aero 7sem ae2403nol

Upload: m-krishna-netha

Post on 04-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Aero 7sem Ae2403nol

    1/51

    AE 2403 VIBRATIONS ANDELEMENTS OF AEROELASTICITY

    BYMr. G.BALAJIDEPARTMENT OF AERONAUTICAL ENGINEERINGREC,CHENNAI

  • 7/30/2019 Aero 7sem Ae2403nol

    2/51

    Fundamentals of Linear Vibrations

    1. Single Degree-of-Freedom Systems

    2. Two Degree-of-Freedom Systems

    3. Multi-DOF Systems

    4. Continuous Systems

  • 7/30/2019 Aero 7sem Ae2403nol

    3/51

    Single Degree-of-Freedom Systems

    1. A spring-mass systemGeneral solution for any simple oscillator

    General approach

    Examples

    1. Equivalent springsSpring in series and in parallel

    Examples

    1. Energy MethodsStrain energy & kinetic energyWork-energy statement

    Conservation of energy and example

  • 7/30/2019 Aero 7sem Ae2403nol

    4/51

    A spring-mass system

    General solution for any simple oscillator:

    Governing equation of motion:0=+kxxm

    )sin()cos()( tv

    txtx nn

    ono

    +=

    2

    n

    o2

    o

    n

    n

    n

    ooo

    v

    xamplitudeC;2

    T

    1

    Hz)orc.(cycles/sefrequencyf

    vibrationofperiodT;T

    2)(rads/sec.frequencynatural

    m

    k

    (sec.)timet;xvelocityinitialvnt;displacemeinitialx

    +=====

    ====

    ====

    where:

  • 7/30/2019 Aero 7sem Ae2403nol

    5/51

    Any simple oscillator

    General approach:

    1. Select coordinate system

    2. Apply small displacement3. Draw FBD4. Apply Newtons Laws:

    )(

    )(

    Idt

    dM

    xmdt

    dF

    =

    =

  • 7/30/2019 Aero 7sem Ae2403nol

    6/51

    Simple oscillator Example 1

    22

    mlmdI

    inertiaofmomentmassI

    cg =+=

    =

    IK

    IM

    =

    =

    02 =+ Kml 2ml

    Kn =

    +

  • 7/30/2019 Aero 7sem Ae2403nol

    7/51

    Simple oscillator Example 2

    =

    =+=

    l

    a

    m

    k

    mlmdII

    n

    cg

    22

    2)( mlaak

    IM oo

    =

    =

    022 =+ kaml

    +

    (unstable),l

    a

    As

    m

    k,

    l

    aWhenits:limNote

    n

    n

    00

    1

    ==

  • 7/30/2019 Aero 7sem Ae2403nol

    8/51

  • 7/30/2019 Aero 7sem Ae2403nol

    9/51

    Simple oscillator Example 4

    Lma

    GJ

    L

    JGK:stiffnessEquivalent

    TL

    JG

    JG

    TL

    maI:tableFrom

    n 2

    2

    2

    2

    2

    =

    =

    =

    =

    =

    IT

    IMz

    ==

    02

    2

    =+ L

    GJma

    +

  • 7/30/2019 Aero 7sem Ae2403nol

    10/51

    Equivalent springs

    Springs in series:

    same force - flexibilities add

    Springs in parallel:

    same displacement - stiffnesses add

    21 kkkeq +=

    =+= += eqkkkkkP)( 21

    21

    PfPff

    Pkk

    eq=+=

    +=+=)(

    11

    21

    2121

    21 fffeq +=

  • 7/30/2019 Aero 7sem Ae2403nol

    11/51

    Equivalent springs Example 1

    0=+ xKxm eq

    0312

    3

    2

    3

    1

    =

    ++ xL

    EI

    L

    EIxm

  • 7/30/2019 Aero 7sem Ae2403nol

    12/51

    Equivalent springs Example 2

    )a(

    ml

    Wlka

    nn

    n

    =

    =

    2

    22

    2mllWa)ak(

    IM oo

    =+

    =

    022 =+ )Wlka(ml

    +

    Consider:

    ka2 > Wl n2 is positive - vibration is stable

    ka2 = Wl statics - stays in stable equilibrium

    ka2 < Wl unstable - collapses

  • 7/30/2019 Aero 7sem Ae2403nol

    13/51

    Equivalent springs Example 3

    02

    2

    =+

    =

    =

    sinmglml

    mlsinWl

    IM oo

    0=+ sin

    l

    g

    l

    g

    l

    g

    n =

    =+ 0

    +We cannot definen

    since we havesin term

    If< < 1, sin:

  • 7/30/2019 Aero 7sem Ae2403nol

    14/51

  • 7/30/2019 Aero 7sem Ae2403nol

    15/51

    Work-Energy principles

    Work done = Change in kinetic energy

    Conservation of energy for conservative systems

    E = total energy = T + U = constant

    12

    2

    1

    2

    1

    TTdTrdFT

    T

    r

    r

    ==

  • 7/30/2019 Aero 7sem Ae2403nol

    16/51

    Energy methods Example

    0

    0

    =+

    =

    xxmxkx

    )E(dt

    d

    0=+ kxxm 22

    2

    2

    2

    1

    2

    1

    2

    1

    2

    1

    xmkxTUE

    xmT

    kxU

    +=+=

    =

    =

    Same as vector mechanics

    Work-energy principles have many

    uses, but one of the most useful is

    to derive the equations of motion.

    Conservation of energy: E = const.

  • 7/30/2019 Aero 7sem Ae2403nol

    17/51

    Two Degree-of-Freedom Systems

    1. Model problemMatrix form of governing equation

    Special case: Undamped free vibrations

    Examples

    1. Transformation of coordinatesInertially & elastically coupled/uncoupled

    General approach: Modal equations

    Example

    1. Response to harmonic forcesModel equationSpecial case: Undamped system

  • 7/30/2019 Aero 7sem Ae2403nol

    18/51

  • 7/30/2019 Aero 7sem Ae2403nol

    19/51

    Undamped free vibrationsZero damping matrix [C] and force vector

    {P}

    )cos(2

    1

    2

    1

    =

    tA

    A

    x

    xAssumed general solutions:

    Characteristic polynomial (for det[ ]=0):

    021

    212

    2

    2

    1

    214

    =+

    +

    + mm

    kk

    m

    k

    m

    kk

    +

    +

    +

    +==

    21

    21

    21

    2

    2

    2

    1

    21

    2

    2

    1

    212

    21

    21

    4

    2

    1

    mm

    kk

    m

    k

    m

    kk

    m

    k

    m

    kk

    Eigenvalues (characteristic values):

    Characteristic equation:

    =

    +

    0

    0

    )(

    )(

    2

    1

    2

    222

    22121

    A

    A

    mkk

    kmkk

  • 7/30/2019 Aero 7sem Ae2403nol

    20/51

    Undamped free vibrationsSpecial case when k

    1

    =k2

    =k and m1

    =m2

    =m

    Eigenvalues and frequencies:

    periodlfundamenta

    frequencylfundamenta

    ==

    ==

    T

    m

    k.

    2

    61801

    m

    k

    =

    =618.2

    3819.02

    1

    2

    1

    21

    Two mode shapes (relative participation of each mass in the motion):

    1

    618.12 2

    1

    2 ==k

    mk

    A

    A shapemode1st

    1

    618.02

    1

    2 =

    =mk

    k

    A

    Ashapemode2nd

    The two eigenvectors are orthogonal:

    =

    618.1

    1

    )1(2

    )1(

    1

    A

    A

    =

    618.0

    1

    )2(2

    )2(

    1

    A

    AEigenvector (1) = Eigenvector (2) =

  • 7/30/2019 Aero 7sem Ae2403nol

    21/51

    Undamped free vibrations (UFV)

    For any set of initial conditions:We know {A}(1) and {A}(2), 1 and 2

    Must find C1, C2, 1, and 2 Need 4

    I.C.s

    { } )cos()cos()(

    )(22)2(

    2

    )2(

    1

    211)1(

    2

    )1(

    1

    1

    2

    1 +

    ++

    =

    = tA

    ACt

    A

    AC

    tx

    txx

    Single-DOF:

    For two-DOF:

    )cos()( += tCtx n

  • 7/30/2019 Aero 7sem Ae2403nol

    22/51

    UFV Example 1

    { } )cos(618.0

    0.1)cos(

    618.1

    0.12211

    2

    1tCtC

    x

    xx

    +

    =

    =

    Given:

    No phase angle since initial velocity is 0:

    { } { } { }

    ==

    618.1

    0.10 oxx and

    { }

    +

    =

    =618.0

    0.1

    618.1

    0.1

    618.1

    0.121 CCxo

    From the initial displacement:

    1

    1

    21

    2;0;

    ===

    T

    CC

  • 7/30/2019 Aero 7sem Ae2403nol

    23/51

    UFV Example 2

    { } )cos(618.0

    1

    )171.0()cos(618.1

    1

    )171.1( 21 ttx

    +

    =

    Now both modes are involved:

    Solve for C1 and C2:

    { } { } { }

    ==

    2

    10 oxx and

    { }

    =

    +

    =

    =2

    1

    21618.0618.1

    11

    618.0

    1

    618.1

    1

    2

    1

    C

    CCCxo

    From the given initial displacement:

    =

    =

    171.0

    171.1

    2

    1

    1618.1

    1618.0

    618.1618.0

    1

    2

    1

    C

    C

    Hence,

    or

    Note: More contribution from mode 1

    )cos()618.0(171.0)cos()618.1(171.1)(

    )cos()1(171.0)cos()1(171.1)(

    212

    211

    tttx

    tttx

    ==

  • 7/30/2019 Aero 7sem Ae2403nol

    24/51

    Transformation of coordinates

    Introduce a new pair of coordinates that represents spring stretch:

    =

    ++

    0

    0)(

    0

    0

    2

    1

    22

    221

    2

    1

    2

    1

    x

    x

    kk

    kkk

    x

    x

    m

    m

    UFV model problem:

    inertially uncoupled

    elastically coupled

    z1(t) = x1(t) = stretch of spring 1

    z2(t) = x2(t) - x1(t) = stretch of spring 2

    or x1(t) = z1(t) x2(t) = z1(t) + z2(t)Substituting maintains symmetry:

    =

    +

    +

    0

    0

    0

    0)(

    2

    1

    2

    1

    2

    1

    22

    221

    z

    z

    k

    k

    z

    z

    mm

    mmm

    inertially coupled elastically uncoupled

  • 7/30/2019 Aero 7sem Ae2403nol

    25/51

    Transformation of coordinates

    We have found that we can select coordinates so that:

    1) Inertially coupled, elastically uncoupled, or

    2) Inertially uncoupled, elastically coupled.

    Big question: Can we select coordinates so that both are uncoupled?

    Notes in natural coordinates:

    The eigenvectors are orthogonal w.r.t [M]:

    The modal vectors are orthogonal w.r.t [K]:

    Algebraic eigenvalue problem:

    { } { }

    =

    =

    =

    =618.0

    1

    618.1

    1

    :vectors)(modalrsEigenvecto

    )2(

    2

    )2(

    1

    2)1(

    2

    )1(

    1

    1A

    Au

    A

    Au

    { } [ ] { }{ } [ ] { } 0

    0

    12

    21

    ==

    uMu

    uMuT

    T

    { } [ ] { }

    { } [ ] { } 0

    0

    12

    21

    =

    =

    uKu

    uKu

    T

    T

    [ ]{ }

    [ ]{ }

    [ ]{ }

    [ ]{ }

    222111

    uMuKuMuK ==

  • 7/30/2019 Aero 7sem Ae2403nol

    26/51

    Transformation of coordinates

    Governing equation:

    Modal equations:

    Solve for these using initial conditions then substitute into (**).

    [ ]{ } [ ]{ } 0=+ xKxM

    { } { } { }

    )()()(

    )(

    )()(

    2

    22

    12

    1

    21

    11

    2

    1

    2211

    tqu

    u

    tqu

    u

    tx

    tx

    tqutqux

    +

    =

    += (**)

    General approach for solution

    We were calling A - Change to u to match Meirovitch

    { }{ }

    =+

    =+

    0)()((*)

    0)()((*)

    2

    2

    222

    1

    2

    111

    tqtqu

    tqtqu

    T

    T

    [ ] { } { }( ) [ ] { } { }( ) 0)()()()( 22112211 =+++ tqutquKtqutquM (*)Substitution:

    Let

    or

    Known solutions

  • 7/30/2019 Aero 7sem Ae2403nol

    27/51

    Transformation - Example

    { } )cos()171.0(618.0

    1)cos(171.1

    618.1

    121 ttx

    +

    =

    2) Transformation:

    =

    =

    =

    =618.0

    1;618.1

    618.1

    1;618.0

    22

    12

    2

    21

    11

    1u

    u

    u

    u and

    1) Solve eigenvalue problem:

    =

    =

    =

    +

    =

    )cos()0()(

    )cos()0()(

    171.0

    171.1

    )0(

    )0(

    )0(618.0

    1)0(

    618.1

    1

    2

    1

    222

    111

    2

    1

    21

    tqtq

    tqtq

    q

    q

    qq

    and

    So

    As we had before.

    More general procedure: Modal analysis do a bit later.

    Model problem with: { } { }

    =

    =0

    0

    2

    1oo xx and

    { } { } { } =+ =++= 0)()(0)()(

    )()(2

    2

    22

    1

    2

    112211tqtq

    tqtqtqutqux

    and

  • 7/30/2019 Aero 7sem Ae2403nol

    28/51

    Response to harmonic forces

    Model equation:

    [M], [C], and [K] are full but symmetric.

    [ ]{ } [ ]{ } [ ]{ } { } tieFFtFxKxCxM

    ==++

    2

    1)(

    {F}

    not function of time

    Assume:

    { } { }ti

    eiX

    iXiXx

    == )()(

    )(2

    1

    Substituting gives:[ ] [ ] [ ]( ){ } { }FiXKCiM =++ )(2

    [ ] matriximpedance2x2=)( iZ

    [ ] [ ] { } [ ] { }FiZiXiZiZ 11 )()()()( =

    { }

    =

    =2

    1

    1112

    1222

    2

    1222112

    1 1

    F

    F

    zz

    zz

    zzzX

    XX

    Hence:

    ( )212 ,ji,kcimz ijijijij =++=

    :)(ioffunctionarezAll ij

  • 7/30/2019 Aero 7sem Ae2403nol

    29/51

  • 7/30/2019 Aero 7sem Ae2403nol

    30/51

    Multi-DOF Systems

    1. Model EquationNotes on matrices

    Undamped free vibration: the eigenvalue problem

    Normalization of modal matrix [U]

    1. General solution procedureInitial conditions

    Applied harmonic force

  • 7/30/2019 Aero 7sem Ae2403nol

    31/51

    Multi-DOF model equation

    Model equation:

    Notes on matrices:

    They are square and symmetric.

    [M] is positive definite (since T is always positive)

    [K] is positive semi-definite: all positive eigenvalues, except for some potentially 0-eigenvalues which

    occur during a rigid-body motion. Ifrestrained/tied down positive-definite. All positive.

    [ ]{ } [ ]{ } [ ]{ } { }Q=++ xKxCxM

    1) Vector mechanics (Newton or D Alembert)

    2) Hamilton's principles

    3) Lagrange's equations

    We derive using:

    Multi-DOF systems are so similar to two-DOF.

    { } [ ]{ }

    { } [ ] { }xKxU

    xMxT

    T

    T

    21

    21

    =

    =

    :springinenergyStrain

    :energyKinetic

  • 7/30/2019 Aero 7sem Ae2403nol

    32/51

    UFV: the eigenvalue problem

    Matrix eigenvalue problem

    Equation of motion:

    { } { } titi eAeAtftfuq +== 21)()(

    [ ]{ } [ ]{ } { }0=+ qKqM

    Substitution of

    in terms of the generalized D.O.F. qi

    leads to

    [ ] { } [ ] { }uMuK 2=

    For more than 2x2, we usually solve using computational techniques.

    Total motion for any problem is a linear combination of the naturalmodes contained in {u} (i.e. the eigenvectors).

  • 7/30/2019 Aero 7sem Ae2403nol

    33/51

    Normalization of modal matrix [U]

    Do this a row at a time to form [U].

    This is a common technique

    for us to use after we have solved

    the eigenvalue problem.

    We know that: [ ] { } { } [ ] { } ijjT

    iji CuMuuMu ==

    { }

    =1

    ku

    =

    =

    =

    ji

    ji

    ij

    if

    if

    deltaKronecker

    :where

    0

    1So far, we pick our

    eigenvectors to look like:

    Instead, let us try to pick

    so that:

    { } { }

    ==1

    knewk uu

    { } [ ] { } { } [ ] { } 12 == kT

    knewk

    T

    newkuMuuMu

    Then: [ ] [ ] [ ] [ ]IUMUT = [ ] [ ] [ ] [ ]=UKU Tand

    [ ]

    =

    2

    2

    2

    2

    1

    ..0

    ....

    ..0

    0.0

    n

    :where

    Let the 1st

    entry be 1

  • 7/30/2019 Aero 7sem Ae2403nol

    34/51

    General solution procedure

    For all 3 problems:

    1. Form [K]{u} = 2

    [M]{u} (nxn system)Solve for all 2 and {u} [U].

    2. Normalize the eigenvectors w.r.t. mass matrix (optional).

    Consider the cases of:

    1. Initial excitation

    2. Harmonic applied force

    3. Arbitrary applied force

    { } { }oo qq and

  • 7/30/2019 Aero 7sem Ae2403nol

    35/51

    Initial conditions

    2n constants that we need to determine by 2n conditions

    General solution for any D.O.F.:

    Alternative: modal analysis

    { } { } { } { } )cos()cos()cos()( 22221111 nnnn tCutCutCutq +++=

    Displacement vectors:

    { } { }ioio

    qq andon

    { } [ ]{ }{ } { } { } { } )()()()( 2211 tutututq

    Uq

    nn

    +++==

    UFV model equation: [ ]{ } [ ]{ } { }

    [ ] [ ] [ ]{ } [ ] [ ] [ ]{ } { }{ } [ ]{ } { }00

    0

    =+ =+

    =+

    UKUUMU

    qKqM

    TT

    n modal equations:

    =+

    =+

    =+

    0

    0

    0

    2

    2

    2

    22

    1

    2

    11

    nnn

    Need initial conditions on ,

    not q.

  • 7/30/2019 Aero 7sem Ae2403nol

    36/51

    Initial conditions - Modal analysis

    Using displacement vectors: { } [ ] { }

    [ ] [ ] { } [ ] [ ] [ ] { }UMUqMU

    Uq

    TT =

    =

    As a result, initial conditions:

    Since the solution of

    { } [ ] [ ] { }

    { } [ ] [ ] { } == o

    T

    o

    o

    T

    o

    qMU

    qMU

    )sin()(

    )cos()()(

    )sin()(

    )cos()()( 11

    1111

    ttt

    ttt

    n

    n

    nonnon

    oo

    +=

    +=

    And then solve

    hence we can easily solve for

    { } [ ] [ ] { }qMU T=or

    02 =+ is:

    )sin()cos()(

    )cos(

    ttt

    tC

    oo

    +=

    or

    { } [ ]{ }Uq =

  • 7/30/2019 Aero 7sem Ae2403nol

    37/51

    Applied harmonic force

    Driving force {Q} = {Qo}cos(t)

    Equation of motion:

    { } [ ]{ }

    [ ]{ } unknownknownU

    Uq =

    [ ]{ } [ ]{ } { }Q=+ qKqM

    Substitution of

    leads to

    [ ] [ ] [ ]{ } [ ] [ ] [ ] { } [ ] { } { }NtQUUKUUMU oTTT ==+ )cos(

    { } { } requencydriving ftQQ o

    ==)cos(

    and

    Hence, { } { }

    { } { }

    .

    )cos(

    )cos(

    22

    2

    22

    22

    1

    11

    etc

    tQu

    tQu

    o

    T

    oT

    =

    = then

    { } [ ]{ }Uq =

  • 7/30/2019 Aero 7sem Ae2403nol

    38/51

    Continuous Systems

    1. The axial barDisplacement field

    Energy approach

    Equation of motion

    1. ExamplesGeneral solution - Free vibration

    Initial conditions

    Applied force

    Motion of the base

    1. Ritz method Free vibrationApproximate solution

    One-term Ritz approximation

    Two-term Ritz approximation

  • 7/30/2019 Aero 7sem Ae2403nol

    39/51

  • 7/30/2019 Aero 7sem Ae2403nol

    40/51

  • 7/30/2019 Aero 7sem Ae2403nol

    41/51

    Axial bar - Equation of motion

    2

    22

    2

    2

    x

    u

    t

    u

    =

    Hamiltons principle leads to:

    If area A = constant

    ( ) 0=

    +

    x

    uEA

    xuA

    t

    Since x and t are independent, must have both sides equal to a constant.

    Separation of variables: )()(),( tTxXtxu =

    )sin()cos(

    02

    tpBtpAT

    TpT

    +==+ ( )

    ( ) ( )

    xpDxpCX

    XpX

    sincos

    02

    +==+

    Hence[ ] ( ) ( )[ ]

    =

    ++=1

    sincos)sin()cos(),(

    i

    iiiiiiii xpDxpCtpBtpAtxu

    =

    3

    22

    LM

    LFE

    :where

    ( ) ( ) 222222contant p-

    T

    dtTd

    X

    dxXd===

  • 7/30/2019 Aero 7sem Ae2403nol

    42/51

    Fixed-free bar General solution

    0cos0 == LpD ii orsolution)(trivialEither

    = wave speed

    E

    =

    For any time dependent problem:

    =

    +

    =,5,3,1 2

    sin

    2

    cos

    2

    sin),(i

    ii

    L

    tiB

    L

    tiA

    L

    xitxu

    Free vibration:

    [ ] ( ) ( )[ ]

    = ++= 1 sincos)sin()cos(),( iiiiiiiii xpDxpCtpBtpAtxu

    EBC:

    NBC:

    0)0( =u

    00 =

    =

    == LxLx

    x

    u

    x

    uEA

    General solution:

    EBC [ ]

    =

    =+=1

    0)sin()cos(),0(i

    iiiii tpBtpACtu

    ( ) [ ]

    == =+=

    1

    0)sin()cos(cosi

    iiiiiii

    Lx tpBtpALppD

    x

    u

    0=iC

    25

    23

    2

    oror=Lpi

    ),5,3,1(2

    == iL

    ipi

    NBC

  • 7/30/2019 Aero 7sem Ae2403nol

    43/51

  • 7/30/2019 Aero 7sem Ae2403nol

    44/51

    Fixed-free bar Initial conditions

    or

    =

    =,3,1

    22

    )1(

    2

    2

    cos

    2

    sin1

    )1()(8

    ),(i

    i

    o

    L

    ti

    L

    xi

    i

    LLtxu

    Give entire bar an initial stretch.Release and compute u(x, t).

    0)0,( 0 =

    = =to

    t

    ux

    L

    LLxu and

    Initial conditions:

    Initial velocity:

    Initial displacement:

    =

    =

    == 0

    2sin

    2,3,10

    i

    itLxiB

    Li

    tu 0=iB

    22sin2sin2sin

    2sin

    ,3,100

    ,3,1

    L

    AdxL

    xi

    L

    xi

    AdxL

    xi

    xL

    LL

    L

    xiAx

    L

    LL

    ii

    L

    i

    Lo

    i

    io

    =

    =

    =

    =

    =

    ),3,1()1()(8

    2sin

    )(22

    )1(

    2202==

    =

    iiLL

    dxL

    xix

    L

    LLA

    i

    oL

    oi

    Hence

  • 7/30/2019 Aero 7sem Ae2403nol

    45/51

    Fixed-free bar Applied force

    or

    ( )txL

    EA

    Ftxu o

    sinsinsec),(

    =

    Now, B.Cs:

    =

    =

    = )sin(

    0),0(

    tFxuEA

    tu

    oLx

    From

    B.C. at x = 0:

    B.C. at x = L:

    = 0),0( tu 01 =A

    =

    L

    EA

    FA o sec2

    Hence

    2

    22

    2

    2

    x

    u

    t

    u

    =

    )sin()(),( txXtxu n=we assume:

    Substituting: ( )tx

    Ax

    Atxu

    sinsincos),( 21

    +

    =

    )sin()sin(cos2 tFtL

    L

    AEAx

    u

    EA oLx

    =

    =

    =

  • 7/30/2019 Aero 7sem Ae2403nol

    46/51

  • 7/30/2019 Aero 7sem Ae2403nol

    47/51

    Ritz method Free vibration

    Start with Hamiltons principle after I.B.P. in time:

    Seek an approximate solution to u(x, t):In time: harmonic function cos(t) ( = n)

    In space: X(x) = a1 1(x)

    where: a1 = constant to be determined

    1(x) = known function of position

    ( ) ( ) dtdxuxx

    uEAuuA

    t

    t

    t

    L

    = 2

    1 00

    1(x) must satisfy the following:

    1. Satisfy the homogeneous form of the EBC.

    u(0) = 0 in this case.

    2. Be sufficiently differentiable as required by HP.

  • 7/30/2019 Aero 7sem Ae2403nol

    48/51

    One-term Ritz approximation 1

    Ritz estimate is higher than the exact

    Only get one frequency

    If we pick a different basis/trial/approximation function 1, we would get a different result.

    )cos()cos()(

    )cos()cos()(),()(

    1

    1111

    txtxu

    txatxatxuxx

    ==

    ===

    :eapproximatAlso

    :Pick

    [ ] dttdxEAxxAatt

    L

    )(cos)1)(1())((02

    0

    2

    1

    2

    1

    =Substituting:

    2

    22

    23

    2 33

    3

    L

    E

    LLEA

    LA =

    ==

    LLRITZ

    732.1

    3==

    LLEXACT

    571.12 ==

    10

    10

    22adxEAadxxA

    LL

    =

    Hence

    [ ] { } [ ] { }( )aKaM =2:formmatrixin

    =

    L

    xEXACT

    2sin1

    xRITZ =1

  • 7/30/2019 Aero 7sem Ae2403nol

    49/51

  • 7/30/2019 Aero 7sem Ae2403nol

    50/51

    Two-term Ritz approximation

    221)( xaxaxX +=:Let

    [ ] dtdxxaaEAxxaxaAt

    t

    L

    ++= 21 0

    21

    2

    21

    2)1()2()(0

    where:

    :1 xu == eapproximatIf

    xaadxdX 21 2+=

    :2

    xu =eapproximatIf [ ] dtdxxxaaEAxxaxaAt

    t

    L

    ++= 2

    1 0 21

    22

    21

    2 )2()2()(0

    =

    2

    1

    2221

    1211

    2

    1

    2221

    12112

    a

    a

    KK

    KKE

    a

    a

    MM

    MM

    ==

    ===

    ==

    5))((

    4))((

    3))((

    5

    0

    22

    22

    4

    0

    2

    2112

    3

    011

    LdxxxM

    LdxxxMM

    L

    dxxxM

    L

    L

    L

    In matrix form:

    ==

    ===

    ==

    3

    4)2)(2(

    )1)(2(

    )1)(1(

    3

    022

    2

    02112

    011

    LdxxxK

    LdxxKK

    LdxK

    L

    L

    L

  • 7/30/2019 Aero 7sem Ae2403nol

    51/51