ad-a 239 328 fo approv l i'i~ i'jad-a 239 328 )n page _ fo approv pubic en l i'i~...

125
AD-A 239 328 )N PAGE _ Fo Approv Pubic en no bu l I'I~ ilII 11IL I'J e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5 *~~ljcli¢ O O formation Send (Onrr'ent re ~rang ths bu dpn est.maie or unv other awpe t Of th$ coilector , ingt.)n Headquaries Se,ices. DirectofratC r _' 'Atlon Ooe'tIone s a na d CO orIS. i 15 Jefferson Dav.s Hi.g -Ient ain uagel. Paperwork ReDcucton Project (0704-0188), Wash n;tcn, C 20503 1. AGE... ill VLT (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED I December 1990 THESIS/VX$MAXZ10N 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Advanced Construction Material For Airfield Pavements and Rapid Runway Repair 6. AUTHOR(S) Vincent M. Saroni 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER AFIT Student Attending: University of Texas at Austin AFIT/CI/CIA- 91-008 9. SPONSORING 1 /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER AFIT/CI Wright-Patterson AFB OH 45433-6583 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION rODE Approved for Public Release lAW 190-1 Distributed Unlimited ERNEST A. HAYGOOD, Ist Lt, USAF Executive Officer 13. ABSTRACT (Maximum 200 words) <1 91-07334 14. SUBJECT TERMS 15. NUMEER OF PAGES I 111 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT JSN 750-0 -280-500 .. S -ancvd o'm 293 2r'v '-89)

Upload: others

Post on 30-Nov-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

AD-A 239 328 )N PAGE _ Fo Approv

Pubic en no bu l I'I~ ilII 11IL I'J e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es111a i llherm5 *~~ljcli¢ O O formation Send (Onrr'ent re ~rang ths bu dpn est.maie or unv other awpe t Of th$

coilector , ingt.)n Headquaries Se,ices. DirectofratC r _' 'Atlon Ooe'tIone s a na d CO orIS. i 15 JeffersonDav.s Hi.g -Ient ain uagel. Paperwork ReDcucton Project (0704-0188), Wash n;tcn, C 20503

1. AGE... ill VLT (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 1990 THESIS/VX$MAXZ10N4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Advanced Construction Material For AirfieldPavements and Rapid Runway Repair

6. AUTHOR(S)

Vincent M. Saroni

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATIONREPORT NUMBER

AFIT Student Attending: University of Texas at Austin AFIT/CI/CIA- 91-008

9. SPONSORING 1/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORINGAGENCY REPORT NUMBER

AFIT/CIWright-Patterson AFB OH 45433-6583

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION rODE

Approved for Public Release lAW 190-1

Distributed Unlimited

ERNEST A. HAYGOOD, Ist Lt, USAF

Executive Officer

13. ABSTRACT (Maximum 200 words)

<1 91-07334

14. SUBJECT TERMS 15. NUMEER OF PAGESI 11116. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACTOF REPORT OF THIS PAGE OF ABSTRACT

JSN 750-0 -280-500 .. S -ancvd o'm 293 2r'v '-89)

Page 2: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

ABSTRACT

This research describes an investigation of the use of

polymer-modified aggregate (PMA) as a bomb damage repair material.

PMA, an open-graded aggregate partially bonded with polymer at the

particle interfaces, could be an economical repair material and provide a

strong subgrade for repaired airfield surfaces. A PMA repair material

would consist of a 6 to 18 in. layer of partially bonded, porous aggregates

over push-back debris or over a layer of ballast stone base material. The

select fill, an open-graded aggregate, would provide the primary load

bearing capacity. Adding polymer would provide tensile strength to the

aggregate matrix, which, in its unbonded state, would not exhibit any

tensile strength. A PMA repair material would also provide FOD

protection.N

Page 3: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

The University of Texas at Austin

College of Engineering

4. ADVANCED CONSTRUCTION MATERIAL FOR., AIRFIELD PAVEMENTS AND RAPID RUNWAY

REPAIR

by

Vincent Maurice Saroni, B.S.C.E.and

David W. Fowler, Ph.D., P.E.T. U. Taylor Professor in Engineering

Report Prepared forAir Force Engineering and Services Center

Tyndall Air Force Base, Florida

Contract No. F08637-88-P-1510

Department of Civil EngineeringTHE UNIVERSITY OF TEXAS AT AUSTIN

December 1990

Page 4: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

ADVANCED CONSTRUCTION MATERIAL FOR AIRFIELD

PAVEMENTS AND RAPID RUNWAY REPAIR

APPROVED:

Co-supervisor:Dr. David W. Fowler

Co-supervisor:__Dr. Ramon. Carasquillo

Page 5: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

DEDICATION

This research is dedicatedto Jesus Christ, my Lord and Savior, andto my family, Betsy and Mark.

Page 6: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

ADVANCED CONSTRUCTION MATERIAL FOR AIRFIELD

PAVEMENTS AND RAPID RUNWAY REPAIR

Vincent Maurice Saroni, B.S.C.E.

THESIS

Presented to the Faculty of the Graduate Scho,t of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December, 1990

Page 7: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

ACKNOWLEDGEMENTS

I am indebted to Dr. David W. Fowler, T. U. Taylor Professor of

Civil Engineering and Dr. Ramon L. Carasquillo, Professor of Civil

Engineering for their outstanding support, guidance and

encouragement to complete the research.

I am extremely grateful to Ms. Patricia C. Suggs, Research

Chemical Engineer at the Air Force Engineering and Services Center,

for the idea of PMA and for her effective and generous assistance in

the research.

I greatly appreciated the funding support from the Air Force

Engineering and Services Center and the opportunity to try

something new.

My thanks also go to Dr. Fowler's staff, Rose Rung, David

Whitney, Fred Barth, Linda Rosales, Joy Suvunphugdee, and Don

Dombroski, who not only helped me in the research, but also shared

in the joyous occasion of my wedding.

I owe a special thanks to my lovely bride, Betsy, and my son,

Mark, who have been a source of strength and encouragement to me.

Also, I appreciated all the typing and proofreading Betsy did in

preparing the thesis.

August 1, 1990

i v

Page 8: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

TABLE OF CONTENTS

Page

LIST OF TABLES ......................................... vii

LIST OF FIGURES ......................................... x

CHAPTER

1. INTRODUCTION ............................. 1

1.1 Background ............................. 11.2 Previous Research ....................... 21.3 Scope of Research ....................... 41.4 Objective of Research .................... 5

2. EXPERIMENTAL DESIGN ...................... 7

2.1 V ariables ................................ 72.2 N um bering ............................. 7

3. SPECIMEN PREPARATION AND CASTING ..... 12

3.1 G eneral ................................. 123.2 M olds ................................... 123.3 Aggregate ............................... 183.4 R esin ................................... 193. Pouring the Resin ...................... 213.6 Polymerizing and Mold Removal ......... 12

3.7 Concrete Sawing ......................... 24

4. TESTIN G ...................................... 2(,

4.1 Specimen Measurements ................. 204.2 Flexural Testing........................ 8

Page 9: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

Page

5. DATA REDUCTIONS .......................... 34

5.1 Flexural Strength ......................... 345.2 D , ,tsity .................................. 355.3 Percent Voids ............................ 365.4 Percent Retained and Percent Weight ...... 375.5 Percent Resin Volume/Void Volume ..... 38

6. DISCUSSION OF RESULTS ..................... 40

6.1 Scope of Chapter ......................... 406.2 D epth ................................... 406.3 Resin Loading ........................... 466.4 Density and Percent Voids ................ 52

6.5 Percent Retained and Percent Weight ...... 566.6 Percent Resin Volume/Void Volume ..... 596.7 Miscellaneous Results .................... 61

7. SUMMARY, CONCLUSIONS ANDRECOMMENDATIONS ........................ 63

7.1 Sum m ary ............................... 637.2 Conclusions ............................. 637.3 Recommendations ....................... 66

APPENDICES

A. Casting and Testing Data ........................ 67

B. Aggregate Gradations ........................... 80C. Calculation Results ............................. 82D. Data Points for Graph ........................... 95E. Linear Equations for Graphs ..................... 104

REFEREN CES .............................................. 110

v i

Page 10: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

LIST OF TABLES

TABLE Page

2.1 Specimen Variables .................................. 8

2.2 Specimen Designation ................................ 9

A.1 Casting Data for Compacted Siliceous Gravel ........... 68

A.2 Testing Data for Compacted Siliceous Gravel ........... 69

A.3 Testing Data for Compacted Siliceous Graveland N otes ........................................... 70

A.4 Casting Data for Uncompacted Siliceous Gravel ......... 71

A.5 Testing Data for Uncompacted Siliceous Gravel ......... 72

A-6 Testing Data for Uncompacted Siliceous Graveland N otes ........................................... 73

A.7 Casting Data for Compacted Crushed Limestone ........ 74

A.8 Testing Data for Compacted Crushed Limestone ........ 75

A.9 Testing Data for Compacted Crushed Limestoneand N otes ........................................... /6

A10 Casting Data for Uncompacted Crushed Limestone ...... 77

All Testing Data for Uncompacted Crushed Limestone......-78A12 Testing Data for Uncompacted Crushed Limestone

and N otes ........................................... 79

B. Aggregate Gradation for Siliceous Gravel ............... 81

132 Aggregate Gradation for Crushed Limestone ........... , l

vii

Page 11: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

Page

C.1 Calculation Results of Modulus of Rupture,Density and Percent Voids for CompactedSiliceous Gravel ..................................... 83

C.2 Calculation Results of Percent Retained of Resinand Percent Weight of Resin for CompactedSiliceous Gravel ..................................... 84

C.3 Calculation Results of Percent Resin Volumeper Void Volume and Percent Strength forCompacted Siliceous Gravel ........................... 85

C.4 Calculation Results of Modulus of Rupture,Density and Percent Voids for UncompactedSiliceous G ravel ...................................... 86

C.5 Calculation Results of Percent Retained of Resinand Percent Weight of Resin for UncompactedSiliceous G ravel ...................................... 87

C.6 Calculation Results of Percent Resin Volume perVoid Volume and Percent Strength forUncompacted Siliceous Gravel ........................ 88

C.7 Calculation Results of Modulus of Rupture,Density and Percent Voids for CompactedCrushed Lim estone .................................. 89

C.8 Calculation Results of Percent Retained ofResin and Percent Weight of Resin forCompacted Crushed Limestone ....................... 90

C.9 Calculation Res'J-ts of Percent Resin Volumeper Void Volume and Percent Strength forCompacted %rushed Limestone ....................... 91

C10 Calculation Results of Modulus of Rupture,Density and Percent Voids for UncompactedCrushed Lim estone .................................. 92

viii

Page 12: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

Page

C.11 Calculation Results of Percent Retained ofResin and Percent Weight of Resin forUncompacted Crushed Limestone ..................... 93

C.12 Calculation Results of Percent Resin Volumeper Void Volume and Percent Strength forUncompacted Crushed Limestone ..................... 94

D.1 Data Points for Figure 6.1 ............................. 96

D.2 Data Points for Figure 6.2 ............................. 96

D.3 Data Points for Figure 6.3 ............................. 97

D 4 Data Points for Figure 6.4 ............................. 97

D.5 Data Points for Figure 6.5 ............................. 98

D.6 Data Points for Figure 6.6 ............................. 98

D.7 Data Points for Figure 6.7 ............................. 99

D.8 Data Points for Figure 6.8 ............................. 99

D.9 Data Points fo,- Figure 6.9 ............................. 100

D 10 Data Points for Figure 6.10 ............................. 100

D I11 Data Points for Figure 11 ............................. 101

D-12 Data Points for Figure 6.12 ............................. 102

D.13 Data Points for Figure 6.13 ............................. 103

ix

Page 13: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

LIST OF FIGURES

FIGURE Page

2.1 Specimen Identification Numbering ................... 10

3.1 High Density Polyethelyne Molds Used in CastingPM A Specim ens .................................... 14

3.2 Drawing of High Density Polyethelyne Mold ........... 15

3.3 Dimensions for High Density P.lyethelyne Mold ....... 16

3.4 Dimensions Continued for High DensityPolyethelyne M old ................................... 17

3.5 Concrete Sawing PMA Specimens into 6-in.x 6-in. x 20-in. Sections ............................... 25

4.1 Measuring PMA Specimens for AverageDimensions, Resin-Aggregate Voids and Weight ....... 27

4.2 Crushed Limestone PMA Specimens ShowingResin-Aggregate Voids ............................... 29

4.3 Crushed Limestone PMA Specimens ShowingResin-Aggregate Voids ............................... 30

4.4 Measuring the Flexural Strength of PMA in aHydraulic Testing M achine ........................... 31

4.5 Siliceous Gravel PMA Specimen after Testing... 33

6.1 Flexural Strength of PMA as a Function of theDepth of the Specimen Under Maximum ResinLoading Conditions .................................. 41

6.2 Flexural Strength of PMA as a Function of theDepth of the Specimen Under Minimum ResinLoading Conditions .................................. 43

Page 14: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

Page

6.3 Flexural Strength of Siliceous Gravel PMA as aFunction of the Depth of the Specimen ................. 44

6.4 Flexural Strength of Crushed Limestone PMAas a Function of the Depth of the Specimen ............. 45

6.5 Flexural Strength of Siliceous Gravel PMA as aFunction of Maximum and Minimum ResinLoadings Under Compacted Conditions ................ 47

6.6 Flexural Strength of Siliceous Gravel PMA as aFunction of Maximum and Minimum ResinLoadings Under Uncompacted Conditions .............. 48

6.7 Flexural Strength of Crushed Limestone PMAas a Function of Maximum and Minimum ResinLoadings Under Compacted Conditions ................ 49

6.8 Flexural Strength of Crushed Limestone PMAas a Function of Maximum and Minimum ResinLoadings Under Uncompacted Conditions .............. 50

6.9 Flexural Strength of PMA as a Function of theDensity of the Aggregate Matrix ....................... .3

6.10 Flexural Strength of PMA as a Function of thePercent Voids in the Aggregate Matrix ................. 54

6.11 Flexural Strength of PMA as a Function of thePercent Retained of Resin in the AggregateM atrix ..... ......................................... 5,

6.12 Flexural Strength of PMA as a Function of thePercent Weight of Resin in the AggregateM atrix ............................................. 58

6.13 Percent Flexural Strength as a Functionof Percent Resin Volume/Void Volume ............... W

xi

Page 15: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

Page

6.14 Siliceous Gravel PMA Specimen withPolymer-Sand Cap ................................... 62

xii

Page 16: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

CHAPTER 1

INTRODUCTION

1.1 Background

For the past 30 years, the United States Air Force (USAF) has

researched and developed various methods to improve its bomb

damage repair (BDR) capabilities. The Air Force Engineering and

Services Center (AFESC) at Tvndall Air Force Base has taken a leading

role in developing and managing a Rapid Runway Repair (RRR)

program which will provide state-of-the-art BDR capabilities during

modern and future conflicts. AFESC's RRR program includes

research and development in the following areas:

a. Preattack construction of Alternate Launch and Recovery

Surfaces (ALRS).

b. Postattack environmental assessments.

c. Bomb damage repair techniques, including:

(1) Advanced materials for crater repair.

(2) Precast concrete slabs for crater repair.

(3) Fiberglass membranes (i.e. foreign object damage (FOD)

covers) for crater repair.

Page 17: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

2

(4) Advanced materials for scab repair.

d. Equipment modifications and new equipment

developments.

e. Other areas:

(1) Computer modeling of F -tattack environment and

sequencing of base recovery work activities.

(2) Assessing potential FOD to aircraft in the postattack

environment.

(3) Establishing surface roughness criteria for repaired

surfaces.

(4) Developing crater lip removal procedures and

improving concrete cutting capabilities.

1.2 Previous Research

Previous AFESC research concluded that the method of

percolating resin to form a polymer structural cap was one of the

fastest and most effective ways of meeting the USAF's BDR criteria

because it used less manpower and equipment, and completed the

repair on or ahead of schedule (References 5 & 6). A life cycle cost

(LCC) analysis showed the startup costs for the percolation method to

Page 18: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

3

be less than that of the premix methods (Reference 6). However, the

20-year LCC of the percolation method was more than the premix

method, because the large quantity of chemicals needed and the

replacement costs of those chemicals, due to a finite shelf life,

increased the expense significantly.

Previous AFESC research also concluded that most methods of

crater repair explored to date have had problems with the strength of

the subgrade. Because of a weak subgrade, either additional material

was needed to thicken the structural cap resulting in a more

expensive repair, or additional compaction was needed to strengthen

the subgrade thus resulting in a more expensive and time intensive

repair. Conclusions from some of the previous research are

summarized as follows:

a. Polymer structural cap: Cap thickness is governed by

deflection characteristics rather than strength for polyurethane

structural caps on weak subgrades and with flexural strengths greater

than 700 psi. (Reference 6).

b. Polymer structural cap: Cap deflections are significantly

affected by subgrade consolidation near the center of caps, by load

transfer near the edges, and by elastic/nonelastic characteristics of the

Page 19: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

4

cap at the time it is loaded (Reference 6).

c. Polymer structural cap: Results indicate that cap thickness,

elastic modulus, and subgrade strength are the primary factors

controlling repair stresses and deflections (Reference 6).

d. Fiberglass mat system: The thickness of fill material should

be increased to improve the performance under traffic (Reference 1).

e. Fiberglass mat system: Durability of the mat fulfilled the

stated requirement, but the performance of the crushed stone was

poor. All maintenance required during loadcart trafficking was

related to the crushed stone base course, not the mat (Reference 7).

f. Precast slabs: To reduce initial slab movement, some

compactive effort should be applied to the base and bedding material

placed in the crater (Reference 1).

1.3 Scope of Research

This research had the objective of investigating a new repair

material, one that is economical and provides a strong subgrade.

Polymer-modified aggregate (PMA), an

open-graded aggregate partially bonded with polymer at the particle

interfaces, fulfills both requirements. A PMA repair material consists

Page 20: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

5

of a 6 to 18 in. layer of partially-bonded, porous aggregate over push-

back debris or over a layer of ballast stone base material. The select

fill, an open-graded aggregate, provides the primary load bearing

capacity. Adding polymer provides tensile strength to the aggregate

matrix which, in its unbonded state, does not exhibit any tensile

strength. A PMA repair material would also provide FOD protection.

This research is presented as follows:

a. Chapter 2 describes the variables.

b. Chapter 3 outlines the preparation and casting of the

PMA specimens.

c. Chapter 4 outlines the testing procedures.

d. Chapter 5 describes the data reduction.

e. Chapter 6 discusses the test results.

f. Chapter 7 presents a summary, conclusions and

recommendations.

1.4 Objective of Research

The objective of this research was to investigate PMA as a bomb

damage repair material. This objective was accomplished by:

a. Constructing a mold, casting the specimen and

Page 21: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

6

establishing procedures for testing PMA in flexure.

b. Measuring the flexural strength of PMA beams.

c. Comparing flexural strengths of PMA beams at 6-, 12-,

and 18-in. depths.

d. Comparing flexural strengths of PMA beams with

varying aggregates, levels of compaction, and resin

content.

Page 22: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

CHAPTER 2

EXPERIMENTAL DESIGN

2.1 Variables

Casting and testing data were collected for the 24 conditions

listed in Table 2.1. The variables studied included: aggregate type

(siliceous gravel and crushed limestone), compaction (compacted and

uncompacted), resin loading (maximum and minimum), and depth

of specimen (0 to 6 in., 6 to 12 in., and 12 to 18 in.). The specimens

were tested in flexure for each combination of variables. At least

three specimens at the 0- to 6-in. depth were tested for each

combination. In most cases, three specimens at 6- to 12-in. and 12- to

18-in. depths were tested, depending on availability resulting from the

depth of penetration of the resin.

2.2 Numbering

Each specimen was assigned an identification number of the

form ABC.XY. Each number represents a specific variable, as shown

in Table 2.2 and Fig. 2.1. For example, specimen 212.32 refers to a

specimen composed of crushed limestone, compacted, maximum

7

Page 23: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

8

Table 2.1 Specimen Variables.

Variables Number of_pecimens

Aggregate Compaction Resin Specimen testedType Loading Depth, in. in flexure

Gravel compacted min 0 to 6 3Gravel compacted min 6 to 12 3Gravel compacted min 12 to 18 1Gravel compacted max 0 to 6 6Gravel compacted max 6 to 12 5Gravel compacted max 12 to 18 5

Gravel uncompacted min 0 to 6 3Gravel uncompacted min 6 to 12 3Gravel uncompacted min 12 to 18 3Gravel uncompacted max 0 to 6 3Gravel uncompacted max 6 to 12 3Gravel uncompacted max 12 to 18 3Limestone compacted main 0 to 6 5Limestone compacted min 6 to 12 5Limestone compacted min 12 to 18 2Limestone compacted max 0 to 6 3Limestone compacted max 6 to 12 3Limestone compacted max 12 to 18 3

Limestone uncompacted max 0 to 6 3Limestone uncompacted main 6 to 12 3Limestone uncompacted min 12 to 18 3Limestone uncompacted max 0 to 6 3Limestone uncompacted max 6 to 12 3Limestone uncompacted max 12 to 18 3

Page 24: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

9

Table 2.2 Specimen Designation.

A - First digit specifies type of aggregate.

I = Siliceous gravel.

2 = Crushed limestone.

B - Second digit specifies compaction.

1 = compacted.

2 = uncompacted.

C - Third digit specifies resin loading.

1 = minimum loading (4060 ml).

2 = maximum loading (6090 ml).

X - Fourth digit specifies position of the specimen in the box.

1 = first specimen in the box.

2 = middle specimen in the box.

3 = last specimen in the box.

Y - Fifth digit specifies depth of the specimen from the surface.

1 = 0 to 6 in., or 6-in. depth.

2 = 6 to 12 in., or 12-in. depth.

3 = 12 to 18 in., or 18-in. depth.

4 = 18 to 23 in., or 23-in. depth.

Page 25: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

10

............... . .......

.......... .. ...................... .... .. ........ ..... -.... .......... ............... ....... . ..... ..... .........

X 3 ...

Y=2MM .......................X7 = ................... ......

..... .......

ii OlINAM,

0'ABC 32

Figure 2.1 Specimen Identification Numbering.

Page 26: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

11

resin loading, was the third specimen in the mold, and was cut from

the 6- to 12-in. depth.

Page 27: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

CHAPTER 3

SPECIMEN PREPARATION AND CASTING

3.1 General

The polymer concrete specimens were cast by pouring resin

over aggregate placed in a partitioned box which served as the mold.

The aggregate was oven-dried and weighed before being placed into

each section of the partitioned box. The resin was measured, mixed

and then poured over the aggregate in each mold. Casting and testing

data are given in Appendix A.

3.2 Molds

A special mold was constructed fer this test. To test the

polymer-modified aggregate (PMA), the resin was allowed to freely

percolate through the aggregate. A standard 6-in. x 6-in. x 20-in. mold

would have caught any' resin not retained by the aggregate resulting

in a solid layer of polymer on the bottom of each specimen. A

specimen with a laver of polyrner on the bottom would have a higher

flexural strength than possible under actual field conditions.

An alternate method of simulating field ronditions was

12

Page 28: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

13

evaluated. Constructing a special mold with a screen as the bottom

surface of the mold was considered. However, the gauge of wire or

size of mesh required to simulate the effect of aggregate at lower

levels was not known. Another concern was that the resin would

form a solid layer of resin at the bottom of the mold, between the

screen and the aggregate. Furthermore, a screen or wire mesh would

deform under the weight of the aggregate and resin, and a screen

would also be difficult to securely attach to the sides of the mold.

It was decided that a mold with a depth of about 2 ft. would best

simulate field conditions, where the resin could freely percolate

through the aggregate. A mold with a 2-ft. depth would also allow the

flexural strength of the PMA at various depths to be evaluated.

Each mold was approximately 2 ft. x 2 ft. x 2 ft., as shown in

Figs. 3.1, 3.2, 3.3 and 3.4. Two molds were constructed. The sides and

bottom were removable. The pieces of the mold were machine cut

from an 8-ft. x 4-ft. x 3/4-in. sheet of high density polyethelyne and

were grooved to allow easy, yet snug, assembly. A thickness of 3/4 in.

was necessary to provide strength and stiffness to a mold this size.

The resin could be easily cleaned from the polyethelyne without the

use of a release agent. Bracing was added to hold the mold together

Page 29: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

14

1~~jr~" 771

Figure 3.1 High Density Polyethelyne Molds Used in

Casting PMA Specimens.

Page 30: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

15

QQi

C

-a

0

C

qc~-

Page 31: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

16

ILO

I I'

-7,K,

rr 0

c

0Z

- z3

Page 32: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

17

Z

Z ~JD -~ Z

I-

~ _

- :z2 ~Q\~JZ.~ -~-, - -

< < ~ f -~

7 -~

1~ -a- (C~N

~ C.)

- ai~ r ~

.- <~ -~ C.)_ -I---, -~

~-4 < < C.)

22:

(I~

QJ

I-

C> II II II II -~

II

II II II III I II I II ii II -~ii I ii iiII II II II K~) I

UII II IIII II II ii

LJLiLI I

C.)I-

Page 33: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

18

and to minimize deflection of the sides during compaction of the

aggregate.

Each mold was partitioned into three separate sections. Each

section acted as an individual mold. The interior dimensions of each

section were 6 in. x 20 in. x 23 1/8 in.

3.3 Aggregate

Two types of aggregate were used in this test: siliceous gravel

and crushed limestone. Both were procured from local suppliers and

the gradation ranged from No. 57, nominal 1-in. diameter, to No. 4.

Appendix B lists the aggregate gradations. The siliceous gravel had a

dry-rodded unit weight (DRUW) of 101.9 pounds per cubic feet (lb/cf.),

a dry-loose unit weight of 91.6 lb/cf., and a bulk specific gravity (BSG)

of 2.61. The crushed limestone had a DRUW of 88.7 lb/cf., a dry-loose

unit weight of 74.5 lb/cf., and a BSG of 2.48. The unit weight was

determined in accordance with the American Society of Testing and

Materials (ASTM) C-29-78. The BSG was provided by the local

supplier of the aggregate.

The aggregate was oven-dried at about 275'F and then cooled at

the ambient temperature, usually overnight. After cooling, the

aggregate was either placed into the mold or was stored in sealed

Page 34: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

19

garbage bags until casting.

Once the molds were assembled, the aggregate was scooped into

a metal bucket, weighed, and placed into a specific section of the mold.

The weight of the aggregate was recorded before it was placed in each

section. To ensure even distribution of the aggregate inside the mold

and to minimize the deflection of the partitions, the aggregate was

first placed in the middle section in a 4-in. lift, and then in the two

side sections, also in 4-in. lifts. If the specimen was to be compacted,

each 4-in. lift was compacted by 50 blows with a 2-in. x 4-in. x 4-ft.

piece of wood. The top was leveled and compacted by striking a

hammer on a short piece of wood. For uncompacted specimens, the

aggregate was placed in 4-in. lifts and leveled.

3.4 Resin

The Air Force provided a polyurethane resin to be used in this

test. Part A, the isocyanate, had a density of 1.112 gm/ml; Part B, the

polyol, had a density of 1.054 gm/ml; Part C, the catalyst, had a density

of 1.050 gm/ml.

For consistency, Part B was measured by weight to the nearest

0.01 gin. Part A was determined visually to ensure that an equal

Page 35: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

20

volume to Part B was used.

Through initial testing, it was found that Part C should be 3

percent of the weight of Part B to obtain a set time of about tv,'

minutes. Two minutes was just enough time to mix the resin, pour

it, and allow it to percolate through the aggregate. As the ambient

temperature increased, the weight percent of Part C had to be

decreased by trial and error to avoid a "quick-set" of the resin. The

catalyst amount was 3 percent by weight for all specimens unless

otherwise noted in Appendix A. Part C was also measured by weight

to the nearest 0.01 gm.

The maximum and minimum resin loadings were established

by trial and error. The first three specimens used 4060 ml. for the

resin loading: 2000 ml. of Part A, 2000 ml. of Part B and 60.20 ml. of

Part C. Although resin percolated to a depth of 20 in., not enough

resin percolated to the 12- to 18-in. depth tc allow a specimen to be

sawed and tested (Table A.3, specimens 111.00). As a result, it was

decided that 4060 ml. would be the minimum resin loading and a

greater quantity of resin would be used for the maximum loading

conditions. For the maximum resin loading, the objective was to

pour enough resin into the mold so that ample resin percolated to the

Page 36: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

21

12- to 18-in. depth. This would allow a specimen at the 12- to 18-in.

depth to be obtained for testing. A 50-percent increase in the resin

loading, 6090 ml., accomplished this objective: 3000 ml. of Part A,

3000 ml. of Part B and 90.34 mil. of Part C.

3.5 Pouring the Resin

Safety was the top priority during the mixing and pouring of

the resin. The lab was kept well ventilated by opening all doors and

windows and by having a large fan constantly blowing the vapors out

of the lab. Resins were never stored nor poured near a source of heat.

All resins were stored in a chemical storage room. All lab assistants

wore pants and aprons made of a Tyvek® material, two layers of

gloves, and goggles. All waste contaminated by resin was properly

disposed.

Two people helped in the pouring process. One person, the

timekeeper, monitored the elapsed time from the start of mixing

until the resin set. The other person, the mixer, was the only person

to ever handle, mix, pour, or dispose of the resins. The mixer

weighed the required amounts of Part B in 1000 ml. beakers and Part C

in 100 ml. beakers. Part A was measured visuallv in 1000 ml. beakers.

Page 37: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

22

Parts B and C were mixed together in an 8-qt. container. Part A was

added, the stopwatch started, and all parts mixed together with a

wooden stick. After thorough mixing, the container was sealed with a

lid containing approximately twenty 3/8-in. holes that evenly

dispersed the resin over the specimen surface. The mixing process

took 20 to 30 seconds.

The container was then tipped upside down over one section of

the mold and the resin was poured evenly over the specimen surface

at a constant r A small air hole was located at the bottom of the

container tj allow the pressure inside the container to equalize. It

was covered with tape during mixing and removed by the timekeeper

at the beginning of pouring. The pouring process took 60 to 75

seconds.

3.6 Polymerizing and Mold Removal

The resin typically set 15 to 30 seconds after the pouring was

completed. Appearance and pourability were used to define the set

time. The resin started out with a viscosity nearly as low as water.

After about two minutes, the resin became thicker in consistency. At

about the same time, dark fibers, or chains, began to form in the resin

Page 38: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

23

mixture. A few seconds later, the mixture became solid and turned a

light tan color. The moment it became unpourable and light tan in

color was defined as the set time. Overall, the resin initially set about

two minutes after the mixing began and was hard after seven

minutes.

After the resin set, the amount of unused resin was measured.

The empty weight of the beakers and the pouring container were

subtracted from their weight after the mixing and pouring process.

This gave the weight of the residual resin left in the various

containers. The resin left on the wooden stick was also determined

and an estimate was made on the weight of the resin spilled during

the pouring process.

The specimens polymerized at least 12 hours before mold

removal and sawing. All specimens polymerized at least 24 hours

before testing. Specimens polymerized at the ambient temperature in

the lab.

After removing the bracing around the mold, three side panels

were removed. The first specimen was removed from the partition

that separated it from the next specimen, and then the partition was

removed. This was repeated until all specimens were removed from

Page 39: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

24

the mold.

Mold pieces were cleaned after every pour and care was taken

not to scratch the interior surfaces. After reassembly, all inside seams

were thoroughly caulked with a silicon rubber sealant.

3.7 Concrete Sawing

Starting at the top of the specimen, lines were drawn so that

each specimen would be 6-in. deep after it was sawed. The minimum

and maximum depths the resin percolated were measured prior to

sawing.

A portable concrete saw was placed on top of a 4-in. high

wooden platform as shown in Fig. 3.5. The specimen was held

securely against the platform. The operator made a straight cut by

lowering the saw blade through the specimen along the drawn line.

After the specimens were cut at 6-in. intervals, the 6-in. x 6-in. x

20-in. beams were transported approximately 10 miles to the testing

lab. The truck was driven slowly and sheets of plywood were used to

help minimize any damage to the specimens.

Page 40: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

25

Figure 3.5 Concrete Sawing PMA Specimens into

6-in. x 6-in. x 20-in. Sections.

Page 41: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

CHAPTER 4

TESTING

4.1 Specimen Measurements

As shown in Fig. 4.1, specimen measurements were taken just

prior to actual testing so that the measurements accurately

represented the specimen at the time of testing. Three measurements

were taken for each dimension to the nearest 0.05-in. These

measurements were used to determine the average width, depth and

length of the specimen. When a resin-aggregate void existed at the

edge of the specimen, a minimum dimension of 5.75-in. was used.

A resin-aggregate void is defined as a void which resulted

when pieces of polymer-modified aggregate broke off. It is not a

trapped air void in the PMA matrix. Regardless of the precautions

taken while handling the specimens, pieces of polymer-modified

aggregate broke off during mold removal, concrete sawing, and

transporting but most often during sawing. Occasionally, voids

resulted when resin failed to percolate completely through the

aggregate.

To calculate the amount of resin retained by the specimen, the

26

Page 42: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

27

Figure 4.1 Measuring PMA Specimens for Average

Dimensions, Resin-Aggregate Voids, and

Weight.

Page 43: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

28

volume of the resin-aggregate void was measured with a 3-in. x 2.5-in.

x 2.5-in. block. This volume is recorded in Appendix A under the

column "Voids," and Figs. 4.2 and 4.3 show resin-aggregate voids in

PMA specimens. In addition to measuring resin-aggregate voids,

specimens were weighed on a scale to the nearest 0.06 lb. prior to

testing.

4.2 Flexural Testing

Flexural strength testing was conducted according to the

American Society for Testing and Materials (ASTM) C-78-75. The first

several specimens were tested using a hand-operated Rainhart

Testing Machine. These specimens are identified in Appendix A.

However, this machine could not accurately measure the flexural

strength when it was less than 200 psi., so all remaining tests were

conducted using a hydraulic testing machine.

As shown in Fig 4.4, the tests used the standard apparatus for

third-point loading. The specimens had an

18-in. span and were loaded at the third-points. A few minor

adjustments were made to ASTM C-78-75 to accommodate the unique

characteristics of PMA. ASTM requires a loading rate of 125 psi/mi.

to 175 psi/min. after rapidly loading the specimen to 50 percent of its

Page 44: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

29

A J

Figure 4.2 Crushed Limestone PMA Specimens Showing

Resin-Aggregate Voids. Specimens (B = No.

211.42 and C = No. 211.43) are at the 12-in.

and 18-in. Depths.

Page 45: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

30

A C

Figure 4.3 Crushed Limestone PMA Specimens Showing

Resin-Aggregate Voids. Specimen A

(No. 211.51) shows the top surface of PMA

and Specimen C (No. 211.53) Shows Resin-

Aggregate Voids.

Page 46: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

31

Figure 4.4 Measuring the Flexural Strength of PMA in a

Hydraulic Testing Machine.

Page 47: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

32

breaking load. This rate was too high for PMA specimens since the

ultimate load was so low. A loading rate of 40 psi/min. to 45 psi/min.

(i.e. 480 lb/min. to 540 lb/min.) was used instead. Also, thin strips of

wood were used in place of leather shims.

Another adjustment was made to more accurately measure the

flexural strength of the specimen. Whenever possible, the specimens

were tested in the same position as they were cast. This adjustment

was made because sometimes a thin layer of resin formed on the sides

of the specimen where it was in contact with the mold. If the

specimen had been tested on its side, the strength might have been

slightly higher. When the top surface was too rough or had resin-

aggregate voids, it was turned on its side for testing. Fig. 4.5 shows a

typical PMA specimen after testing.

Page 48: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

33

Figure 4.5 Siliceous Gravel PMA Specimen After

Testing. Specimen No. 111.11 was under

Maximum Compaction and Minimum Loading

Conditions at the 6-in. Depth.

Page 49: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

CHAPTER 5

DATA REDUCTIONS

5.1 Flexural Strength

The modulus of rupture (MOR) was used to define the flexural

strength. The MOR was calculated to the nearest 5 psi. The equations

listed in ASTM C-78-75 were used to calculate the MOR, except for the

specimens tested on the Rainhart Testing Machine. If the location of

the fracture line lay within the middle one-third of the span length,

the following equation was used:

R = P1bd2

where:

R = modulus of rupture, psi.,

P = maximum applied load, lb.,

I = span length, (18 in.),

b = average width of specimen, in.,

d = average depth of specimen, in.

34

Page 50: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

35

The one occasion when the fracture line was outside the

middle one-third of the span by not more than 5 percent, the

following equation was used:

R = 3Pa

bd2

where:

a = average distance between the line of fracture and the nearest

support, in.

5.2 Density

The density of the placed aggregate was calculated separately for

each section of the mold and assumed to be the same through the full

depth. The weight of the aggregate piaced in each section was

recorded as previously discussed. The volume of each section was

1.61 cf. In one test, there was not enough aggregate to fill the mold. In

this case (Table A.7), the aggregate was placed to a level of 3 in. below

the top of the mold. The volume of each section for this mold was

1.40 cf.

Page 51: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

36

Density was calculated as follows:

D =WV

where:

D = density, lb/cf.,

W = dry aggregate weight, lb.,

V = volume of mold section, cf.

5.3 Percent Voids

The following equation was used to calculate the percent voids

for each mold section:

Percent Voids = (BSG x 62.4 lb/cf.) - D x 100 percent(BSG x 62.4 lb/cf.)

where:

BSG = bulk specific gravity,

D = density, lb/cf.

The aggregate supplier provided the BSG :or each type of

aggregate. In place of the DRUW, the section density was used

because it was calculated for each specimen.

Page 52: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

37

5.4 Percent Retained and Percent Weight

Percent retained and percent weight both indicated the amount

of resin retained by the specimen. Percent retained compared the

amount of resin retained by the specimen to the amount of resin

poured into the mold section. Percent weight compared the adjusted

weight of the specimen with resin to the initial weight of the

specimen without resin. The equations were as follows:

Percent Retained = Wf - Wi x 100 percentWr

and:Percent Weight = Wf - Wi x 100 percent

Wf

where:

W f = final specimen weight, lb.

= [Wt + (number of resin-aggregate voids x

0.0875 lb/block)],

W t = tested specimen weight, lb.

= specimen weight just prior to flexural test,

Wi = initial specimen weight (i.e., dry weight of aggregate),

lb.

Page 53: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

38

= [Vs x density],

Vs = specimen volume, cf.

= (average depth x average width x length)/

1728 in3 /cf.,

Wr = final resin weight, lb.

= weight of the resin poured into the section

= {[(intial resin weight) - (loss in beakers)

- (loss in container) - (loss from stick and spilling)]/

[453.6 gm/lb.]}.

5.5 Percent Resin Volume/Void Volume

Percent resin volume per void volume is the ratio between the

volume of resin that was retained in the aggregate matrix after

polymerization and the volume of voids in the specimen prior to

pouring the resin. The equation used to determine this is as follows:

Percent RV/VV = VrVv

where:

Vr = resin volume, cf.

[(resin weight, gm)

/ (avg. density of resin, 1.083 gm/ml)

Page 54: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

39

/(1000 ml/ltr) / (28.32 ltr/cf)],

V v=void volume, cf.

= IPercent voids) x (volume of specimen, cf.)].

Page 55: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

CHAPTER 6

DISCUSSION OF RESULTS

6.1 Scope of Chapter

This chapter describes the results of the research. The graphs

show flexural strength as a function of depth from surface, resin

loading, density, percent voids, percent retained, percent weight, and

percent resin volume/void volume. Results of data calculations are

located in Appendix C. Data points and linear equations for the

graphs are given in Appendices D and E.

6.2 Depth

The strength of the PMA material varied with the depth, as

shown in Figs. 6.1, 6.2, 6.3, and 6.4.

In Fig. 6.1, siliceous gravel PMA and crushed limestone PMA

had strengths of 112 psi. and 101 psi., respectively, at the 18-in. depth

and under minimum compaction and maximum resin loading

conditions. The strengths increased slightly up to the 6-in. depth.

Under maximum compaction conditions, siliceous gravel PMA

and crushed limestone PNIA had minimum strengths of 106 psi. and

40

Page 56: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

41

C"j

--C C: 0cw

(00 E E

034 aC\j 0-

- ~

c z

!sd 'ajn 4dnH jto snlnpoA

Page 57: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

42

94 psi., respectively, at the 18-in. depth. As the depth decreased to 6

in., the PMA realized the benefits of compaction and increased 138

percent to maximum strengths of 185 psi. and 272 psi., respectively.

In Fig. 6.2, siliceous gravel PMA and crushed limestone PMA

strengths increased by 68 percent as the depth decreased under

uncompacted and minimum resin loading conditions. Under

maximum compaction and minimum resin loading conditions, the

strengths were under 100 psi. at the 18-in. depth. As the depth

decreased to 6 in., the PMA realized the benefits of compaction, and

the strengths increased significantly by 103 percent for siliceous gravel

PMA and 298 percent for crushed limestone PMA.

In Fig. 6.3, siliceous gravel PMA, and in Fig. 6.4, crushed

limestone PMA, the flexural strengths increased as the depth to the

surface decreased under compacted/ uncompacted and

maximum/minimum resin loading conditions.

In summary, the flexural strength of PMA specimens increased

an average of 133 percent as the depth to the surface decreased from 18

in. to 6 in. Also, PMA achieved a flexural strength average of 170 psi.

at the 6-in. depth and an average of 130 psi. at all three depths

Page 58: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

43

aEE

0 0 0)> > CC) CL

00 ( E E a

a)

~CZ

101j - c

C)) C)

co) C\j

!sd 'einldnH 10 sninpon

Page 59: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

474

a) c0

c E E 0

0 0 co

l<

0 U 44C\j130)

0)C C)co C~w

tz

Page 60: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

45

C\j

as

0I

EEOO

01 Ul

C0 U CJ

oo 4~

iSd 'einidnH jo snjnpoM'Vd

Page 61: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

46

6.3 Resin Loading

Figs. 6.5 and 6.6 show the affect of resin loading on flexural

strength for siliceous gravel PMA under compacted and uncompacted

conditions. Under compacted conditions, Fig. 6.5, the flexural

strength decreased by 8 percent at the 6-in. and 12-in. depths as the

resin loading increased 50 percent. Under uncompacted conditions,

Fig. 6.6, the flexural strength increased by 14 percent as the resin

loading increased at all three depths.

Figs. 6.7 and 6.8 presents the affect of resin loading on flexural

strength for crushed limestone PMA under compacted and

uncompacted conditions. At all three depths in Fig. 6.7, the flexural

strength significantly increased by 35 percent as the resin loading

increased under compacted conditions. Also at all three depths in

Fig. 6.8, the flexural strength increased by 13 percent as the resin

loading increased under uncompacted conditions.

Besides increased strength, maximum resin loading conditions

provided sufficient resin to percolate through the top 12 in. of

aggregate and form PMA material at 18-in. and greater than 18-in.

depths. Table A in the Appendix shows that under maximum resin

loading conditions, enough resin percolated to the 18-in. depth to

Page 62: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

47

0 0

E CC)

cz)

(0 <00

U)

C) -

Cs) C)C

0 C0 0

iSd 'einidnH jo snlnponjC

Page 63: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

48

C0

C.~j

c(I C~ 0

E M(0

cz

0*

Im 0

I * IC\j

CCO

!Sd eainidnH jo snlnpoN~

Page 64: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

49

C\j

x

0)

:5 0

0 , ~a)

C) C) CD

IQ N

iSd 'einidnH jo sflnpoNA

Page 65: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

50

C\j

00

0)

< E

_0

0 ~ -

C:Ea--

__ __ __C__ __ _ C\j

C\j G

isd 'einidnH jto sninpoVV

Page 66: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

51

form a testable PMA specimen 14 out of 15 times, and the resin had an

approximate 23-in. depth overall. Also, enough resin percolated and

filled the bottom of the mold to form a 4.5 in. solid polymer beam in

six mold sections (see Chapter 6.5). Under minimum resin loading

conditions, sufficient resin percolated to the 18-in. depth and formed

testable specimens 9 out of 14 times, and the resin had an approximate

20-in. depth overall.

In summary, a 50-percent increase in the resin loading

increased the flexural strength of the PMA at all depths by an average

of 14 percent; and more importantly, an increase in the resin loading

provided sufficient resin to percolate through the top 12 in. of

aggregate and form specimens of PMA at 18-in. depths. As a result of

percolating to depths of at least 18 in., the overall stiffness of the PMA

repair material is increased. So if there is not enough time to compact

the aggregate in a crater or not enough equipment, increasing the

resin loading will provide additional strength to the PMA repair

material.

Page 67: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

52

6.4 Density and Fercent Voids

Figs. 6.9 and 6.10 show how compactive effort affected

the flexural strength of a PMA specimen. In Fig. 6.9 with siliceous

gravel PMA, the flexural strength increased 67 percent from 103 psi. to

172 psi. when the density of the specimen was increased 9 percent.

With crushed limestone PMA, the strength increased 72 percent from

89 psi. to 152 psi. when the density was increased 13 percent.

Likewise in Fig. 6.10, the flexural strength of siliceous gravel

PMA increased 67 percent when the percent voids decreased 17

percent from 42 percent to 35 percent. And with crushed limestone

PMA, the strength increased 72 percent when the percent voids

decreased 17 percent from 44 percent to 37 percent. Therefore, the

flexural strengths of compacted PMA specimens were much higher

than for uncompacted specimens.

However, the flexural strength for uncompacted PMA was

noteworthy. In an uncompacted condition, siliceous gravel PMA had

an average strength of 100 psi. and crushed limestone PMA had an

average of 90 psi. The strengths were averaged over all three depths

and both resin loadings. In other words, PMA had measureable

flexural strength under uncompacted conditions. Therefore, if time

Page 68: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

53

C))

>o

U)U

C)0

croCD C> C) C

CD a) Cm C~0

~isd 'endn osnno

Page 69: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

54

(3 E

CC

ED

1))

Ca) - C

2)

C-

C)

0 C-C-

C) CD C) C)C)C)C

-6

Page 70: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

55

did not permit compaction during RRR operations, select aggregate

could be quickly thrown into the crater, resin applied, and the

uncompacted PMA would still achieve an average flexural strength of

about 100 psi.

Also, other figures show how compaction resulted in higher

flexural strengths. In Figs. 6.3 and 6.4, the compacted specimens

averaged 172 percent increase in flexural strength from 18-in. to 6-in.

depth while the uncompacted specimens increased only 50 percent.

In other words, the amount of compaction affected the PMA strength

more than resin loading.

The highest strength from any PMA specimen came from

siliceous gravel PMA under compacted and maximum resin loading

conditions at an 18-in. depth. One specimen, No. 112.43, had a

flexural strength of 913 psi. and another, No. 112.63, had a strength of

625 psi. The extra strength could be attributed to the compactive effort

which resulted in a large amount of retained resin, 50 percent and 56

percent, respectively. These two specimens were included in

Appendix C but not in the graphs.

In summary, compactive effort affected the strength of PMA

more than any other variable. Compaction i.ncr.ased the particit

Page 71: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

56

interfaces in the aggregate matrix. As a result of compaction, the resin

formed a stronger bond with the aggregate matrix at all depths tested.

6.5 Percent Retained and Percent Weight

Fig. 6.11 presents the relationship between flexural strength and

percent retained, and Fig. 6.12 presents the relationship between

flexural strength and percent weight.

In Fig. 6.11, the flexural strength of siliceous gravel

PMA increased 100 percent when the percent retained increased 27

percent. The strength of cruslhed limestone PMA

increased 44 percent as the percent retained increased 36 percent.

In Fig. 6.12, the flexural strength of siliceous gravel PMA

increased 45 percent when the percent weight increased 7 percent, and

the strength of crushed limestone PMA increased 21 percent as the

percent weight increased 8 percent.

Uncompacted and maximum resin loading conditions retained

less resin on the aggregate matrix than compacted and maximum

resin loading conditions. As a result, any resin not retained by the

aggregate collected on the bottom of the mold and formed a solid slab

(i.e., the voids were completely filled, see Chapter 6.3). Six of these

Page 72: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

57

0 EUE

0_

a) ) X;

*~ 0

0Cc0

C)C

co0

isd 'einidnH ;o snlnpoN

Page 73: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

58

C)C

(3 E~

0 o C

U 3

clo

0 C)C

co o~J00-d

is EU~nHj nno

Page 74: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

59

slabs were thick enough to be tested (No. 122.14, 122.24, 122.34, 222.14,

222.24, 222.34). The siliceous gravel specimens had an average

flexural strength of 1205 psi., and the crushed limestone specimens

had an average strength of 1010 psi. These specimens were included

in Appendix C but not in the graphs.

6.6 Percent Resin Volume/Void Volume

Fig. 6.13 shows how flexural strength of PMA varied with the

amount of resin that filled the voids in the PMA material. The

percent strength was calculated by dividing the specimen's flexural

strength by the flexural strength of a solid polymer specimen. As

discussed in Chapter 6.5, the flexural strength of a solid specimen was

1205 psi. for siliceous gravel PMA and 1010 psi. for crushed limestone

PMA.

Siliceous gravel PMA averaged 11 percent of the flexural

strength of a solid specimen when approximately 1/6 of the voids

were filled with resin. Crushed limestone PMA averaged 12 percent

of a solid specimen when approximatcly 1/8 of the voids were filled

with resin. Crushed limestone PMA specimen No. 212.21 achieved a

maximum flexural strength of 27 percent of a solid specimen when

Page 75: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

60

-c

(D 0

0D E~0I0E 13

CYC)

00

0 C)

00 E

0~~ U UC\j 000

C)Q)

0 3

a))U E

CD C) C)co C~I.-

qjb.JJjS IuOJ*

Page 76: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

61

approximately 1/11 of the voids were filled with resin.

6.7 Miscellaneous Results

During this research, it was noted that the surface of the PMA

material was rough from protruding aggregates. These aggregates

may fragment and cause FOD damage to an aircraft, or they may

puncture a tire. To alleviate this problem, a thin, strong cap was

made efficiently and economically by pouring a small amount of resin

over a thin bed of sand. Fig. 6.14 shows that a layer of polymer-sand

provided a smooth and slip-resistant protective cap over the PMA

material. This concept was tried on specimens No. 111.31, 112.11,

112.31, and 211.41. An average of 0.2 gal/sf. of resin and 3 lb/sf. of

sand was used to make the polymer-sand cap.

Also, the cost of the resin (i.e., Parts A, B, and C mixed together)

was about $1.05 per pound of resin. PMAspecimens at the 6 in. depth

had an average tlexural strength of 170 psi., retained 2.0 lb. of resin,

and cost S2. I. PMA specimens had an overall average flexural

strength of 130 psi., retained 1.9 lb. of resin, and cost $2.00. In other

words, P.IA repair material would require 10 Ib of resin and cost

S12.6 per square toot for an 18-in. repair depth.

Page 77: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

62

Figure 6.14 Siliceous Gravel PMA Specimen

(No. 112.31) with Polymer-Sand Cap.

Polymer-Sand Cap Economically Provides a

Slip-Resistant FOD Cover Over a Repair

Surface.

Page 78: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

CHAPTER 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

This research describes an investigation of the use of polymer-

modified aggregate (PMA) as a bomb damage repair material. PMA,

an open-graded aggregate partially bonded with polymer at the

particle interfaces, could be an economical repair material and

provide a strong subgrade for repaired airtield surfaces. A PMA repair

material would consist of a 6 to 18 in. layer of partially bonded, porous

aggregate over push-back debris or over a layer of ballast stone base

material. The select fill, an open-graded aggregate, would provide the

primary load bearing capacity. Adding polymer would provide tensile

strength to the aggregate matrix, which, in its unbonded state, would

not exhibit any tensile strength. A PMA repair material would also

provide FOD protection.

7.2 Conclusions

a. The mold and test method provided a satisfactory procedure for

constructing polymer-modified aggregate

63

Page 79: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

64

(PMA) under simulated field conditions.

b. PMA achieved an average flexural strength of 170 psi. at a

6-in. depth and an overall average of 130 psi.

c. Compactive effort affected the strength of PMA more than

any other variable. Compaction increased the particle

interfaces in the aggregate matrix. As a result, the resin

formed a stronger bond with the aggregate matrix at all

depths tested.

d. The flexural strength of PMA increased 67 percent for

siliceous gravel and 73 percent for crushed limestone

when the density of the preplaced aggregate in the

specimen was increased 9 percent and 13 percent,

respectively.

e. Siliceous gravel PMA obtained the highest flexural

strength (915 psi.) under compacted and maximum resin

loading conditions.

f. The flexural strength for uncompacted PMA averaged 95

psi.

g. \ 5t)-percent increase in the resin loading increased the

flexural stre, th of the PMA at all depths by an average ot

Page 80: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

65

14 percent.

h. An increase in the resin loading provided sufficient resin

to percolate through the top 12 in. of aggregate and form

specimens of PMA at 18-in. depths. As a result, the

overall stiffness of the PMA repair material was increased.

i. The flexural strength of PMA increased an average of 133

percent as the depth from the surface decreased from 18 to

6 in.

j. The flexural strength of siliceous gravel PMA increased

100 percent when the percent retained of resin increased 27

percent, and the strength of crushed limestone PMA

increased 44 percent when the percent retained increased

36 percent.

k. Crushed limestone PMA achieved a maximum flexural

strength of 27 percent of a solid polymer specimen with

very little resin--only 1/11 of the voids were filled with

resin.

I. A polymer-sand cap provided an efficient and economical

protective cap over the PMA material.

Page 81: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

66

7.3 Recommendations

a. Conduct further research on the affects of the aggregate

matrix on the flexural strength of PMA.

b. Investigate the affects of resin set time on flexural strength

of PMA's, strength development of PMA, and resin

penetation through PMA.

c. Investigate the affects of various moisture and

temperature conditions on the flexural strength of PMA.

d. Measure the flexural strength of PMA after specimens

have polymerized for 30 minutes.

e. Investigate the life cycle cost of PMA as a repair material

for bomb damaged airfield surfaces.

f. Conduct research of PMA under field conditions. Develop

correlation between PMA stress limit under field

conditions and PMA flexural strength in laboratory tests.

g. Measure efficiency and effectivness of PMA as a repair

material and chart clock times for PMA repair activities.

h. Encourage the US chemical industry to develop a resin

which is environmentally safe and i effective under wet

weather conditions.

Page 82: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

67

APPENDIX A

Casting and Testing Data

Page 83: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

68

E u) o W:C-(

4) 0 00 0 - -r 0 00

00 co coco

a)~~~~~~r coC OC 0 C C o C-- C) o c c ) c

-~Lf tLfl CCJC\O 0

x oo

)

U-) *r *o *)Cj0

E -~j 0)0 O

(n) C\ C J *.)

N) .n . ) .n.

U E * ) . 0Z0 )0

a) 0 , X .) 0 n0 Oc

(D)

c7 M .n .' --:C C) Cj

In 0

- ) E 0 0) :C C C C7 .0) 0)I

C, 0) C') C') -) LO l)L c

on 00

LflC U)0) 0) ~N U)

(D ) - ~ l 0 0 ~ nCj n Cjc ~ j M ClCj

C

Page 84: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

69

0) 0: m: ~~ L: 0~: o U-. oo : 0 CmCO. C'). - NT . Cc) )flIf M r- ~C. q- m")q r- 0

o to Lfl *f 11:C r- co*wC) Cl) - C) %Nz_ co: co c~ cclj C\ >. C~ e'j c ~ j -:- r-

L C) 0 U)-T ( ) I!)0 C\j C\ C)j C~jC~j

o oC\J C\JOm Lo) Lo co . -- fC-j c-)

E) - U*) ) tf ~ o 0 ) to. 0. 0 ~ N- t J 0 o 0:0 o 0: oJ'~ 0: Ln U- )

-co C~ :) coO Co C: co : 0 r C) j CD~ Co ) M~:C~ 0 C m oC' C) : C

C'j N C\ C\J C\jC' J C\J :-: C~ CJ: - C\* sC\J C 'J0. C',J C\J C'J C\J C\IJ C\J C\J

C0 (0 0 :C C. o0 Mo:O VL Wo W :c u LnM :c M o CoM :Co C D Mo C Mo C01 0. : .0 0 : . .n 0 0 0 r l : :

CO (D "t CD C): C)0 LOCO: 0~C 0 0):V) If) M':0 M~ Co'- c) C) C-~ ~~ 0 00v r.r

0)-

0. 0~ c0~ Co LC.):C 0 C o:Co C)Lr C : Co0 C) 'C): Co C o E

OD'T c(D c-) C cTJ)O c'.D 0 c 0 (D -C LO co 0 Wc. 0n ', 0

E M C 0o Co C : MCDM:L: o CD:C Co( LO:C Co CD o:CW O C : C Co ( C i

0.

C 1co :o -T co: (:C 0)0o 00~. co : o o CV) tLf) LO Co D. CoC

m ocC) COD coLc) Co00 0C : - 0)Co M: 0 Co Co:Co MC Co:C Co 0ob 6-t 6 6: 6:L r: c 6:6 L (.:c 6 -

0

0. C o - Ln 0 ) C). 0:-.0 C ) : 'IT C) Co 'It - C) 0 ) : J C CID ~ CC.0 Co -C CoC o 0. CoCo Co Co CC CC) L) Co Co C)Co N Co Co Co Co a)

-0C) N: N : N n n-Nm - N c: tc

E'.-.' C'J C? C' " \!: cl ) C') : ,Z R:1-CCr LC) L) Co Co Co 0-0 - N N N- N N-:NNc:NNN NN2

Page 85: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

70

fu __cC :3

0 a; 0 0

0 Eu0D -C - -~ 0: *5 . 0L

E c. 00U) U)-o C (D ccUc Q E*Q) C (D) 0 0 o a C

m CM)> 0 a- c- C 0nco -0C CD) U

In E0 ca C C 0 -0 0-C-

o~- Cn 0U0 ) ~ ~o

0 ~- ~ 0 Cir 5 ~0C .a) (D -6C C O C

c 0 - ~ 0 0

CD -CQ m~ 0C0

.20 0 CT, ~ ~ 0 0

0O CD CD

a)C --E 'E E - cn C U 0 CD -C --

0 0o (DU) 0-: 00 CU CD0

co 'n =3 C o(D0

a) a) mEDCCU0 -U0C

0~ .;o 0E0 0 m D

> (U 0 S C D (

-E 0) CD 0l a)

0 = c co cm .C _

CDC

0 0 Lz. c )E C:(

E 0:om 0 0CD.~ oo o *-*o (D (D) 0) t:t 0

E a)

I- C 0 0 Mz

C0

CD -cjc::-'' P P0

Page 86: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

71

m (Da DC D40 z

S0o CF)

cc) CZ .

0T 1: . t t c00i C"J (NJ NN (NJCC

CL) (C) Zo

a )

(0 Eo co O OE cE

*~ vi -~ C c

. b e U ) L fO In-

0 0 * 0o

S0

.ccm

>co

0

0

'0 C~ c

a-) -n 0t

-V. a.

C.fl U) U-Er-- U c(r) LI C

co ~~ 0 Dui(LO( i n 0 0- CU

C'? CU C C ?

-6 E= C NNN

Page 87: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

72

0 U- v r 0 0c

0 n 0 0C2C m co r-. 0~ N c: -

E n o Lo o 0 in 0 o in0 0 i -) 0n 0 0 C'o 0n n0 in o0CM C Z OU)0: - :U)U) : - U) 0 C~C J C \J L - U-)

U) 0'. 0:j c%9 p C'Jp C'J J:C CJ C\Jp C JC\ CJp 9\ CP:' 0 \ C'0 0

6.0 0 0- o~i 0. o)~C 0 0- 0 0 0: 0 C6 C

NC DC:CD "D ND: N ND "C C\ C14N C(D N CDJ C:CD CDl CDl CD

S 0 0-M 0nC W-0 mDi m CCD C 0 Cl) 0 C D Cl) 0 mn 0l)

InO CD CD (D:CD WD CD-CD WD CD CO-CW WD WD W:C WD WW CD -

0D (Y) OmmC n0 D0MOac I)m0m (

Q)0

_0 CD CDCD0:CD CDC(D:CD CODCD:CDM CD WC:CDCDCD CD:CCD WCD ..

E -' -)0o:o 0 M~: C D oi u-) L 'T:o 0cD CD 0:i Lo u)c~) CD 00 0 ( 66ww( - 0 CT-wwwr-ww 'Q- C

0 -o 0oo 00-C) LnO:0Lo) L 0 0.O0 n0 CD Ln 0~ coW C0. C 0 0:0c0 o Csi C'Q o:cQ C~ 0 U,:o0 -0 CD ,)C\j U .

0 0

Cn :: m

0 u E 0

* ' NJCJZ E\ C' sjC' e: C'j C' C\J cCN C' C\;i C'~i C\J CN C\ C\J

z - - - -

Page 88: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

73

c~ ID0 -0 0 cn

.0 0 - ii 00D -. 0 ** C CD 0

(D a) ~ E O ID E 25 -(D E E0 -= o E~V 0)

EU~ C -C CD 0*D E c~ ,U) r- C CU' - (D) E E

0 =. =3 (

~~~~ E :22 0 U0-Co -o C

D0 =3 a) o0 0 0E~~CD .Cc0 0 E o w ID (D -0

C 0~O) 00 00

-U~ CCU D

a, C : CU 00 = (DT - 7 E )0 'aC CUl U )U*0

CO C 0 0 -E CU CUo CD

S, CD 0) aUC ) 3 a

0~~~C cu U) -0 0CD - a) 0 0 U(D a) '

CU c O 5 V -r- m - 0-- 0 C: (D Co (

0 - c ECU 0 06C C

0 u 00 cO o(n

0 0 C

C5)c-2 C E w m m - 6C

00

0

C) C

m CCc C) D0) <-t

.- o 0 coi. C)~ m~' 0 m CU CC6'4 n N, C N co 'Tm Nr m

m m v0

C O 00) 0)0) 0) :0) m )0)0)00000) a) M)) 0)N: NNN NNM N N N N NNQ!!N N

a)to0 CD D DtoDWw CD owt (ID WO((OC wDDto (D0D

CL C

NN NN N NN N

Page 89: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

74

0 o CO co '0 ) cnr'- f,

000 0 0 c 0 c CC2~~~ ~ ~ ~ 00TC0c o c D(a, c

O E C'J o v) CY) s

N C' CJ C\J \

0

U-)~~~~ 0 aU) mL

o~ 0

Z; 0*L) x0 *L -0 C) la M - VL C') M ~ Nr :(

0 0 E .

V E

2, 0 *0 .l 0 n . 0

C6 *n -T rn ~ C)C)

Ln O 0 C\j C'j C)C

~ ~ 0 0 0 LO 0 0 0 Ln n (0) o LC) 0 C\j U-) U- ( Nc

00 0 0 0 o 6 , ca

c 3:

Z Eo -w -~ ~ ~ ~ ~ ~ ~ a

z NE\:CjCJ :N N : : : :

Page 90: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

75

0- 0 :0) r:. r-M n C) : 0) -C .c:. =~o C .ro0 :).

M C0: U,: L 0 : LO UO 0 : nU-) U.) 0 0: 0 ct: 0 0oCO0 . 0 N

M: co q ~ 0 0

o0 .

0 U M 0 N~ Ni ll "N N 0 Li N 0: U) 0 U): Cq 0? 0: q~ ) LQ) 0 U) 0

10- U): CD Cl):0 LfO 0 L COC) Cv) U) CO) Cl) M i n: L*~ 0 M! 0

0 - NN N:N N:N N N:N N N:N N N:N N N:N N N

c) CD o0 (7 o:o n ; . oc)V :c) 0 o :~ 03 o )

c ~CD CP'D CD:C W DW W (D WD: lf CO U- U- CD C0:CD CD CO: CD W -

E ~ C 6 s w W:cn0 0:0)n 0 m~ CD WD:C mCw 0: u) ( M 4m ') ) 0) U-)U" (D

~CD CD C-D ODC C C D 0-

uo) -C CD w -U 0: C aD o:o w 0:0m D wn M~: a M a~ a oI0 Cy 00 ; 0-N 0) 00 0 0-! 0 -- 00 -*- CV\JOQ a

~CD W.:CD CD:CQD ul:C QO D QD:C CD (. D: ) CD CD: CD LI) CD: CDCD C =U

IcT -. )- ;)- T V (0 C) r M~: 0 0o M M) CD:o 0 M-: M --:r CD 0

E 6 .6 b 6: t6 6: c 6: c. 6 c: 6 c :

0- S

0 co 0 : 0)0) : LN.0 :0 ( c o- 0:C ) .LI 0o 0.0) N- 0.0 - - 0--N CD0)'

LnD U) CD: C CD :U L0) CCD C D CDU C6L ov o D (oco D CD CD: D Lw U)

002

CD 00 0) -\ N - N- N>0- NI -. 0> N m7> N C')>- N C-N w 0)

00 N\:- N N :NN M : \ : N\ Nl:N N~ N.1 c

Page 91: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

76

06D -00 ~ 6 00

0. cuC . Cu

*0 a) a- 4~) C uIn 0 00 0-

_) CD Eo oo 0 Da D(- 0o CD ~E

0 E CD 00 '@ 0~ 0 "D 0

@u 0- =, CDS C 0 3: " _0

to* 0 a)) 0~ 0 -0. 0 Cm -6 0

a) E CL) CC C 0 00 007 o mu 0 0 Zu0

0 Lf) E0n(D (

E 0* C0 0 C )(wc Q Q lm ) mC ' u .~ 0 0 .C

-C - = (

CD.C co~~ >1 - 0 3 CA- o CD 0 0 -0 '-

C0 c 0 E C - ) a0l Eu E~0Q O 0o 0- (D - o

>- M a_ OL - 'n

0 0 C0 _~:E D cn (D

Z -6 .nEEcuCn a:3

0~ I c (D CM, cm 00 Cu 3.36u -o E ) 2 c

0 i- > (M Cl) -c Coc-a) .o ~ CY cc a) ~ 000S20 t 0 * 0

(D 0

E 0 -_0 a) o 0 E 6c (Dw C -Z ;; w CL+-0Jc ( 0 E 7 1 ( ) 0 ( Cca) Br- E Y - ( C

CAl

.00

00

Cu 000 .0*

o D~ r- oN,5 ~ :o :N, r" f0,C:N C6 .c~ 0N Cu .c ,

lq N N:D N 6 co C~ N~ \ CiC C,N

0.

m- 0;TTTC:TC : - 0:TTTTTTT9

C V:C\.-CJ:- C - N - Nj N )N:C N ~ Ci

CD E N N N N NNi:Ci ~ Ci CjN C'J

ro ~ ~ ~ ~ ~ ~ s. Z N:N N: ~ \:CjCjci ~ jCJ N N~ N\J N~ N~ Nli C\ N*

Page 92: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

77

35 0 0 : : 0:

4 ) 0 0) .0 ) )n .)0) '0)

-0

(0 (0C CD(0C0

- 03 4 0 C\J .0E c' CCCaj :C/ oC)C)C') C') crs L

0~~ C~ ~

U) :0 (D

:3 0

0 CO)

0) ~~~C') C4 v lo

0.

ai)

o . . . Cd

olC, C') Ct) Ct) Ct)

CCD

04

~~cn

Page 93: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

78

Cu 0 )O'Io~ 0) c ._oCD O:0 0 C

0: CDaCD ~

- M- m m~ CD N -CD 0- N r- N -: -0 0:

E0 0 00 0 0 0 O 0 LI 0I 0n 0: LI 0 00 0I 0 0

Cu CD LI) LO) LI LI) 0 o c - D 0 0- 0 c) C)-C0 0 0- 'n O C N DC C) N D r- M 0 :w M 0: 0 0 :0 0 - :0 0

U) 00 :0006:0 6 0 6:0000 6 6 60 :6 000

0 -O co: C r co0:n nin 0 C l) CD 0 o (D 0 CD tn)0 0O 0 CD) (

CD CD LLI CD CD. LO L to w :wi.w DDwD:C CDD0

0 0I -: C ) 03 0: p p q Cq CD CDCD 0 CD 'n:0 0 9 ~ ORW C6 6-W U-) CO: W O:U- W WCD:.CDCD CD CD: 0UCD Ln C

Q0

E- 'ncn 0 c Lnu qz 0: LI CO) 0: u-) 0 0 u):o 0 m 0 r-: LO m) M~ ME0. C'l - r.~ 00 .N:"7q:C r, 0* O N 0- CP-" - CDCm

. C

LO . 0 LO "T "T 0)CO 0 CO L 0 0 L-O N O 0 V:' WN OC M -(DN C CD CD:C 'n LI):C m LI.L co: N D 0 ( CD rI) 0C cvcoc: m CD cn

c . LI) 0 T:c 0 0:a 00 LI ): 0 V) CD Lv):o LI) 0 0 3

-0 ClC-0DCNCoL0): m o 0:CD D DC C C m - io , O C

. n

0 co No N N :N N NNm N N N:N No N Nic

0. Z N Nv N: Nl N N-Nc N N: N N Nm N: Nm Nm N' N.N: N~ N~ N.j

Page 94: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

79

D C CD

0 00.C 0 U)a) ~ ~~ 0 D C

0' E 0

(D (D EEV0 00 00 CD (D 0 o0

r30 >.CWC3 E~o~

C~ M)- ci

cz (0 M2- a) 0 c~ C .0

0 -0 CD 00 U

c (D 0 0

0 E 0 ~ C- a)0 - 0 zo LoO _ Df0D C3 (- 00 0)0. f~

(D (D -0 E Y ~~ 0c

-C 0 E - C ~ C0- 0 0- 0

p 0 C . :3 tv 0z ) : U

0 Z _ 0oCU. 0. c -C C C C0 (D~

00 0 cULC~~ E- -

C MCG M(D--~0rE3 2 0.0t:nm 0~U ' ~2_ 0I 0 0 Ec*, 0 0 0 d

Eo M- c- a-: c- a

VL -

U) 0 D -E_

E0C.)

CD

E VD

C Z + :+ + :+

Nc~ .C6 .c'. viEu) M

0)0 000 DC DCOC OC D 0

= 0 l0

CVC

N~ m: NQ -Nc:-Nc T:-Nm": OI nE 0 - - - oU) :N N c

Page 95: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

80

APPENDIX B

Aggregate Gradations

Page 96: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

81

Figure B.1 Aggregate Gradation of Siliceous Gravel.

Sieve Size Percent Retained

1&1/2 in. 0.0

I in. 5.0

3/4 in. 31.0

1/2 in. 71.5

No. 4 98.0

Figure B.2 Aggregate Gradation of Crushed Limestone.

Sieve Size Percent Retained

1&1/2 in. 0.0

1 in. 3.0

3/4 in. 29.0

1/2 in. 68.5

No. 4 97.0

Page 97: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

82

APPENDIX C

Calculation Results

Page 98: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

83

2co c :o :co:~ :'o :cn

:2 ~ o . .0 ::0 : 0~ :o :0 :0

.0

cc 0 co cn'-T 0 U) \o0:0 0 M: c -T M - CD c:M ,C C)CD 0 0 oc C : 0:t 0e'CID- ,comj ~2 C ) IJ N \ . .

c-c) . :0 :c ,r c D -l r - c 0 ~ ) U c v

U' C ;0 O :M M M ; M W W L

cC C~ : .N . 0M- mNNN U f

0 tT 't.- z Q 'V ltor : : : V l . V l : ; c q c d 1: q

>d C-: : :: : DC:0 000000 C

0) 0

cc co 0000000r, r-O000000000000000 c) om -Lom

a-t Mf- ~- 0 )V 000000)0) 00C)0 00 V000lCD00000V,,j

E - -) c*: 0 M: -" :o 0 : - 0 W :- M~ -:0 N 0 0\ 0

C.U

o) CCI C\a; C~ -M ~ ) 0)~ o C o M ) Uj -cn C~j 0 ) COj 0), - C- CIO

- E m 0C O C~j c o q ) ~ C00 0~ )Co0 0-0 N NZ E N NO NOC)C O CO LdC D CL) COi CL) Cd CD ND CDj (0 U' D 0 C

- 0 =** :-N -N: N O) N O - N O)-C' O NO) -

a- Z - - -N- -N- -N N- - - -N- - - -

Page 99: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

84

0C,)

0

C Ccc)

C~7R 0) j N ~ .c .0100 vC~ CO

0 Cf l l ~0 v Lf -(0 a

LO CDCD(

C\J 0 - C~ Vj-: Fo: -\- -~ N* U-. U, 0 n c) - ) C

a. C

S o CV) : coLo) 0 (0:0):00 0 N\: 0 - -t0 w -v : CD: w w m

Z 0. N: - 0 , : : 6 - : 6 C-

7 E o 0o m:)If c:: o m cv.0 Cco o: o 0 :o c co o c3) c E

CC -LOr : M - : CD W W M: M 0 0 M: M rCO 0: m : O m n M:w W: P 6 C: C 6 : C 6 -: oi iv

CD 0 I T'TV 'T'T0 v' oV O v * ) C

2u 0 > o

C N ,0:(0 C 0 :0:~)0 U) L-O CD If. 0 0:)Ct Q 0 0-N LO LOE, co Co~ LOO U) N) C~ - w.~C to NN -~ U): 0 0.0: 0 N0

00E 0E . O0 \J 0 V1, O) 1!) 0:0: N- c) 0-NO LO in N\J N 0) 0 N C

-E) m P, 0 o t C) - -4 N -4 -t 6 I - 6 O r, ) w Co N -) CO w ) 6-6 v w: c6 U) UV-,. v.- Vo. : ,- . :v : -

N N. N~ N N: -NC' Co N C~) N)- N NN

Z - -1 N N N NN N N N -

Page 100: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

85

C- N .v - N: .o ~ - NCD :4N:D

0)0

c *0 Cl LO Uco Z7,: .O c. W . c.Cjc n O O

E CL >0

0 m .: N. N .-- oCjM N * :

'l) o) CO C\ LO N~ CD C\ D 0 Y) M. M v): 00 VE -a) E - n c :c o r , c ): t 3:) o -c.

.2

CQ

co E .-

75 0

:r- N: M oC:-: C- ~ c): n o: J m CD C c : C~j c-

'B E :00:000:0:0N N.50 .

0 0. . .

Page 101: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

86

C>M

co v- -T T

CD :,. 0 .0 CD

U0 0) M n DCD 0)

cc N n r:N 0) r -L

C0 0 .)'T oc Ooc: 0Nw c

w IT .0 DW OL m co

C .

c

-a 2 * . -N O" N.M~. M - .- CON V.M ITC 0)

E E ~~ C~a 00:0 0 0 : 0 0 .r: C' \J !-0 0

oio -a., o6 : 6o- o 0o0o o 00o o 0-0 o o

LO CD 6: t6~ t6a ccr' C' 6 C ~c.6 6:J 6-~ 6' C(6 CL:. C\ 6 ' C a C.\: c.6 6 6 c6

a:

CU

u D

V: - () C DjC) CDj CD C CD cvD: N M0( q:o NO M~ Cr N0( M0

C-)

Page 102: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

87

0

* . C

a ~v 0C- 000 CD-~Nc 0c Cuj

C -; . ~ (D *I

C) *

*m En C.o C 0 o \1 0 0 T LO r , 'I 00mCo 0 e'~* c~j u:J - -~ u~C~~D

-D 0 C C r- 0 t- r Lf)jC\ C,J nC*iCo,~ .- t CV) *~ D o C

CDO C\! *- . .~ Cn :0 U O C * 0 V N n C q 0CL c :2 -: 6 \i6: 6 6 - 6 : c5P::6 u

o U-0 0 Lfr0: 0 0:0M 0 M: 0 N m 0:0 M M 0:0 M.W 0 0

W L~ 0 - T IT 'IT v -~ v ~ 11 T -. - v m.C v lq CO:~ v IT- )

CO. C

a))

o6 E. o U) - o( )CnC _

.2 E 0-

Q ~ N. O; - w w -n C! -Rl r, R7V:0 p" m I

75 C I

Page 103: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

88

C . *.

U 0)

E 0.> E

co * N U) ~jr Cj~

r- 'D. C~j

E 0 > : ::

0*

CL . *l m o m m m I f * m *r ~ . CJ I

C.)D

clo >

a.) 0

C)

QU c. .0 0 .r D r- (0 O D Cl L r. T C)C O t -E N - o o -,r o 2:o wN m oo 3Zo m wCmDz)a)3 : 0 0 N M W I

o~~~~~~ ~ ~ ~ ~ E r- : :q0 :0q0':

'= 0 > ~ Jcic4c '~\ ')c~c~cjecjcj~ c~c~~ VC \

m CU '? C:7 . .. l C

Page 104: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

89

0.

-O LO :o :ao C ~ c

0 0) C" ) C\J * *-0) -0) -N-n C

'00

cc 0n coLOL: r O 0 C CD C n00 ) LO N- ,

a)

c0

E E r- m:N m ) - :m mi- n W: 0m0 m W ) m n m W . N- -,

0) 2 . . N . .'- N . r0N -T C ."

(D 0 'I 'T r IT-q o 'T: o o oV! o o oo1 V o o :: V:o o o oV614 '1

i C6 6000-000c i0 000 o 00 oOOo c\J N) N- Ns~~ N'j~s C N e'q N\JN N C'JA\ N\ N\JCN N\ C'JC' N Nv

yECO ql* CO N - 00 CD -T :N N C-D 0) fl,: M 0)-'-- LOnC

0) r co-c 0: N0):o 0O: 0): 0--:-o: N -04D -~ .. .0c oc no D 0~ 0i~ D

U)

,;-C )- Co)q

i E m 0 0: 0) C\J: - 0D 0) 0) 0: cv) 0) 0:0 C\J 0:0 N~ -:- 0) 0)

N, C\:: C\) '-N N,) N M-N C-C'-N M) C')

\ j ' cj N~ N \I N l m~El C)J coZ ) w w

ZN N:N:NN NN:NNNN NC'N NN N NN N N

Page 105: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

90

w W- M~ : - - - -\ 0 w eC\ .- M ~ -Y 0

0

c

r * :N _ )LoL0 .0 - . co *O

CO qT't OC

C*

Ln C' r - .C - C O D- ' I ~ rCN T- O C ', 0)- 2 M:CC'- ~ 0: --U W -I N W W ')W M M

cm m.0\ . C * * : : ) ; _ i ; V

a: (1

E) . . . . . . . . C

U. C'j m:' - C.) *) CjCj ~ -(0: (0 C,6 U)(0c'

CC

(I) C\ .: U o.O 0 ) L :C l0 *: C, ~ :6 6 m -;

2 w S M .Cl

000Z m 0

ot C L 0c

U)

E .C\J -C?:UL-N.\ C"J '- 'C)C'C)C C' C')

(D Z E c' e.j ej e~j C~j e~j C~j C\J: C j C'j

Page 106: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

91

Co C- CO -l LO C O C

CD

CD .

E ~ >0

0

CD

E0 0

(D O0)c CD r- CD LO 4Mr ; Lf).- -r-:- - r- in CD - O )

- 2 o E .- r-- N jo rZ w m : c~i -,t CO co a) co C3) L L - 0) co) r- LA,c) Lao .2 T (0: Ln LO: WDA u) LOLA ' v )cD u)Cw Ln LO

a) ~ ~ 0 C )-0CO ~CD '- ~ CO.1*CD '- CD W~ C- 0) LA It -flAV CDIr Cc) -C - m o LO : 0 M CDT 0,C) r- '-T : C ) - CO C\ C\J: 'IT < CD

=- > 0 0:0 0:0 0:0 0 :0 o :ooo :0 0o000

30

4) EoJ C\ C~ 'L LA N AC M C- -CM M:~jCV) N. C) C\) CV)

0 3C- Z F4 . \4&:4F

Page 107: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

92

C

Nr -- TC

CO :cn CD c

w ccC'j

m r- L ~n r'~ - cD: LO: co~ 0 ):'~

0) a - )-- V) M- 0 ~-: - - m r LoV CD 0) 0)c Ej E C\- CD C\J~c LO .- T o c r W \ ,LO (

oD Z 2" T Tqoo ;U , -tM.1 ,

CL

-2-

m N (. 0 C D OD 00: CD (0 N (D: 0 o. WIC N wD co

o C cn CD:I m D o DLt 0.0 ino u CCco : cr 0:u 0U) 00 ) Lt) CD

.2E

-( 1D CD 6 C6 (6: It) 6 6 cD C6 6:) CD CD CD C u) ' CD6 C C6 4

2 0 - CO' C\JC -NCl.-C: C\) M:..: - C* ') C) \ N NC C

-6~ E -: - - -: -: " N N N3 N N N N NN N N N N N N N N N N N N

Z NjNN CjN N N N N N NN N:N NN NN NN N

Page 108: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

93

co r-- a)- :r-nc co -;tLo r co- c, t U)t

0

0 *~ U)

0 (0)

u. a: ..

(.0 .(D wC -000 -- :~j c'j :C\j :)Cl)c

c )

0 4) C):c

co -~ 0) 0 c0 T U) U- Y

C. 4) N C Cl0 0 ) C CDJ - - C\ Crl

C? C- *L.. Oi N LO)a CO N CO-.~ 0 0 0 - 0 in 0:C W "T t.4V C -~ N N"~MC)o~ cJ J: c C C P,: C r

-U)n L - co .n .n coc ImI m o n o o )u

CD ~ 0)

c: E

7.J0 >

a)U

S C :r

.0 E :Z- C) 0 o:0 0 0 Ln 0 0: Lo i) in 0:0 in) 0 0:0 in 0 0fL 0 inO. in o- 0r--, i? InC\ CJ LIn:in r- LOn r i.inr (N in .1)0 -O -- l )w - co cc0 CD -N.( CD r-.( oo -(0 -. r, N, r- D co co co &

(f CO) CO):C') M C) CO C') c')- C') C') CY) C') Cl) C') c'n C):C') M' M' M'

U) ~a -0

ou E - n w ( : c rf in ' in CD in ' 0 N 2 CDC .DN CD 0) CD CD C

M- M' M' M') M' M' M') M' ' ' C') c') (Nj CO) C') CO) C\J C') C') C') CNJ

cr C IT

-6 E - C'i C C C \ N NC0CZNNlN N ci N : NNCNCJCJNJ\ NN(J'J'CJN C\j CjN ~ ~ N j

Page 109: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

94

Ca~ a)

w:) co .- .o0 O0 0))

0 C

in-

0 4)fl 0.> > .c

-2 .. .> M0 CD

0 Ch 0

E) C)>M (

0 0

00

D-0 >' 0 C'O- -7 0 7-- - O -- 7 7 7. o-" Lf -. 0

a.- > 00 0:0 o 0: o 0 0 oo0 00 0; 6 C;o 0 a)

- I_- .8 E

0 InC)0 - 0C

cn C) ..a)C)

M - - r : - o c): co r,: v j o: r- u) cj 10: 0) 0 MC~ )C 0 n w -r N - m m - m -- )~ - " m p

0 C> 0 0 0 0 0 0 0 0 0 0 0 0 0 000:0 0 0 r-- C\ C'~ ~ J:~'~ J:~C~ CJC >

-L U

Page 110: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

95

APPENDIX D

Data Points for Graphs

Page 111: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

96

C

~iE r-- - .

o E CJC'J' 'cJ\

C m Z - - - - -- eCe~e N ej e~ C

U)

ocL 0ea 0 N N re ICD0

.S

04a.

cnoC-

- C\ O C\ J CO N (l \J Cl)

u ECC~jC C '4 C~j NCj C~j C"jC. C~j NC~jCIA

Z - -- - -- C~j C.j C.j e~l Cl Cj

a.

mL aCo

cnN' -

>,

Page 112: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

97

E 0 000 000 000 00

* C~ .-.- C\C\i' C\Je'.JCJ=~ cCj~cj eCecj cC~eJ e~' j

CD

o r

a.w

c0

C

Eo 00 0 00a0 00C) E- C'J 'JC'. C'j C\j C

/)

D

.2 O Cl L 0 1j ( CJ 0 0 C m

Zo C) Qj0 -f- D0

0

E,

CDwDC ) D 2 t

Ol>

(c0

Page 113: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

98

E 00 0 0 0 0

E NC\J NN NNi

Z '

E m,

0.0 Cf _

- f 0)

0

0~w 0)Cjcn Na

M0

>0

E C

CD

CCaj - -~ ~

0

0 0

U,

4)

>0o

Page 114: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

99

E'c' C\C C N

zC'j C\j C\j CJ C\ C~j

C6C

00

a. r_ ~M .0

CR

u E~ CO - C\ C~jOS0 =U(

00

I--

CD

Page 115: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

100

0000

CLZ0 -- ' C.J F, "CJe'jl

CDl

0>

0.

coE

0 = C\jCi- C\JC\-

LL~ N CD

0

-0

L)~ CJ

Page 116: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

0 3 &

I'- - -m 0 Z, L

C,,j

- -u* C- L

CCC

ca,

a, C\3 M -N-CJ M C C\j

-6 E C JCJ\-C\ C'j -- CJ

ex Z

oZ 0 . C) ) CD r 0M c

0*

M c

CC

oD >a,:JCJ'J\

cza

Page 117: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

~102

Z E o ~ ~ ~CL 71 F4 -CjC\j eJC\J C\j C'j

Cl,

0) 1' 0 C)\J r a O

0~ -

C.a)

cnJ

0

0~00

M N co IT 'T 0 0 w ( o't 0

R.C.

00.

o c)

>*

Page 118: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

103

E0 0 '

0 C M- LO 0 0 MJC'C'C'CD

0

0 >

cc

0

a,

CC

0 ~0 C

uS E C'i- - - N 00) 3 c'-'ei-cJ cJ '

-- .0

CC0, LO fl

0 - 0-0

> >

m- 0 OWM

S> 0~

mC

>~

Page 119: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

104

APPENDIX E

Linear Equations for Graphs

Page 120: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

105

The calucation of fitted curves produced an equation along

with a correlation coefficient. The equation used to fit the linear

regression curve is as follows: Yi = aXi + b + error. The correlation

coefficient was designated by R^2 (R squared). The closer R^2 was to

1.00, then the more reliable was the curve fit equation generated.

E.1. Figure 6.1 Flexural Strength of PMA as a Function of the

Depth of the Specimen Under Maximum Resin Loading

Conditions.

a. y = 252.00 - 7.5833x; R^2 = 0.599

b. v = 148.67 - 2.6667x ; R^2 = 0.399

c. y = 364.67 - 14.833x; R^2 = 0.995

d. v = 101.67- 8.3e - 2x; R^2= 0.107

E.2. Figure 6.2 Flexural Strength of PMA as a Function of the

Depth of the Specimen Under Minimum Resin Loading

Conditions.

a. v = 315.67- 11.083x; R^2 = 0.716

b. v = 155.67 - 5.5833x; R^2 = 0.859

c. v = 256.67 - 11.667x; R^2 = 1.000

Page 121: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

106

d. y =115.33 -3.2500x; R^2 = 0.989

E.3. Figure 6.3 Flexural Strength of Siliceous Gravel PMA as a

Function of the Depth of the Specimen.

a. y =315.67 -l11.083x; R^2 =0.716

b. y = 252.00 - 7.5833x; R^2 = 0.599

c. y = 155.67 - 5.5833x; R^2 = 0.859

d. y = 148.67 - 2.6667x; RA2 = 0.399

E.4. Figure 6.4 Flexural Strength of Crushed Limestone PMA as a

Function of the Depth of the Specimen.

a. y =256.67 -11.667x; RA2 =1.000

b. y = 364.67 - 14.833x; RA2 = 0.995

c. v = 115.33 - 3.2500x; R^2 = 0.989

d. v = 101 .67 - 8.3e - 2x; RA2 = 0.107

E.5. Figure 6.5 Flexural Strength of Siliceous Gravel PMA as a

Function of Maximum and Minimum Resin Loadings Under

Compacted Conditions.

a. y = 305.62 - 62.500x; RA2 = 1.000

Page 122: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

107

b. y = 285.42 - 42.188x; RA2 = 1.000

c. y = 87.969 + 3.1250x; R^2 = 1.000

E.6. Figure 6.6 Flexural Strength of Siliceous Gravel PMIA as a

Functior of Maximum and Minimum Resin Loadings Under

Llncompacted Conditio~ns.

a. v = 101.78 + 21.875x; R 2 = 1.000

b. y =30.672 + 32.813x; RA2 = 1.000

c. V= -35.766 + 76.563x ; R^2 = 1.000

E.7. Figure 6.7 Flexural Strength of Crushed Limestone PMA as a

Function of Maximum and Minimum Resin Loadings Under

Compacted Conditions.

a. v = 15.672 + 132.81x; R^2 = 1.000

b. v =-41.219 +121.88x; R^2 =1.000

c. v =-47.734 + 73.438x ; R^2 = 1 .000

E.8. Figure 6.8 Flexural Strength of Crushed Limestone PMA as a

Function of Maximum and Minimum Resin Loadings Under

Uncompacted Conditions.

Page 123: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

108

a. y=86.922 + 7.8125x; R^2 =1.000

b. y =23.609 +39.063x; R^2 =1.000

c. y =-28.672 +67.188x; RA2 =1.000

E.9. Figure 6.9 Flexural Strength of PMA as a Function of the

Density of the Aggregate Mlatrix.

a. v =-565.90 +6.9001x; RA2 =0.757

b. y =-463.46 +6.3455x; RA2 =0.749

E.10. Figure 6.10 Flexural Strength of PMA as a Function of the

Percent Voids in the Aggregate Matrix.

a. y =531.76 - 10.514x; R^2 = 0.758

b. y 571.55 -11.075x; R^2 =0.844

E-11. Figure 6.11 Flexural Strength of PMA as a Function of the

Percent Retained of Resin in the Aggregate Matrix.

a. y = 52.484 + 5.7674x; RA2 = 0.378

b. y = 91.771 + 1.1425x; RA2 = 0.026

E. 12. Figure 6.12 Flexural Strength of PMA as a Function of the

Page 124: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

109

Percent Weight of Resin in the Aggregate Matrix.

a. y =83.132 +14.598x; R^2 =0.196

b. y =93.164 +3.7640x ; R A2 =0.018

E.13. Figure 6.13 Percent Flexural Strength as a Function of Percent

Resin Volume/Void Volume.

a. y = 6.3024 + 0.31472x ; R A2 = 0.275

b. y = 6.4634 + 0.32830x; R A2 = 0.143

Page 125: AD-A 239 328 Fo Approv l I'I~ I'JAD-A 239 328 )N PAGE _ Fo Approv Pubic en l I'I~ ilII 11IL I'J no bu e, P'oorse, riouamq tmre i- !o, re~'~q ig sear nr~ e-,%t,rr ca , 'es 111a i llherm5

110

REFERENCES

1. Alford, Samuel J. and Albert J. Bush III. Crater Repair of NorthAuxiliary Airfield, South Carolina. Tyndall Air Force Base,Florida: Air Force Engineering and Services Center. GL-85-21.August, 1985.

2. Bigl, Susan R. Cold-Temperature Characterization of PolymerConcrete. Tyndall Air Force Base, Florida: Air ForceEngineering and Services Center. ESL-TR-86-26. September,1986.

3. Bush, A.J. III, et al. Design of Alternate Launch and Recovery,Surfaces for Environmental Effects. Tyndall Air Force Base,Florida: Air Force Engineering and Services Center. ESL-TR-83-64. July, 1984.

4. Fontana, J.J. and L. Kukacka. Polyurethane SpecificationDevelopment and Qualified Products Testing for Resins andPolymer Concrete Used in Bomb Damage Repair. Tyndall AirForce Base, Florida: Air Force Engineering and ServicesCenter. Draft. September, 1987.

5. Fowler, David W., et al. Methyl Methacrylate Polymer Concretefor Bomb Damage Repair. Tyndall Air Force Base, Florida: AirForce Engineering and Services Center. ESL-TR-82-04.August, 1982.

6. Kistler, Chuck, et al. Engineering, Development and Testing ofAdvanced Materials and Methods for Bomb Damage Repair.Tyndall Air Force Base, Florida: Air Force Engineering andServices Center. ESL-TR-84-01. January, 1985.

7. Read, David L. of BDM Corporation. Fiberglass Mat Crater RepairSystem Dual-Crater Mat System Test Report. Draft. December,1988.

8. Rone, C. L., et al. A Review of Candidate Alternate Launch andRecovery Surfaces (ALRS). Tyndall Air Force Base, Florida:Air Force Engineering and Services Center. ESL-TR-83-13.July 1984.