afm class 10

10
Class-10 (Navier-Stokes Equations) 5/7/2012 1

Upload: harikrishnangopal

Post on 21-Jul-2016

216 views

Category:

Documents


0 download

DESCRIPTION

Navier-Stokes Equations

TRANSCRIPT

Page 1: AFM Class 10

Class-10 (Navier-Stokes Equations)

5/7/2012 1

Page 2: AFM Class 10

Angular deformation

5/7/2012 2

β€’ Angular deformation of the fluid particle is the sum of the two angular deformations

βˆ†πœΆ + βˆ†πœ·

β€’ Also βˆ†πœΆ =βˆ†πœΌ

βˆ†π’™ and βˆ†πœ· =

βˆ†πƒ

βˆ†π’š , βˆ†πœΌ 𝐚𝐧𝐝 βˆ†πƒ are given by βˆ†πœΌ =

𝝏𝒗

ππ’™βˆ†π’™βˆ†π’• and βˆ†πƒ =

𝝏𝒖

ππ’šβˆ†π’šβˆ†π’•

β€’ Rate of angular deformation in x-y- plane: limβˆ†π’•β†’πŸŽ

βˆ†πœΆ+βˆ†πœ· βˆ†π’•

= limβˆ†π’•β†’πŸŽ

βˆ†πœΌ

βˆ†π’™+

βˆ†πƒ

βˆ†π’š

βˆ†π’•

β€’ Hence Rate of angular deformation in the x-y- plane: 𝝏𝒖

ππ’š+

𝝏𝒗

𝝏𝒙

β€’ Rate of angular deformation in y-z- plane and x-z- plane: 𝝏𝒗

𝝏𝒛+

ππ’˜

ππ’š and

ππ’˜

𝝏𝒙+

𝝏𝒖

𝝏𝒛

Page 3: AFM Class 10

5/7/2012 3

Newtonian and Non-Newtonian Fluids β€’ For Newtonian fluids, the shear stress is linearly proportional to shear strain

Ex: Air and gases, water, kerosene, oil based liquids

β€’ Non-Newtonian fluids, shear stress is not linearly proportional to shear strain.

Ex: Slurries, colloidal suspensions, polymer solutions, blood, paste and cake batter

β€’ Shear thinning and shear thickening fluids:

β€’ Some non-Newtonian fluids become less viscous when more sheared. These are

called shear thinning fluids (Eg. Paint)

β€’ Some non-Newtonian fluids become more viscous when more sheared. These are

called shear thickening or dilatant fluids (Eg. Quick sand and water mixture)

β€’ If shear thinning is extreme, it is called plastic fluid

β€’ If fluid retains the original shape after shear force is

removed, it is called visco-elastic liquids

The angular velocity about the z axis is

Similarly,

Page 4: AFM Class 10

β€’ A fluid at rest will have the following stress tensor (there is no shear stress)

β€’ Where P is the hydrostatic pressure , and is equal to the thermodynamic pressure which depends on the type of gas, temperature and density

β€’ When the fluid is in motion, pressure is there and

shear stresses are acting due to viscosity

The new stress tensor is called the viscous stress tensor

Or the deviatoric stress tensor 5/8/2012 4

Stresses on a fluid – at rest and in motion

Page 5: AFM Class 10

Shear Stress and Viscosity – 2 dimensional flow

β€’ The force is applied in the y-plane and in the x- direction. Hence shear stress

π‰π’šπ’™ =πœΉπ‘­π’™

πœΉπ‘¨π’š=

𝒅𝑭𝒙

π’…π‘¨π’š , the deformation rate = lim

π›Ώπ’•β†’πŸŽ

𝜹𝜢 πœΉπ’•

=π’…πœΆ

𝒅𝒕

πœΉπ’ = πœΉπ’–πœΉπ’• also for small angles πœΉπ’ = πœΉπ’šπœΉπœΆ

SO, 𝜹𝜢 πœΉπ’•

= πœΉπ’– πœΉπ’š

, taking limits on both sides, π’…πœΆ 𝒅𝒕

= 𝒅𝒖 π’…π’š

β€’ Hence the shear rate of the fluid is equal to 𝒅𝒖 π’…π’š

β€’ For a Newtonian fluid the shear stress is linearly related to the shear rate

π‰π’šπ’™ ∝ π’…πœΆ 𝒅𝒕

= 𝒅𝒖 π’…π’š

β€’ And then π‰π’šπ’™ = 𝛍𝒅𝒖 π’…π’š

𝛍 is the viscosity of the fluid

For a 3-dimensional flow, the shear stress becomes complicated, and π‰π’šπ’™ = 𝛍(𝒅𝒖 π’…π’š

+𝒅𝒗 𝒅𝒙

) 5/8/2012

5

Page 6: AFM Class 10

β€’ In an incompressible fluid, density is constant, and then the thermodynamic pressure becomes the mechanical pressure P

β€’ It has been proved that

β€’ Also, for a Newtonian fluid, the shear (viscous) stress is linearly related to the shear strain, and then where is the stress tensor and the strain tensor

β€’ Hence the viscous stress tensor becomes

5/8/2012 6

Stresses on a fluid – Incompressible fluid

Page 7: AFM Class 10

β€’ Hence the total stress tensor becomes,

β€’ 𝜎π‘₯π‘₯ = βˆ’π‘ + 2πœ‡πœ•π‘’

πœ•π‘₯ πœŽπ‘¦π‘¦ = βˆ’π‘ + 2πœ‡

πœ•π‘£

πœ•π‘¦ πœŽπ‘§π‘§ = βˆ’π‘ + 2πœ‡

πœ•π‘€

πœ•π‘§

β€’ But 𝑝 = βˆ’1

3(𝜎π‘₯π‘₯ + πœŽπ‘¦π‘¦ + πœŽπ‘§π‘§)

β€’ So 𝜎π‘₯π‘₯ =1

3(βˆ’π‘ + 2πœ‡

πœ•π‘’

πœ•π‘₯ + βˆ’π‘ + 2πœ‡

πœ•π‘£

πœ•π‘¦ + βˆ’π‘ + 2πœ‡

πœ•π‘€

πœ•π‘§) + 2πœ‡

πœ•π‘’

πœ•π‘₯= βˆ’π‘ βˆ’

2

3πœ‡βˆ‡. 𝐕 + 2πœ‡

πœ•π‘’

πœ•π‘₯

β€’ πœŽπ‘¦π‘¦ = βˆ’π‘ βˆ’2

3πœ‡π›». 𝐕 + 2πœ‡

πœ•π‘£

πœ•π‘¦ and πœŽπ‘§π‘§ = βˆ’π‘ βˆ’

2

3πœ‡π›». 𝐕 + 2πœ‡

πœ•π‘€

πœ•π‘§

5/8/2012 7

Stresses on a fluid – Incompressible fluid

Page 8: AFM Class 10

The differential momentum equation

5/8/2012 8

The differential momentum equation is

π†π’ˆπ’™ +ππˆπ’™π’™

𝝏𝒙+

ππ‰π’šπ’™

ππ’š+

𝝏𝝉𝒛𝒙

𝝏𝒛= 𝝆(

𝝏𝒖

𝝏𝒕+ 𝒖

𝝏𝒖

𝝏𝒙+v

𝝏𝒖

𝝏𝒙+

𝝏𝒖

𝝏𝒙)

π†π’ˆπ’š +ππ‰π’™π’š

𝝏𝒙+

ππˆπ’šπ’š

ππ’š+

ππ‰π’›π’š

𝝏𝒛= 𝝆(

𝝏𝒗

𝝏𝒕+ 𝒖

𝝏𝒗

𝝏𝒙+v

𝝏𝒗

ππ’š+

𝝏𝒗

𝝏𝒛)

π†π’ˆπ’› +ππˆπ’™π’›

𝝏𝒙+

ππ‰π’šπ’›

ππ’š+

ππˆπ’›π’›

𝝏𝒛= 𝝆(

ππ’˜

𝝏𝒕+ 𝒖

ππ’˜

𝝏𝒙+v

ππ’˜

ππ’š+

ππ’˜

𝝏𝒛)

β€’ Where p is the Mechanical pressure (incompressible flow)

Page 9: AFM Class 10

5/7/2012 9

The Navier-Stokes Equations β€’ Substituting the value of the stresses in the differential momentum equations,

Page 10: AFM Class 10

5/8/2012 10

β€’ For an incompressible flow,

For incompressible flow, 𝛁. 𝐕 = 𝟎

𝝆𝑫𝒖

𝑫𝒕= π†π’ˆπ’™ βˆ’

𝝏𝒑

𝝏𝒙+ 𝝁(

π’…πŸπ’–

π’…π’™πŸ +π’…πŸπ’–

π’…π’šπŸ +π’…πŸπ’–

π’…π’›πŸ) + 𝝁(π’…πŸπ’–

π’…π’™πŸ +π’…πŸπ’–

π’…π’šπ’…π’™+

π’…πŸπ’–

𝒅𝒛𝒅𝒙)

= π†π’ˆπ’™ βˆ’ππ’‘

𝝏𝒙+ 𝝁(

π’…πŸπ’–

π’…π’™πŸ +π’…πŸπ’–

π’…π’šπŸ +π’…πŸπ’–

π’…π’›πŸ ) + 𝝁𝒅

𝒅𝒙(

𝒅𝒖

𝒅𝒙+

𝒅𝒗

π’…π’š+

π’…π’˜

𝒅𝒛)

= π†π’ˆπ’™ βˆ’ππ’‘

𝝏𝒙+ 𝝁(

π’…πŸπ’–

π’…π’™πŸ +π’…πŸπ’–

π’…π’šπŸ +π’…πŸπ’–

π’…π’›πŸ )

Similarly

𝝆𝑫𝒗

𝑫𝒕 = π†π’ˆπ’š βˆ’

𝝏𝒑

ππ’š+ 𝝁(

π’…πŸπ’—

π’…π’™πŸ +π’…πŸπ’—

π’…π’šπŸ +π’…πŸπ’—

π’…π’›πŸ)

π†π‘«π’˜

𝑫𝒕 = π†π’ˆπ’› βˆ’

𝝏𝒑

𝝏𝒛+ 𝝁(

π’…πŸπ’˜

π’…π’™πŸ +π’…πŸπ’˜

π’…π’šπŸ +π’…πŸπ’˜

π’…π’›πŸ )

The Navier-Stokes Equations