

    .

    10

    4.6%, 20 2.7%

    .

    Technology Information

    28 2005

    1

    2 MRF

    10 15 20

    MRF 1.3 3.0 45tf/m 1.5 4.5 33tf/m 1.8 5.0 36tf/m

    0.5 3.0 65tf/m 0.9 3.0 98tf/m 1.5 4.5 67tf/m

    -MRF 0.5 3.0 80tf/m 1.0 3.0 115tf/m 1.7 4.5 66tf/m

    Case Col(1~3FL) H-4144051828

    10Col(4~6FL) H-4004082121

    Col(7~10FL) H-4004001321

    Girder H-4823001115

    Col(1~2FL) H-4584173050

    Col(3~5FL) H-4284072035

    15Col(6~8FL) H-4064031624

    Col(9~11FL) H-3943981118

    Col(12~15FL) H-3884021515

    Girder H-5943021423

    Col(1~2FL) H-4984324570

    Col(3~4FL) H-4584173050

    Col(5~7FL) H-4584173050

    20Col(8~10FL) H-4284072035

    Col(11~13FL) H-4064031624

    Col(14~16FL) H-3943981118

    Col(17~20FL) H-3884021515

    Girder H-7083021528

  • 3.2

    .

    3

    2 .

    .

    15cm

    .

    . EPA

    0.4g (UBC97)

    40-

    D13 4-D13

    . 20

    15 20cm, 5

    15cm .

    EPA 0.4g (UBC97)

    26-D16

    6-D10

    .

    UBC

    .

    .

    29

    (a) 10

    (b) 15

    (c) 20

    2

    3

    (a) 10 (b) 20

  • .

    .

    3.3 -

    .

    3.2 1

    . 4

    3.2

    .

    .

    80cm80cm

    EPA 0.4g (UBC97)

    .

    .

    4.

    .

    .

    .

    .

    Technology Information

    30 2005

    4 -

    (a) 10 (b) 20

    1. Int. Conf. of Building Officials, "Earthquake Regulations

    for Seismic Isolated Structures", Uniform Building Code,Appendix Chapter 26, 1997

    2. Int. Conf. of Building Officials, "Earthquake Regulationsfor Seismic Isolated Structures", Uniform Building Code,Chapter 23, 1991.

    3. ATC3-06 "Tentative Provisions for the Development ofSeismic Regulations for Buildings," Applied TechnologyCouncil, 1978

    4. R. Ivan Skinner & William H. Robinson, An Introductionto Seismic Isolation, John Wiley & Sons, 1992

  • 31

    AbstractRecently, the trend in architectural forms has been toward larger and taller building. The buildingmaterials, therefore, are getting larger and heavier as well. Typical construction machineries are,

    however, not adequate for handling these materials and most of the construction works have been stillmanaged by a human operator. Construction processes are, therefore, fraught with a number ofproblems, including frequent accidents, high construction cost and heterogeneous construction

    quality; which is depended on the experience of the worker. In various construction sites, automation inconstruction has been introduced to address these problems. In this paper, the process of a curtain

    wall construction in the skyscraper is analyzed and proposed the Multi-DOF Construction Robot(MDCR) for this construction process. The need of man power can be reduced by using the proposedMDCR, the construction period and cost can be retrenched as well. The MDCR can be assured safetyin the curtain wall construction site. The performance of proposed robot system (MDCR) was verified

    with the real application test in skyscraper construction site.

    KeywordsCurtain wall, Skyscraper, Multi-DOF Construction Robot (MDCR), Modularization, a macro-micro

    motion manipulator, Human machine cooperative system

    MULTI-DOF (Degree Of Freedom)

    CONSTRUCTION ROBOT FOR A CURTAIN WALLINSTALLATION OF A SKYSCRAPER

    () , , , ,

  • 1. INTRODUCTION

    Recently, the research on robot has a lively

    progress from the innovative development of

    high-technology. An industry robot is, therefore,

    applied widely to a manufacturing field such as

    an automobile industry [1]. In the same way, the

    application of construction automation system

    and robot has been considered to improve

    productivity and safety in construction industry.

    Compared with a manufacturing industry, the

    automation technique has not been applied due

    to the characteristics of a construction industry

    [2].

    The current trend in building construction is

    toward taller and larger buildings. The building

    materials are, therefore, becoming larger and

    heavier as well. Many of the types of equipment

    used to handle these materials are outdated, and

    most of the construction work is managed by a

    human operator. Construction work is, therefore,

    fraught with a number of problems, including

    frequent accidents, high construction cost and

    heterogeneous construction quality which

    depend on the experience of the operator [3].

    To solve these problems, it is necessary to

    introduce the construction automation system

    and robot. Furthermore, humankind has

    expended its territory. It now reaches into space

    and under the sea. Construction equipment,

    therefore, must be developed to handle these

    new construction challenges [4].

    Generally, a construction robot has been

    developed for higher productivity and better

    safety in many different areas of construction [5,

    6]. As the trend of building construction is

    changed, the curtain wall to determine a building

    image is becoming the object of many concern

    in the constructing a building field. A curtain wall

    is one of materials for outer wall construction

    method. It is appropriate for super tall buildings

    (or skyscraper). For this reason, an automation

    system and robot for curtain wall installation in a

    skyscraper construction procedure must be

    developed.

    Up to now, the development of curtain wall

    construction is classified into 3 processes such as

    Figure 1. In the first construction method, a

    curtain wall is installed using a winch and crane,

    as well as many workers. Its procedure is

    complicated and slow; as well, it is dangerous for

    the workers. In the second construction method,

    Technology Information

    32 2005

    Figure 1. The development procedure of curtain wallinstallation method

  • to improve the procedure, a commercial mini

    excavator with suction device is applied. The

    suction device has one rotation mechanism

    which is operated by manual manipulation.

    Figure 2. shows the suction device.

    Through use of the mini excavator system, a

    curtain wall can be moved to the assembly point

    easily. This system also reduces the number of

    workers and the amount of construction period.

    The curtain wall assembling, however, must still

    be operated by a construction worker. The

    authors of this paper propose a human machine

    cooperative system which replaces the suction

    device in the mini excavator system. The system

    under developing now and it is applied to the

    third construction method.

    This study considered these processes and

    conceived of a way to employ a robot in the

    installation of the curtain wall in a skyscraper

    construction work. The use of robots at

    construction sites can reduce the need of human

    involvement. Construction period and cost can

    be reduced as well. An important aspect of the

    use of robots at construction sites is prevention of

    accidents [7, 8].

    2. ANALYSIS OF ANEXISTING INTALLATIONMETHOD; THE MINIEXCAVATOR SYSTEM

    The current curtain wall installation method

    must be analyzed in order to design a robot. The

    mini excavator system is composed of a suction

    device and a commercial mini excavator. A

    suction device holds the curtain wall with a

    rotation mechanism. An excavator is used to

    move the curtain wall to the assembly point.

    Figure 3. shows the mini excavator system.

    2.1 Definition of a coordinatesystem of curtain wall

    Before analysis of the current curtain wall

    construction method can be conducted, a

    coordinate system must be defined as presented

    33

    Figure 2. The suction device

    Figure 3. The mini excavator system

  • in Figure 4. The origin of the coordinate system

    is located in the center of mass of the curtain

    wall. T represents translation and R represents

    rotation.

    2.2 Analysis of an existinginstallation methodaccording to the procedure

    2.2.1 Suction

    By using the suction device on the end of a

    mini-excavator, the curtain wall is held in place.

    The required DOF is Rz to align with the

    excavator.

    2.2.2 Movement

    The curtain wall is moved toward an assembly

    point by a mini-excavator. The required DOF

    are Rz to avoid obstacles.

    2.2.3 Placement

    The position and orientation of a curtain wall is

    adjusted by a Rz rotation mechanism. The

    required DOF is Tx, Ty, Tz, Rx, Ry, and Rz. The

    utilizable DOF in a mini-excavator is Ty, Tz, and

    Rx. The utilizable DOF in the rotation

    mechanism is Rz. A residual DOF is handled by a

    worker.

    Technology Information

    34 2005

    Figure 4. A coordinate system of curtain wall

    Figure 6. The movement process

    Figure 7. The placement process

    Figure 5. The suction process

  • 2.2.4 Installation

    The mini-excavator is separated from the

    curtain wall. Then, the final assembly work is

    executed by a worker. The required DOF is Tx,

    Rx and Ry.

    3. A CONCEPTUAL DESIGNOF MULTI-DOFCONSTRUCTION ROBOT

    3.1 Determination of essentialDOF

    In the installation of a curtain wall, the required

    DOF is Tx, Ty, Tz, Rx, Ry, and Rz. The utilizable

    DOF in the mini excavator is Ty, Tz, and Rx.

    Through the experience of install operator,

    essential DOF in the construction robot is Tx, Ry,

    and Rz. Under developing system, therefore, has

    a three-link RPR manipulator such as Figure 9.

    3.2 Consideration of overturning

    One of the most important considerations at a

    construction site is the safety of human workers.

    If an excavator loads over weight, it will be

    overturned [9]. To prevent overturning, safety

    tests were considered, as presented in Figure 10.

    When the boom and arm spread parallel with

    the ground, a heavy material could be lifted up to

    500 kg by a commercial mini excavator. The

    weight of a curtain wall is 300 kg from Table 1.

    35

    Figure 8. The installation process

    Figure 10. The overturning test of a mini excavator

    Figure 9. Schematic diagram of a three-link RPRmanipulator

  • The system under development, therefore, must

    weigh less than 200 kg. Through the overturning

    test, the boundary condition of robot design is

    established, such as table 2. An importance of the

    establishment of boundary condition in robot

    design is prevention of accidents and troubles.

    3.3 A design of systemspecification

    The system under development can be used

    not only in curtain wall installation but also in

    other construction work. This system, therefore, is

    modularized to add or remove DOF. Table 3.

    shows the diagram of the modularized design.

    The specification of each module is

    determined by analysis of the current curtain wall

    installation work. In the design of a system, the

    required torque and force have to be calculated

    to select the proper actuator, as presented in

    Table 4. The actuator of each module is selected

    by comparing AC servo motor with hydraulic

    motor, such as Table 5.

    Technology Information

    36 2005

  • 4. REALIAZAION OF THEMULTI-DOFCONSTRUCTION ROBOT

    The curtain wall installation system overview is

    a macro - micro motion manipulator. A mini

    excavator is considered to be the macro motion

    manipulator. The system under development is

    considered to be a micro motion manipulator.

    Figure 11. shows the micro motion manipulator

    which is under development.

    The arrangement of each module is

    determined by analyzing of characteristic, such as

    Table 6. Figure 12. shows the macro-micro

    motion manipulator.

    5. CONTROL STRATEGY

    Generally, the fully automated system is not

    suitable for construction work due to frequently

    changed construction environments. A human

    machine cooperative system is, therefore, suitable

    for construction work [10, 11]. It is an interactive

    system in order to cooperate with the human, as

    presented in Figure 13.

    37

    Figure 11. The micro motion manipulator

    Figure 12. The macro - micro motion manipulator

    Figure 13. A human machine cooperative system

  • 6. SIMULATION OFINSTALLAION

    Before the developing system is applied to the

    construction site, simulation is needed to estimate

    goal achievement for a conceptual design, such

    as Figure 14. Through the simulation of

    installation, a new installation process is

    established, as presented in Figure 15.

    7. HUMAN ROBOTINTERACTION

    For adequate (or optimal) productive gains, a

    human should have a minimal capacity or skill

    level to effectively and efficiently work with the

    robot system. The job skills and experience,

    therefore, are defined from a diagram of working

    process as shown in Figure 16. The operators

    require more skill and knowledge than the

    traditional operator.

    Technology Information

    38 2005

    Figure 15. Schematic diagram of curtain wallinstallation

    Figure 16. Human robot interaction diagram

    Figure 14. Simulation of curtain wall installation

  • 8. CONCLUSIONS

    The ultimate goal of the proposed system is for

    human-machine cooperation. The robot is

    commanded/operated through human force; in

    turn, it assists the human operators [12].

    The system described in the present study is

    one step on the way to full automation. There is

    still a long way to go; however, the research and

    development continues. The advantages of

    proposed system include the following:

    * Simple and precise construction procedure

    * Reduction of the numbers of human workers

    * Safety assurance

    * Retrenchment of the construction cost and

    period

    * Homogeneous construction quality

    Much of the automation in construction has

    been developed for outdoor work. The proposed

    robot is being developed for curtain wall

    construction work at indoor sites. The micro-

    motion manipulator is modularized to allow for

    addition or removal of a DOF. Furthermore, the

    proposed robot can be applied to other

    construction work by exchanging the end-

    effecter.

    39

    REFERENCES

    [1] Ae-Bok Lee, Min-Soo Choi, Ha-young Song, Moo-HanKim, A Fundamental Study on the Introduction ofMechanization, Automation Robotization in Constructionworks, KSME , Vol.11, No.2, pp 671~676, 1991.

    [2] Young-Suk Kim, Hyun-Chul Kim, Jung-Hoi Seo, Se-Wook Oh, A Study for the Introduction of ConstructionAutomation and Robotics Technologies and DomesticConstruction Industry, Architectural Institution of Korea,Vol.17, No.2, pp 111~120, 2001.

    [3] H.J. Sim ; C.S. Han, The Development of a Robot Handfor the Automation of Steel Column Construction,IFACSymposium on Robot Control - Syroco, pp. 723~728,2000.

    [4] Albus, James S. Trip Report: Japanese Progress inRobotics for Construction,International Journal ofRobotics, Vol. 2, No. 2, pp. 103~112, 1986.

    [5] Roozbeh Kangari, Advanced Robotics in Civil Engineeringand Construction,91 ICAR., Fifth International Conf,Vol.1, pp. 375 ~378, 1991.

    [6] A. Warszawski, Economic implications of robotics inbuilding,Building and Environment, Vol.20, Issue 2, pp.73~81, 1985.

    [7] Cusack, M, Automation and Robotics the Inter-dependence of Design and Construction Systems,Industrial Robot, Vol.21, No.4, pp.10~14, 1994.

    [8] Wen, Xia ; Romano, V.F. ; Rovetta, A., Remote Controland Robotics in Construction Engineering,AdvancedRobotics, 1991. 'Robots in Unstructured Environments', 91ICAR., Fifth International Conference on 1991, pp.1429~1432, 1991.

    [9] O.J. Kim ; W.S. Yoo ; K.H. Yoon ; H.G. Kang, Evaluationof Joint Reaction Forces for a Hydraulic ExcavatorSubjected to a Critical Load,KSME, Vol.20, No.4, pp.1154~1163, 1996.

    [10] Manfred Hiller, Robotics and Autonomous Systems :Modeling, simulation and control design for large andheavy manipulators,Robotics and AutonomousSystems, Vol.19, Issue 2, pp. 167~177, 1996.

    [11] Inaba, T. ; Hayashizaki, M. ; Matsuo, Y., Design of ahuman-machine cooperation system to facilitate skilledwork,Systems, Man, and Cybernetics, 1999. IEEE SMC'99 Conference Proceedings. 1999 IEEE InternationalConference on 1999, Vol.4, pp. 995~1000

    [12] Manfred Hiller, Robotics and Autonomous Systems :Modeling, simulation and control design for large andheavy manipulators,Robotics and AutonomousSystems, Vol.19, Issue 2, pp. 167~177, 1996.

  • 1.

    1.2 Core Wall

    1.1

    1) Core Wall (Core )

    2) : Core Wall

    Spiral-N

    3) Core Wall :

    Deck

    4) : Unit

    System

    3 Cycle

    Technology Information

    40 2005

    Core Wall(ACS Form)

    3

    1)

  • 41

    Core

    Wall

    2)

  • Technology Information

    42 2005

    2. ACS Form

    2.1 Core Wall

    2.2 Core Wall Self Climbing Form

    1)

    RC Core Wall

    RC Core Wall

    2)

    33( 13.4),

    3: 3 Cycle

    Core Wall

    - Core Wall Slab (V, H

    Cycle

    - System Form

    3)

  • 43

    Core

    Wall

    4)

    System Form

    :

    /

    //

    5)

    System Form

    ,

    Formwork

    ,

    ,

    /

    2.3 Core Wall

  • Technology Information

    44 2005

    1)

    -

    ()

    -

    - Form Form

    - ACS Form ,

    Form

    : 3

    1300

    - Tower Crane

    2)

    - : 3(Wing1)

    - JIB: Luffing Type (

    )

    - Setting Form

    2 ,

    Zone

    .

    -50TON Hydrauric Crane

    -

    Crane (1, 3)

    Post Profile - Wing Tower

    Crane (1, 2, 3)

    Core Hoist

    - : 1( 2, 12

    )

    - Deck Slab Beam Core WallWall

    Tie

    - CoreWall

  • 45

    Core

    Wall

    - ACS Form ,

    Beam

    2.4 ACS Form

    1)

    , : DOKA ACS Form SKE 100

    (: DOKA, : )

    Door Opening :

    (: )

    Core Slab :

    Slab -Beam Deck Plate

    -

    2) ACS Form

    DOKA

    Core Wall

    Supervisor

    Form ,

  • Technology Information

    46 2005

    3) ACS Form

    Form (3.2m)

    FormOverlap

    (Shoe Anchor ,

    )

    Expansion

    Splice Form

    (: 3.4m, Belt Wall:

    4.8m-8.0m, Panthouse: 6.8m)

    4) ACS Form

    1 150mm

    Form

    10

    Conc

    10 Set Back

    5) ACS Form

    Form

    Form

    Transfer Slab

    2.5 ACS Form

    1) Suspension Shoe

    Lifting System Shoe

  • 47

    Core

    Wall

    Anchor Shoe

    Lifting System

    (Door )

    Shoe

  • Technology Information

    48 2005

    2) PC Beam Shoe

    Shoe

    Shoe

    ( Door : 2300mm, Shoe

    : 2350mm)

    Shoe

    PC Beam

    Shoe

    Lifting System Shoe

    Shoe

    PC Beam

  • 49

    Core

    Wall

    3) Core Wall Beam -3

    Core Wall Beam ACS Form

    Tower Crane

    ACS Form Beam

    Form

    ACS Form : Overhead

    Crane (-1) -3

    ACS FormBeam : -

    Tower Crane ( )

    -Overhead Crane

    -3 (Con'c

    )

    ACS Form (+2)

    ACS Form -3 Beam

  • 4) Hoist

    : Core Wall

    Hoist Wall-Tie

    Hoist

    Wall tie Landing (-2

    Wall-Tie )

    Technology Information

    50 2005

  • 5) ACS Form

    :

    ,

    Core Wall

    Zoning

    51

    Core

    Wall

    +3 : -1 : Profile

    +2 : -2 : Shoe

    +1 : , (Bolting) -3 : Beam

    0 : , (Form)

  • Technology Information

    52 2005

    +3

    +0

    6) ACS Form

  • 53

    Core

    Wall

    -2

    -3

  • 2.6 Core Wall 3Cycle

    1)

    Core Wall Zoning Zoning

    (

    )

    , Core Wall

    (

    ,

    ,

    (Embed pl. Form

    Bolt, PC Beam )

    Core Wall 3Cycle

    Technology Information

    54 2005

  • 2) Core Wall 3Cycle

    -3

    - : 3

    , Core Wall

    - System

    ,

    - Embedded Plate

    - 2

    ,

    - 1 T/C

    T/C

    55

    Core

    Wall

  • Core Wall

    : Core Wall

    - Core Wall

    :

    - 1

    Zone "A", "B", "C" 3

    , Zone "C"

    4 . Form

    Form

    - CoreWall

    , , ,

    - 3

    3

    Tower Crane Hoist Climbing

    -

    Climbing

    -Tower Crane 5Climbing

    - Core Hoist 12

    ,

    - BP8000 Slab

    - CPB CPBMast

    2. 7

    1)

    - ACS Form Setting

    : ,

    -

    -

    Technology Information

    56 2005

  • -

    -

    -

    -

    57

    Core

    Wall

    < > < >

    < >

  • Technology Information

    58 2005

    2)

    ()

    ()

    ()

  • 3)

    4)

    Core Hoist Core

    Core

    59

    Core

    Wall

  • Box T/C

    5)

    Technology Information

    60 2005

  • 61

    - -

    ()

    '04

    +

    PVC()

    , Best Pratice

    .

    2004 1

    5 (103)

    Test(2)

    2040Pipe

    .

    2040Pipe

    , PVC

    ,

    , VE , 8

    () ,5

    .

  • 1.

    2000

    . ,

    ,

    .

    1999 WMS System(

    )

    ,

    .

    2040 ,

    .

    2. ()

    3. VE

    3.1

    1) (WMS System)

    2)

    (2001 2,1,3)-Pipe

    PVC+(25T)

    3) ALL Technology Information

    62 2005

    (2000 10)

    2(2001)

  • 4) Test (2002 6

    3)

    5)

    (20027)

    6)

    + PVC+(25T)

    (20036)

    3.2

    1)

    (PVC)

    2) (Safty)

    21

    .

    3) (Time)

    ,

    4) (Cost)

    (PVC) (25T)

    3.3 VE

    4. VE

    4.1

    4.2 1,2

    1) :

    2) : 04 01 15 ~ 02 13

    2 : 04 04 13 ~ 04 16

    3) : [max]

    4) : +

    PVC() +

    +

    2040+

    5) : , 6LIT ,

    1.3M

    63

  • 6)

    7)

    4.3

    1) 2040

    2)

    PVC()+2040

    +(PVC)

    .

    4.4

    Technology Information

    64 2005

  • 5.

    ,

    BP

    65

  • , ,,

    , ,

    .

    ()

    , ()

    .

    ex) 13

    1 ()

    .

    1.

    ()

    (A) , (A+1)

    ,

    ()

    .

    ()

    .

    Technology Information

    66 2005

    ()

  • Loss Time

    .

    7

    ()

    ,

    .

    2. ()

    2.1

    , ,

    , , ,

    .

    .

    2.2 ()

    1) :

    (A) ,

    (A+1)

    .

    Dowel

    .

    - A

    2)

    .

    2.3

    1)

    2) (,

    , , )

    3) , ,

    4) , ( )

    5) , :

    67

    (

    )

  • 6) , :

    7)

    8) , ( ,

    )

    9) ,

    10)

    11)

    12)

    13) ,

    2.4 ,

    1) ,,

    2) ,

    3) (, , )

    4) , ,

    5)

    ( =

    +20mm)

    6) (, , :-

    30, :-60)

    7) ,

    8) :

    Part

    9) PD

    : Part

    3.

    3.1

    (, , List,

    ...) (, ,

    , ) 1 ()

    ,

    .

    3.2

    ()

    .

    3.3

    ,,

    .

    .

    3.4

    Technology Information

    68 2005

  • 1

    .

    3.5

    .

    Loss

    .

    4.

    Risk

    T/F

    .

    ()

    .

    13

    ,, , ,

    1 Setting 2

    6

    .

    ()

    5%

    .

    69

    (

    )

  • Technology Information

    70 2005

    1.

    ,

    ,

    ,

    .

    (2),

    (2)

    (3)

    (1) , (3)

    (7)

    (13)

    (5)

    (5) (7)

    (5) (1),

    (14)

    (5) (1)

    , (1)

    (5)

    (6) (9)

    (7) ,

    (1) (7)

    0452968

  • (9) (5)

    (12) (12)

    .

    2.

    .

    71

    4a

    4b

    4c

    4d

  • 1.

    ,

    .

    ,

    .

    2.

    ,

    .

    Technology Information

    72 2005

    0452402

  • 73

  • 1.

    ,

    (100) (1)

    ,

    (1) (12) ,

    (12) (3)

    (3)

    (4) ,

    (1)

    (4)

    (6)

    (9) (10) (3)

    (3)

    (4) (9)

    , (1) (3)

    (9)

    (6),

    (8)

    (6) ,

    (6)

    (5) , (1)

    (6)

    (8) (6) (5)

    (11)

    .

    2.

    Technology Information

    74 2005

    0449340

  • .

    75

    ()

  • 1.

    ,

    .

    ,

    .

    .

    .

    Alkali-

    Free

    .

    , ,

    ,

    .

    2. Alkali-Free

    Alkali-Free

    ,

    Technology Information

    76 2005

    (Alkali-Free)

    0449040

  • .

    (Total

    Life-Cycle Cost)

    .

    .

    77

  • 1.

    ,

    (2)

    (19) , (18)

    (2)

    , ,

    (1)

    (12)

    , (12)

    (3) (3)

    (4) ,

    (1)

    (4)

    (6)

    (9) (10)

    (3) (3)

    (4) (9)

    , (1) (3)

    (9)

    (6),

    (8)

    (6) ,

    (1) (6)

    (8) (6)

    (6)

    (5) ,

    (1) (6)

    (8) (6) (5)

    (11)

    Technology Information

    78 2005

    0445303

  • .

    2.

    .

    79

  • 1.

    40~50%

    50%

    .

    ,

    (1) (2)

    ,

    (2)

    (10)

    , (2) (10)

    (8) , (8)

    (9) ,

    (9)

    .

    2.

    40~50%

    50%

    .

    Technology Information

    80 2005

    0441285

  • 81

  • 1.

    .

    ,

    .

    .

    , 1 2

    ,

    .

    2.

    , 1

    2

    ,

    . Technology Information

    82 2005

    0437275

  • 83

  • Technology Information

    84 2005

    1.

    Crack

    .

    ( )

    2.

    , /

    .

    3. 1

    1)

    20mm Back Up

    Sealant

    Crack .

    ()

    P113

    [ ]

    [ ]

    CON'C SLAB orBEAM

    CRACK

  • 85

    2) Crack V U Cutting

    .

    4. 2

    1)

    20mm Back Up

    Sealant

    Crack .

    2) Crack Lath

    Chopping

    .

    3) 20mm .

    5. 3

    1)

    20mm Back

    Up Sealant

    Crack .

    2) Crack THK 9 mm

    .

    3) 20mm .

    [ V Cutting ]

    [ ]

    [ 1 ]

    : P113

    : P113

    BLACK UP SEALANT

    COMPRESSIBLEFILLER

    V-CUTTING ( or )

    [ 2 ]

    BLACK UP SEALANT

    COMPRESSIBLE FILLER

    CRACK

    LATH

  • 6. 4

    1)

    20mm Back

    Up Sealant

    Crack .

    2) Crack Joint

    Taping Fabric

    .

    3) Fabric ,

    .

    Technology Information

    86 2005

    [ 3 ]

    BLACK UP SEALANT

    COMPRESSIBLE FILLER

    THK9

    CRACK

    [ 4 ]

    BLACK UP SEALANT

    COMPRESSIBLEFILLER

    JOINTTAPING FABRIC

    CRACK

    1. / / 2004. 2

  • 87

    JO

    INT

    JOINT

    ()

    1.

    .

    2.

    1)

    .

    2)

    .

    3. 3.1

    1) Expansion Joint Control

    Joint 3,000mm

    Expansion Joint Span

    3,000mm

    Cutting .

    2) Wire Mesh

    Expansion Joint

    Control Joint

    3,000mm .

    3.2

    1) Expansion Joint

    - :

  • Technology Information

    88 2005

    - : 10mm (Joint Filler:

    , 0.03 )

    - : 3,000~4,500mm

    - Caulking: 10x10 Sealant,

    2) Parapet Expansion Joint

    - Parapet 200mm,

    200mm

    - : 25mm (Joint Filler:

    , 0.03 )

    - Caulking: 25x25 Sealant,

    3) Control Joint

    - : 1/2 (

    )

    - Cutting : Sealing 6mm,

    Sealing 3mm (

    Cutting Blasting

    Cutting

    Sealing , )

    - Cutting :

    (: 1~4, :4~12)

    - ,

    - : 3~4m 30

    (ACI 302.1R)(ex.

    200mm 6m )

    - : :

    1:1.25

    - 60~90cm

    Cutting

    - :

  • 89

    JO

    INT

    ( 2004.3)

  • 1.

    ,

    Detail .

    2.

    1) .

    2)

    Technology Information

    90 2005

    ()

  • 91

    3. [CASE 1] :

    :

    [CASE 2] :

    :

  • [CASE 3] : ( )

    :

    [CASE 4] :

    :

    Technology Information

    92 2005

  • [CASE 5] :

    :

    4.

    93

  • 5.

    5.1 ( )

    1)

    (9)

    2) ,

    (

    )

    ( )

    .

    * 2003 1 ,

    Technology Information

    94 2005

  • 1.

    Duct

    Detail .

    2.

    1)

    .

    2)

    Duct

    .

    95

    ,

    DUC

    T

    DETA

    IL

    ,DUCT DETAIL

    ()

    [ 1] [ 2]

  • 3.

    3.1 Shaft

    1)

    2)

    : .

    : 2

    , Sleeve 150

    .

    : Casing ,

    .

    :

    ,

    . ,

    .

    :

    Maintenance

    , (

    ) .

    : ,

    . ()

    : Space

    ,

    .

    3)

    Technology Information

    96 2005

  • 4) DUCT

    ) Sleeve

    ,

    , LEVEL

    RC ,

    Sleeve ,

    .

    3-2 Shaft

    1)

    97

    ,

    DUC

    T

    DETA

    IL

  • Technology Information

    98 2005

    2)

    Sleeve 300

    .

    Reducer

    .

    Sleeve

    .

    3) DUCT,

    1) / / 2004.22) () / / 2003.83) , / ()

  • 2.

    99

    ()

    1.

    Drop Ceiling

    .

  • 3.

    150

    Technology Information

    100 2005

  • 2.

    1) (Joint)

    .

    Sealant

    .

    2)

    Back-Up 3

    ,Sealant

    .

    101

    WEA

    THER SEA

    L JOIN

    T

    DETA

    IL

    WEATHER SEAL JOINT DETAIL

    ()

    1.

    Weather

    Seal Joint

    Detail .

    [ 1]

  • 3.

    3.1

    1)

    6 .

    2)

    6

    50

    Joint .

    Joint(W) = E / M 100 + T

    E: , ()

    = *4)

    (100)

    M: ( )*5)

    T: (CONC: 4, : 3

    )

    3) Joint Joint 2/3 (:

    20 15)

    ,

    6

    20

    .

    4) Back-up

    3

    , Joint ,

    .

    5) Bond Breaker Tape Joint

    Back-Up

    .Technology Information

    102 2005

    [ 2]

  • 3.2 (Conventional Moving Weather seal)

    3.3 (Moving Corner Joint)

    3.4 (Remedial Joint)

    103

    WEA

    THER SEA

    L JOIN

    T

    DETA

    IL

    1)

    .

    2)

    .

    1) A C 6 .

    2) A B 2:1 .

    3) .

    4) B 12 .

    1) A B 6.

    2) .

    3) Bond Breaker Tape

    .

    1) A B,C 6 .

    2) Bond

    Breaker Tape .

    3) .

  • 3.5 (Splice Joint)

    1) / / 2004.22) / / 1997.83) / / 1995. 74)

    Technology Information

    104 2005

    1) A 6

    .

    2) B 3

    , .

    3) Bond Breaker Tape .

    1) A 6 .

    2) B 36 .

    3) Bond Breaker Tape

    .

    1) 3

    .

    2) .

    3) Bond Breaker Tape /

    4)

    .

    1) A 6 .

    2) B 36 .

    3) Bond

    Breaker Tape .

    4) 6

    .

    5) (%) , , .

  • 1.

    Curtain Wall

    Al. Bar

    .

    2.

    1) 3mm Al. Sheet 4

    Bar .

    2) 300x195mm Al. Bar

    Sub-Frame , Bar

    2

    .

    3) Al. Bar

    Transom

    .

    105

    Ba

    r

    Bar

    ()

  • 3.

    1) Al. BAR

    Bar .

    2) Bar

    .

    3) Curtain Wall Module

    Joint Stainless Steel Plate

    Al. Bar

    .

    Technology Information

    106 2005

  • 1.

    ,

    Detail .

    2.

    1)

    .

    10~15mm ,

    40~100mm

    .

    2) Frame

    107

    DETA

    IL - 2

    DETAIL-2

    ()

    [ ]

  • 3.

    1)

    (

    )

    .

    2)

    .

    3)

    5 (Groove) .

    Technology Information

    108 2005

    [ ]

    [ ]

  • 1) 38p, 47p / / 2004.2

    109

    DETA

    IL - 2

    [ ]

  • 2.

    : P.64 : P.7

    Technology Information

    110 2005

    CONTROL JOINT DETAIL

    ()

    1) 2)

    1.

    CONTROL

    JOINT [ DETAIL] [ ]

    .

  • 3.

    1)

    - [CONTROL JOINT

    ] CONTROL

    JOINT DETAIL

    .

    2)

    - DETAIL

    CONTROL JOINT .

    111

    CO

    NTRO

    L JOIN

    T

    D

    ETAIL

    3)

    : P.68

  • 3)

    - Detail Control Joint

    .

    4. Control Joint (: Architectural Graphic Standards)

    1) JOINT 18m

    .*

    2) JOINT .

    3) JOINT .

    4) JOINT .

    5) JOINT .(

    1.8m JOINT

    .)

    6) CONTROL JOINT , ,

    CONTROL JOINT

    .

    Technology Information

    112 2005

    * A. 10m ,

    B. 9m 6 .

  • 1.

    ,

    Open Joint

    Detail ,

    .

    2.

    1)

    .

    2)

    ,

    .

    3)

    ,

    .

    3.

    1)

    .

    ,

    , ,

    .

    2)

    113

    OPEN

    JOIN

    T

    OPEN JOINT

    ()

    [ ]

  • .

    3)

    (1)

    (2)

    * : 150 PVC PIPE

    .,

    . [ #1, #2]

    * FILLER: (W:100 x H:100 x t:2)

    * : (L:80 x h:30 x t:10)

    .

    .

    FILLER . [ 2 ] , .

    Technology Information

    114 2005

    [OPEN JOINT ]

    [ ]

    [ #1] Modulock Pedestal (Alumasc)

    [ #2]SUPPORT SET (TERRA)

    [ ]

    []

    FILLER

  • 4.

    1) , (,)

    .

    2) 2F ()

    FILLER .

    3) 2F ()

    Base Panel

    4) 101 Sunken Garden ()

    ( #1)

    115

    OPEN

    JOIN

    T

    [] [ ]

    [ ] []

  • Technology Information

    116 2005

    1.

    ( Rock Anchor)

  • 117

    2.

  • : 1) 2) Jacking Force = (P) + Loss ( + Relaxation

    ) : (P) 1.23) , , .

    : 1) ROCK ANCHOR (2003, )2) GROUND ANCHORS (2004, )

    Technology Information

    118 2005

  • 119

    1.

    1.1 Collins Prestress Concrete Structures

    - :

    . (

    , )

    . ,

    .

    ()

    [ ]

    (MPa)

    18 21 27 30

    0.35 0.38 0.43 0.45

    Asfy Acfcr

    min = fcr/fyfcr = 0.33f'c

    ( As:, fy:,

    Ac:, fcr: )

  • 2.2

    - 0.3mm - ( ) 0.1mm

    2. (-)

    2. 1

    - : 0.38% ( )

    Technology Information

    120 2005

    (MPa)

    18 21 27

    D6 0.40 (0.60) 0.43 (0.72) 0.45 (0.74)

    D10 0.49 (0.87) 0.52 (0.92) 0.55 (0.97)

    D13 0.57 (0.99) 0.60 (1.05) 0.63 (1.10)

    D16 0.64 (1.10) 0.67 (1.17) 0.71 (1.22)

  • 2. 2 ( 0.5% )

    121

    1. Prestressed Concrete Structure (1991, Michael P. Collins)

    2. (2001, )

  • 1.

    1) PS Jacking force

    2)

    3) , , , ,

    4)

    2.

    1)

    2) Jacking Force 20~35%

    Technology Information

    122 2005

    .

    ()

    (Instantaneous loss)

    (Elastic Shortening)

    (Frictional Loss)

    (Anchorage Loss)

    (Sheath)

    (Time-dependent loss)

    (Shrinkage)

    (Creep)

    (Relaxation)

  • 123

    3. ( )1) AASHTO (American Association of State Highway and Transportation Officials)

    2) PTI (Post Tensioning Institute)

    * (, , ,

    )

    - 315

    - 245

    225 231

    168 175

    155 160

    Stress-relieved strand

    Low-relaxation strand

    Stress-relieved strand

    Low-relaxation strand

    Bar

    fck=35MPafck=28MPa

    PS()

    PS &(joist)

    PS (Stress-relieved Grade 270 strand)

    PS (Stress-relieved Grade 240 wire)207 241

    PS Bar 138 172

    Low-relaxation strand (Grade270) 103 138

    (MPa)

    (MPa)

  • 4. (Frictional Loss)

    1) (Curvature friction) (Wobble friction)

    .

    Technology Information

    124 2005

    k() () -

  • 5. (Anchorage Loss)

    125

    : 2003 ()

    Prestressed Concrete (Edward G. Nawy)

    Prestressed Concrete Structure (Michael P. Collins / Denis Mitchell)

    ()

  • Technology Information

    126 2005

    1. (V0)

    C 10m 10 100

    2.

    .

    ,

    .

    ()

  • 127

    1. 2000 , (), 2001

  • Technology Information

    128 2005

    8 18 , " "

    . ,

    , ,

    .

    Door Hardware

    9 9 , 'Door Hardware Check Point'

    . ITEM

    ITEM Door Hardware

    , Door Hardware , /

    Check Point .

    IAQ

    10 12 , IAQ

    . (

    ), ( ),

    ( )

    .

    NATM

    10 27 TA , NATM .

    , ,

    , .

    10 28 , (SC) .

    SC , .

  • 129

    11 5 , .

    / .

    11 8 , Bearing

    .

    .

    11 8 2 , "

    " .

    .

    11 5 2 , "

    / " .

    .

    11 17 ,

    . , , .

  • .

    .

    2005 ( 53)

    1) :

    2) :

    / ,

    -

    -

    - ,

    -

    3) : A4 10Page

    4) :

    5) :

    TEL 02-2145-6458

    FAX 02-2145-6470

    2005 3 11

    262

    02-2145-5114

    T. 02-554-6969

  • !!!

    ,

    - (160 , 700m ) TFC101 (101, 508m)

    2~300m

    ,

    Top-Class

    - TFC 101

    Top-Class

    - 2010 400

    1 (66)

    3 (69)

    Petronas Towers (88, ) 2

    Royal Charoen Krung Tower (63, )

    PBCOM Tower (52, )

    Ampang Tower (50, )

    Taipei Financial Center(101, )- 1

    -- 11,, 66

    * (50 , 200m ) 404 7

    * 3 : 16

    -- NNOO..11,, NNOO..22

    * NO.1 : Taipei 101(101,508m)-

    * NO.2 : (88,452m)-

    - , UAE (700m)

    - 1, Top-Class

    - 3

  • 456-721 262 http://www.secc.co.kr http://www.raemian.co.kr