a 0.048-mm 3-mw synthesizable fractional-n pll with a soft ......area [mm2] 0.048 0.0066 0.04 integ....

32
14.1: A 0.048-mm 2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique © 2015 IEEE International Solid-State Circuits Conference 0 of31 A 0.048-mm 2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique Wei Deng, Dongsheng Yang, Aravind Tharayil Narayanan, Kengo Nakata, Teerachot Siriburanon, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan

Upload: others

Post on 31-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 0 of31

    A 0.048-mm2 3-mW Synthesizable

    Fractional-N PLL with a Soft

    Injection-Locking Technique

    Wei Deng, Dongsheng Yang, Aravind

    Tharayil Narayanan, Kengo Nakata,

    Teerachot Siriburanon, Kenichi Okada, and

    Akira Matsuzawa

    Tokyo Institute of Technology, Japan

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 1 of31

    Outline

    • Introduction

    • Concept of Soft Injection Locking

    • Circuit Implementations

    • Measurement Results

    • Conclusion

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 2 of31

    Introduction

    • Why High Performance PLL

    – Clock generation/distribution

    • Key Specifications for SoC Clocking

    – Small area

    – Low power consumption

    – Low jitter

    – Insensitive over environment variations

    – Scalable with technology advancement

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 3 of31

    All-digital PLLs

    • TDC-based architecture

    – Taking advantages of digital circuits

    – Compact chip area

    – Cannot fully utilize digital design flow

    • Layout uncertainty caused by Auto Place &

    Route degrades TDC and DCO linearity.

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 4 of31

    Injection Locking Technique

    𝒇𝐢𝐧𝐣 = 𝟔 (𝑵(𝑵 − 𝟏))

    𝟐𝝅· 𝒇𝐫𝐞𝐟

    [N.D. Dalt, TCAS II 2014]

    Offset Frequency

    Ph

    as

    e n

    ois

    e

    Injection

    locked

    Free-running

    VCO

    REF Injection

    locked

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 5 of31

    Phase Noise Comparison

    • JitterTDC-PLL=6.4ps JitterIL-PLL=1.5ps

    Freqref =100MHz

    FreqDCO=1GHz

    FOMDCO=-153 dB

    (-90dBc/Hz at 1MHz,

    0.5mW)

    Frequency Offset [Hz]

    Ph

    as

    e N

    ois

    e [

    dB

    c/H

    z]

    10M 100M1M100k

    -70

    -90

    -110

    -130

    IL-PLL

    TDC-PLL

    Free-running

    oscillator

    BW=2MHz

    BW=40MHz

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 6 of31

    Injection Method

    • Pulse Injection [B. Helal, et al., JSSC 2009]

    • Multiplying DLL [S. Ye, et al., JSSC 2002]

    • Edge Injection [W. Deng, et al., ISSCC 2014]

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 7 of31

    Integer-N Operation

    Reference

    VCO

    Reference

    D D D D...

    e.g. N=3

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 8 of31

    Sub-Integer-N Operation

    [P. Park, et al., ISSCC 2012]

    Reference

    D D D D...

    ...

    P0 P1 P2

    e.g. N=3+(1/M)

    Reference

    VCO

    P0

    P1

    P2

    ...

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 9 of31

    Phase Domain (Integer-N)

    P0 P0 P0 P0 P0 P0 P0 …

    2·Tref 3·Tref

    N·2π

    2N·2π

    4N·2π

    fPLL=N·fref

    Tref 4·Tref 5·Tref

    fPLL

    t

    3N·2π

    P0

    P0

    P0

    P0

    P0

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 10 of31

    Phase Domain (Sub-Integer-N)

    P0 P1 P2 P3 … P0 P1 …

    fPLL=(N+1/M)·fref

    (N+1/M)·2π

    2·Tref 3·TrefTref 4·Tref 5·Tref

    fPLL

    t

    2·(N+1/M)·2π

    3·(N+1/M)·2π

    4·(N+1/M)·2π

    P1

    P2

    P3

    P4

    P0

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 11 of31

    Phase Domain (Fractional-N)

    P0 P0 P1 P1 P2 P2 P3 …

    fPLL=(N+0.5/M)·fref

    N·2π

    2·Tref 3·TrefTref 4·Tref 5·Tref

    fPLL

    t

    (2·N+1/M)·2π

    (3·N+1/M)·2π

    (4·N+2/M)·2π

    P0

    P1

    P1

    P2

    P0

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 12 of31

    Time Domain (Fractional-N)

    • Spur is caused by “hard” switching

    Reference

    VCO

    P1

    P2

    ...

    ...

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 13 of31

    Proposed Soft Injection

    Soft

    Injection

    ReferenceInjection

    Signal

    Reference

    Locked

    Soft

    Injection signal

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 14 of31

    “Hard” vs “Soft” InjectionInjection at f10 Injection at f0

    Soft injection

    f10 w/o inj

    f10 w/ inj

    Reference

    f10 w/o inj

    f10 w/ inj

    Conventional “hard” injection

    Proposed “soft” injection

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 15 of31

    Injection Strength

    • Soft injection signal level determines

    injection strength

    • Stronger injection strength leads to

    larger phase shift

    Soft Injection Signal

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 16 of31

    Fractional-N Operation (Hard)

    (3N+ 5/28)·2π

    (3N+ 4/28)·2π

    (3N+4.5/28)·2π

    fPLL

    (3N+ 3/28)·2π

    (3N+ 6/28)·2π

    (3N+ 7/28)·2π

    (3N+ 2/28)·2π

    Available injection phaseSelected injection phase

    3·Tref t

    fPLL=(N+1.5/28)·fref

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 17 of31

    Fractional-N Operation (Soft)

    (3N+ 5/28)·2π

    (3N+ 4/28)·2π

    (3N+4.5/28)·2π

    fPLL

    (3N+ 3/28)·2π

    (3N+ 6/28)·2π

    (3N+ 7/28)·2π

    (3N+ 2/28)·2π

    Available injection phaseSelected injection phase

    3·Tref t

    fPLL=(N+1.5/28)·fref

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 18 of31

    PLL with Soft Injection

    • Cascading topology

    Gating

    DSM

    Soft-Injection

    Frequency-

    locked Loop

    MDLL

    Reference

    Clock

    0.8-

    1.7GHz

    3 28

    Phases1× ~ 12×

    100-600MHz

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 19 of31

    Soft Injection Generator

    VDD

    ...

    MU

    X

    MU

    X

    Injection

    signal

    Digital varactor

    ...

    ...

    D Q

    Reset

    N1·REF Gating

    Array

    • Effective soft injection signal is generated by soft

    injection generator and gating array.

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 20 of31

    Fractional-N Controller

    DSM

    FCW

    Deglitching

    Mapping

    Sub

    IntegerDither

    MDLL

    Retimer

    REFGating

    Array

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 21 of31

    Gating Array

    ...

    Interpolative phase coupled DCO

    GatingGating Gating

    PI PI

    PI

    PI

    DAC

    Frac-N

    Controller

    Soft Injection

    generator

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 22 of31

    Interpolative phase coupled DCO

    [W. Deng, et al., ISSCC 2014]

    PI

    • Standard cell design

    • Interpolative phase

    coupling for

    accurate phase

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 23 of31

    Design Procedure

    Verilog netlist

    (gate-level)

    Verilog

    RTL

    Verilog netlist

    (gate-level)

    DCO DAC

    Logic

    Logic

    Logic Synt. Tool

    GDSII

    P&R Tool

    Netlist

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 24 of31

    Chip Microphotograph

    65nm CMOS technology

    275mm175m

    m

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 25 of31

    Phase Noise

    Frequency: 1.2576 GHz

    Integrated Jitter: 2.5 ps

    PDC: 2.9 mW

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 26 of31

    Spur against Inj. Strength

    (Soft) (Hard)

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 27 of31

    Jitter against Inj. Strength

    (Soft) (Hard)

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 28 of31

    Comp. of Synthesizable PLLs

    This work [1] [2]

    Technology 65nm 65nm 65nm

    Power

    [mW]2.9

    @1.2576GHz

    0.78 @0.9GHz

    [email protected]

    Area [mm2] 0.048 0.0066 0.04

    Integ. Jitter [ps] 2.5 1.7 3.2*

    FOM [dB] -227 -237 -219*

    Topology Soft-IL IL TDC-based

    Type Frac-N Integer-N

    Synthesized? YES

    [1] W. Deng, et al., ISSCC 2014 [2]Y. Park, et al., CICC 2011

    *FOM is calculated based on RMS jitter.

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 29 of31

    Performance Comparison

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 30 of31

    Conclusion

    • A synthesizable fractional-N PLL with

    a soft-injection locking technique is

    presented.

    • The soft injection locking technique

    provides potentials for future clock

    generation circuit designs.

  • 14.1: A 0.048-mm2 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique© 2015 IEEE International Solid-State Circuits Conference 31 of31

    Acknowledgement

    This work is partially supported by

    STARC, MIC, SCOPE, MEXT, STAR, and

    VDEC in collaboration with Cadence

    Design Systems, Inc., Synopsys, Inc., and Mentor Graphics, Inc.