agilent ads 模擬手冊 [實習3] 壓控振盪器模擬

17
ηπำسᄤတᆶ೯ ܌زηπำسᄤတᆶ೯ ܌زηπำسᄤတᆶ೯ ܌زηπำسᄤတᆶ೯ ܌زᓎၡᆶسӝჴᡍᓎၡᆶسӝჴᡍᓎၡᆶسӝჴᡍᓎၡᆶسӝჴᡍӼউӃीسኳᔕჴᡍسӈ ӼউӃीسኳᔕჴᡍسӈ ӼউӃीسኳᔕჴᡍسӈ ӼউӃीسኳᔕჴᡍسӈ IV ჴᡍѤ ჴᡍѤ ჴᡍѤ ჴᡍѤǺ1.8 GHz ᓎᓸᕏᏔኳᔕ ᓎᓸᕏᏔኳᔕ ᓎᓸᕏᏔኳᔕ ᓎᓸᕏᏔኳᔕ ύ୯ԭԃ ύ୯ԭԃ ύ୯ԭԃ ύ୯ԭԃΜД ҁჴᡍᖱကΏԵԾӼউϐᏹբЋнǵीጄٯǵѠ୯ϣӚਠϐჴᡍᖱကǴӆу ҁΓϐкԶԋǶҁΓω౧Ꮲభǵ ޕ܌Ԗज़Ǵϣ܈ԖᒪᅅǵᙤᇤϷόഢϐೀǴ ལፎߞ ([email protected])Ƕ ҁᖱကज़௲ᏢҔǴ߆ᙯၩǶ ୯ҥѠчמεᏢη سApril 2014

Upload: simenli

Post on 08-Aug-2015

282 views

Category:

Engineering


25 download

TRANSCRIPT

Page 1: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

IV 1.8 GHz

([email protected])

April 2014

Page 2: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

1

(Advanced Design System, ADS)

I ADS II DCS

1900 III

IV

ADS

Page 3: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

2

4.1

4.2

1.

( )

4.1 (Barkhausen’s Criteria)

( ) ( )G s H s 1(

( ) ( ) 1G s H s = − ) 4.1 ( )G s ( ( )G s )

( ( )H s )

(

)

( ) ( )G s H s

++

)(sG

)(sH

oViV

fV

fod VVV +=

sff

)(sH

)()(1

)()(

sHsG

sG

V

VsG

i

of ⋅−

==

1)()( =⋅ sHsG (Phase is 0 deg. or multiple of 360 deg.)

Barkhausen’s Criteria:

Resonator

Amplifier

4.1

Page 4: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

3

4.2 ( ) ( )

( )

11 1S ′ >

( ) GΓ 11S′

11G S ′Γ ⋅ 1( ( ) ( )G s H s 1)

22 1S′ > ( )

22 1L S′Γ ⋅ =

11 1G S ′Γ ⋅ = 22 1L S′Γ ⋅ =

ADS term GΓ 11S′

4.3 11 1G S ′Γ ⋅ = (

ADS )

ResonatorOutput

Network0Z 0Z

1a2a

1b2b

][S

inZ outZ

)( 1Γ )( 2ΓLZ

)( LΓGZ

)( GΓ

'11S '

22S

1'11 =⋅Γ SG

1'22 =⋅Γ SL

If it is oscillating at one port, it must be

simultaneously oscillating at the other port.

Two-port Reflection:

4.2

Resonator

GZ

)( GΓ

OutputNetwork0 0Z

1a2a

1b2b

][ S

inZ outZ

)( 1Γ )( 2ΓLZ

)( LΓ

'11S '

22S

TermTerm1

Z=50 OhmNum=1

TermTerm2

Z=50 OhmNum=2

4.3

Page 5: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

4

4.4

( )

( )

( )R ω ( )DR ω

( ) ( ) 0DX Xω ω+ = ( 0

)

LRResonator

I)()()( ωωω jXRZ +=

0)( and, )()()( >+−=− IRIjXIRIZ DDDD

)(tv)(tvD

One-port Negative Resistance:

0)()( =− ωω DRR

0)()( =+ ωω DXX

( ) ( ) ( )Z j R jXω ω ω= +

( ) ( ) ( )D D DZ j R jXω ω ω− = − + ( ) 0DR ω >

4.4

2.

4.5 Colpitts Hartley

(Topology) Hartley

Clapp Siler Copitts

LC LC

LC

( )

( )1 2f LCπ= (

) 4.5

(

)

Page 6: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

5

bici

C

E

B

1C

2C

3L

bici

C

E

B

1L

2L

3C

bici

C

E

B

1C

2C

3L

bici

C

E

B

1C

2C

3L

Colpitts Hartley

Clapp Siler

4.5

4.3

1. oscillator ADS

Copy a reference design “Osctest_VCO.dsn” from ADS examples:

..\examples\Tutorial\LearnOSC_prj\networks\

To your project:

\oscillator_prj\networks\

4.6 ADS

Page 7: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

6

2. ( )

4.7 Osctest_VCO.dsn

OscTest

OscTest

( S_Param

) Z OscTest Start Stop Points

Z ( 1 0

) OscTest

VB

Vout

VE

VE VEVres

1.8 GHz Voltage-Controlled Oscillator

S-PARAMETER OSCTEST for Loop Gain

LL2

R=L=2 nH

L

R1

R=422

L=100 nH

V_DCSRC2

Vdc=-5 V

V_DCSRC3

Vdc=12 V

L

R2

R=681-Rbias

L=100 nH

R

R3R=50 Ohm

CC2

C=1000 pF

I_Probe

ICC

C

C1C=10 pF

ap_dio_MV1404_19930601D1

L

L1

R=

L=1000 nHV_DCSRC1

Vdc=4.0 V

OscTest

OscTicklerZ=1.1 Ohm

Start=0.5 GHz

Stop=4.0 GHzPoints=201

VAR

VAR1Rbias=50

EqnVar

R

R4R=Rbias

pb_hp_AT41411_19921101

Q2

Resonator Active Part

(include load network)

Varactor: Voltage-controlled capacitor

OscTest

OscTest is a controller base on S-parameter

simulation to determine if the circuit oscillates.

4.7 1.8 GHz

4.8 osc_test.ds dataset

S(1,1) OscTest (Polar plot)

1 4.8

(1+j0) S(1,1) 1

S11>1 S(1,1)

(1+j0) Maker m1 1.172

0 1.41 GHz 1 GHz

2 GHz ( 1.41 GHz 200 MHz, 5 GHz )

Page 8: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

7

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2-1.4 1.4

freq (500.0MHz to 4.000GHz)

S(1

,1) m1

m1freq=S(1,1)=1.172 / 0.975

1.410GHz

Setup the dataset named: osc_test, and data

display named: osc_basics.

Show S(1,1) on

a Polar-plot

When the x-axis value of

1.0 is circled by the

trace(because S11 > 1), it

means that the circuit

oscillates. This is the

purpose of the OscTest

component.

S11 > 1

4.8 S(1,1) ( )

4.9 S(1,1) 1 885

MHz 25

0 1.445 GHz 1.1

1.8 GHz 1.8 GHz −6.6 1.08

1.0 1.5 2.0 2.5 3.0 3.50.5 4.0

-20

-10

0

10

20

30

-30

40

freq, GHz

phas

e(S

(1,1

))

m4m5

m4f req=phase(S(1,1))=0.005

1.445GHzm5f req=phase(S(1,1))=-6.604

1.795GHz

1.0 1.5 2.0 2.5 3.0 3.50.5 4.0

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.5

1.3

freq, GHz

mag

(S(1

,1))

m2 m3

m2f req=mag(S(1,1))=1.013

885.0MHzm3f req=mag(S(1,1))=1.009

3.982GHz

Around 1.8 GHz (Marker m5), the phase is not 0o, but this is OK at

this time. The harmonic-balance simulation will be performed later.

S11 > 1 above 880 MHz

The device is unstable and

has a chance to oscillate.

4.9 S(1,1)

3. ( )

4.10 Osctest_VCO.dsn OscTest HB

OscPort OscPort HB V

Page 9: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

8

(HB AC ) NumOctaves

Freq[1] Freq[1] 4.10 Freq[1]

1 GHz OscPort NumOctaves 2

0.5 GHz (1 GHz Octave) 2 GHz (1 GHz

Octave) Freq[1] 2 Octave OscPort Steps

0.5 GHz 2 GHz

10 Q Steps

FundIndex = 1 HB Freq[1] 1 GHz

1 GHz Freq[1] OscPort

OscPort

OscPort index = 1 Freq[1]

HB Order[1] 7 3 7 15

31 ( DC

4 8 16 32 2 )

7 Order[1]

StatusLevel 3 OscMode OscPortName

OscPort

VE

VE VEVres

VB

HarmonicBalanceHB1

OscPortName="Osc1"OscMode=yesStatusLevel=2Order[1]=7Freq[1]=1.0 GHz

HARMONIC BALANCE

OscPortOsc1

MaxLoopGainStep=FundIndex=1Steps=10NumOctaves=2Z=1.1 OhmV=

V_DCSRC1Vdc=4.0 V

LL1

R=L=1000 nH

ap_dio_MV1404_19930601D1

CC1C=10 pF

LL2

R=L=2 nH

LR1

R=422L=100 nH

V_DCSRC2Vdc=-5 V

pb_hp_AT41411_19921101Q2

OscPort

Enable the oscillation analysis

with “Use Oscport” method.

Oscport HB simulation

attempts to find the correct

oscillating frequency using

loop gain and current

(Barkhausen’s Criteria).

3

4.10 OscPort

Page 10: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

9

Dataset osc_port.ds Data Display

( Freq[1]) 1.806 GHz 4.11

Vout ( dBm() ) plot_vs(dBm(Vout), freq)

x (fundamental)

( 50 dBm() )

ts() 4.12

Eqn loop_current=real(ICC.i[0])

Eqn osc_freq=freq[1]

loop_current

-0.011

osc_freq

1.806E9

m6harmindex=dBm(Vout)=7.318

1

1 2 3 4 5 60 7

-30

-20

-10

0

-40

10

harmindex

dBm

(Vou

t)

m6

m6harmindex=dBm(Vout)=7.318

1

harmindex

01234567

freq

0.0000 Hz1.806 GHz3.611 GHz5.417 GHz7.222 GHz9.028 GHz10.83 GHz12.64 GHz

harm_power

<invalid>7.318

-2.208-17.501-17.061-27.317-27.815-35.340

Eqn harm_power=dBm(Vout[0::1::7])

2 4 6 8 10 120 14

-30

-20

-10

0

-40

10

freq, GHz

dBm

(Vou

t)

Fundamental Frequency (oscillation frequency)

Use dBm( ) to show the signal power

(Note: x-axis is “harmonic index”)

Use plot_vs( )to show the signal

power versus frequency.

(Note: x-axis is now “frequency”)

4.11

-600

-500

-400

-300

-700

-200

ts(V

res)

, mV

-400

-200

0

200

-600

400

ts(V

B),

mV

-600

-500

-400

-300

-700

-200

ts(V

E),

mV

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.10.0 1.2

-0.5

0.0

0.5

-1.0

1.0

time, nsec

ts(V

out)

, V

4.12 ts( )

Page 11: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

10

4. (Frequency Tuning Sensitivity)

(Voltage-controlled oscillator, VCO)

(Varactor)

( Tuning sensitivity KV

) MHz/V 1 V KV

1 KV

KV KV

( )

HB1 HB HB2

1.8 GHz Freq[1] 1.8 GHz Vtune

Vtune 0 V 10 V Step 0.25 V

Dataset osc_tune Tune_Step Dataset

Freq[1] Vtune

Vres

HarmonicBalanceHB2

Step=Tune_StepStop=Tune_StopStart=Tune_StartSweepVar="Vtune"OscPortName="Yes"OscMode=yesStatusLevel=3Order[1]=7Freq[1]=1.8 GHz

HARMONIC BALANCE

VARVAR2

Tune_Step=0.25Tune_Stop=10Tune_Start=0Vtune=4 VRbias=50

EqnVar

HarmonicBalanceHB1

OscPortName="Osc1"OscMode=yesStatusLevel=3Order[1]=7Freq[1]=1.8 GHz

HARMONIC BALANCE

V_DCSRC1Vdc=Vtune

OscPortOsc1

MaxLoopGainStep=FundIndex=1Steps=10NumOctaves=2Z=1.1 OhmV=

LL1

R=L=1000 nH

ap_dio_MV1404_19930601D1

CC1C=10 pF

Pass the variable “Tune_Step” to dataset Plot oscillating frequency v.s. Tuning voltage

“Osc1”

4.13

Page 12: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

11

Freq[1] Vtune 4.14 KV

Freq[1] Vtune 4.14 Maker

(diff() ) Vtune

Vtune( ) KV

KV (

)

Vtune 18 V 4.15

12 V ( )

Eqn osc_freq=freq[1]

m7indep(m7)=plot_vs(freq[1], Vtune)=1.806E9

4.000m8indep(m8)=plot_vs(freq[1], Vtune)=1.903E9

6.500

1 2 3 4 5 6 7 8 90 10

1.75

1.80

1.85

1.90

1.95

2.00

2.05

1.70

2.10

Vtune

freq

[1],

GH

z

m7

m8

m7indep(m7)=plot_vs(freq[1], Vtune)=1.806E9

4.000m8indep(m8)=plot_vs(freq[1], Vtune)=1.903E9

6.500

Eqn Tuning_Sensitivity=diff(freq[1])/Tune_Step[0]

1 2 3 4 5 6 7 8 90 10

6.0E7

8.0E7

1.0E8

1.2E8

1.4E8

1.6E8

4.0E7

1.8E8

Vtune

Tun

ing_

Sen

sitiv

ity

1.75E9 1.80E9 1.85E9 1.90E9 1.95E9 2.00E91.70E9 2.05E9

6.0E7

8.0E7

1.0E8

1.2E8

1.4E8

1.6E8

4.0E7

1.8E8

osc_freq[0::1::(tune_pts-1)]

Tun

ing_

Sen

sitiv

ity

Eqn f_pts=sweep_size(osc_freq)

f_pts

41

tune_pts

40

Eqn tune_pts=sweep_size(Tuning_Sensitivity)

Eqn Tuning_Sensitivity_band=(m8-m7)/(indep(m8)-indep(m7))

Tuning_Sensitivity_band

3.904E7

m7

1.806E9

m8

1.903E9

Oscillating frequency v.s. Tuning voltage Calculate tuning sensitivity from

makers m7 and m8

Calculate sensitivity by using

diff() function.Note: Since no “padding” with diff(),

there will be 1 point less than freq[1]

points.

Sensitivity v.s. Vtune Sensitivity v.s. Frequency

4.14

VARVAR2

Tune_Step=0.25Tune_Stop=18Tune_Start=0Vtune=4 VRbias=50

EqnVar

2 4 6 8 10 12 14 160 18

1.7

1.8

1.9

2.0

2.1

1.6

2.2

Vtune

freq

[1],

GH

z

m7

m8

m7indep(m7)=plot_vs(freq[1], Vtune)=1.806E9

4.000m8indep(m8)=plot_vs(freq[1], Vtune)=2.134E9

12.000Sweep Vtune up to 18 V

The diode is breakdown

above 12 V (acts like a

resistor), it no longer acts

like a variable capacitor.

Diode = Varactor

Maximum oscillating

frequency is 2.13 GHz

4.15

Page 13: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

12

5. (Source Pushing)

(Frequency pushing figure) (voltage source)

(Source pushing)

4.16 5 V 20 V

0.25 V Dataset osc_push

Vres

VARVAR2

Tune_Step=0.25 VTune_Stop=20 VTune_Start=5 VVtune=4 VVbias=12 VRbias=50

EqnVar

HarmonicBalanceHB2

Step=Tune_StepStop=Tune_StopStart=Tune_StartSweepVar="Vbias"OscPortName="Yes"OscMode=yesStatusLevel=3Order[1]=7Freq[1]=1.8 GHz

HARMONIC BALANCE

HarmonicBalanceHB1

OscPortName="Osc1"OscMode=yesStatusLevel=3Order[1]=7Freq[1]=1.8 GHz

HARMONIC BALANCE

V_DCSRC1Vdc=Vtune

LL1

R=L=1000 nH

ap_dio_MV1404_19930601D1

CC1C=10 pF

Vout

V_DCSRC3Vdc=Vbias

LR2

R=681-RbiasL=100 nH

RR3R=50 Ohm

CC2C=1000 pF

I_ProbeICC

Change the supply voltage

to a variable “Vbias”Sweep the supply voltage “Vbias” from 5 V to

20 V while Vtune is now held constantly at 4 V.(In practice, Vtune is set to a voltage that oscillator oscillates

at “target” center frequency.)

4.16

4.17 source pushing

12 V source pushing

source pushing figure 21.77 MHz/V

m9indep(m9)=plot_vs(freq[1], Vbias)=1.825E9

13.000m10indep(m10)=plot_vs(freq[1], Vbias)=1.781E9

11.000

6 8 10 12 14 16 184 20

0.5

1.0

1.5

0.0

2.0

Vbias

freq

[1],

GH

z

m9m10

m9indep(m9)=plot_vs(freq[1], Vbias)=1.825E9

13.000m10indep(m10)=plot_vs(freq[1], Vbias)=1.781E9

11.000

Eqn Source_pushing=(m9-m10)/(indep(m9)-indep(m10))

Source_pushing

2.177E7

Plot freq[1] v.s. Vbias to

show the source pushing

results. Here, use makers

and equations to calculate

the pushing figure around

Vbias = 12 V. As we can see,

this oscillator has the source

pushing figure equals to

21.77 MHz/V.

4.17

Page 14: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

13

6. (Load Pulling)

(Frequency pulling figure) (load)

(Load pulling) 50

( )

50

Osctest_VCO.dsn Osctest_VCO_pull.dsn HB HB1

HB2 HB HB3

50 S1P_Eqn S1P_Eqn

VSWR ( ) Load pulling VSWR

25 MHz@VSWR=1.2 VSWR 1.2

25 MHz 4.18

VSWR VSWR (0 2π VSWR

) VSWRval phi VSWRval

ParamSweep HB3 HB3 Dataset

Vout VARVAR1

VSWRval=1phi=0nvw=11vw2=2vw1=1

EqnVar

HarmonicBalanceHB3

Step=0.1Stop=2Start=0SweepVar="phi"OscPortName="Yes"OscMode=y esStatusLev el=3Order[1]=7Freq[1]=1.8 GHz

HARMONIC BALANCE

VARVAR7

rho=(VSWRv al-1)/(VSWRv al+1)iload=rho*sin(pi*phi)load=rho*exp(j*pi*phi)rload=rho*cos(pi*phi)

EqnVar

ParamSweepSweep1

Lin=nvwStop=vw2Start=vw1SweepVar="VSWRval"

PARAMETER SWEEP

S1P_EqnBuf f erLoadS[1,1]=load

CC2C=1000 pF

vw1: VSWR sweep start

vw2: VSWR sweep stop

nvw: num. of VSWR sweep

real part of load

sweep load

Image part of load

Sweep load for different constant VSWR circles in Smith chart.

Save these variables in dataset

4.18

Page 15: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

14

VSWR 4.19 (

) Rectangular plot Trace Expression

marker ( m12) m12

VSWR 4.20 VSWR

VSWR ( phi 0 2π)

Rectangular plot VSWR

( VSWR=1.2) phi ( )

( 1.806 GHz) df_peak

VSWR = 1.2

m12indep(m12)=vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000

1.200

Eqn refl=rload+j*iload

Eqn vswr_k=(nvw[0,0]-1)*(indep(m12)-vw1[0,0])/(vw2[0,0]-vw1[0,0])

Eqn VSWR=vswr_k*(vw2[0,0]-vw1[0,0])/(nvw[0,0]-1)+(vw1[0,0])

Eqn LoadRefl=mag(refl[::,1])

Eqn df_peak=max(abs(freq[vswr_k,::,1]-1.806e9))

df_peak

3.202E7

Load Pulling Figure @ VSRW=1.200

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.91.0 2.0

VSWR

m12

m12indep(m12)=vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000

1.200

Write down these equations for load pulling figure measurement

@certain VSWR value. (You can change VSWR by scrolling marker m12)

Find peak frequency that deviates

from center frequency 1.086 GHz.

4.19

phi (0.000 to 2.000)

refl[

vsw

r_k,

::]

m12indep(m12)=vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000

1.200

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.91.0 2.0

VSWR

m12

m12indep(m12)=vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000

1.200

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.0 2.0

0.65

0.70

0.75

0.80

0.85

0.60

0.90

phi ( *pi radians)

mag

(Vou

t[vsw

r_k,

::,1]

)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.0 2.0

1.7800G

1.7900G

1.8000G

1.8100G

1.8200G

1.8300G

1.7700G

1.8400G

phi ( *pi radians)

freq

[vsw

r_k,

::,1]

, Hz

Eqn refl=rload+j*iload

Eqn vswr_k=(nvw[0,0]-1)*(indep(m12)-vw1[0,0])/(vw2[0,0]-vw1[0,0])

Eqn VSWR=vswr_k*(vw2[0,0]-vw1[0,0])/(nvw[0,0]-1)+(vw1[0,0])

Eqn LoadRefl=mag(refl[::,1])

Frequency variation for VSWR = 1.20

Eqn df_peak=max(abs(freq[vswr_k,::,1]-1.806e9))

df_peak

3.202E7

Load Pulling Figure @ VSRW=1.200

Constant VSWR circleVout amplitude variations

Frequency variationsuse @VSWR in the text to show the number

4.20

Page 16: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

15

7.

ADS

Osctest_VCO.dsn HB 4.21

Order 15( 7 )

ADS Oversample[1] 4 PhaseNoise yes

HB Noise Nonlinear noise

Noise(1) Noise(2) ADS

pnmx ( ) dBc

dBc/Hz( ADS Hz y

/Hz ) 10 kHz

−78.39 dBc/Hz( −78.39 dBc/Hz@10 kHz)

−98.34 dBc/Hz@100 kHz −118.08 dBc/Hz@1 MHz

HarmonicBalanceHB1

OscPortName="Osc1"OscMode=yesSortNoise=Sort by valueNoiseNode[1]="Vout"PhaseNoise=yesNLNoiseDec=5NLNoiseStop=10.0 MHzNLNoiseStart=1.0 HzOversample[1]=4StatusLevel=3Order[1]=15Freq[1]=1.8 GHz

HARMONIC BALANCE

Phase Noise Simulation Setup

4.21

m11noisefreq=pnmx=-78.390

10.00kHz

m13noisefreq=pnmx=-98.340

100.0kHz

m14noisefreq=pnmx=-118.079

1.000MHz

1E1 1E2 1E3 1E4 1E5 1E61 1E7

-120

-100

-80

-60

-40

-20

0

-140

20

noisefreq, Hz

pnm

x, d

Bc

m11

m13

m14

m11noisefreq=pnmx=-78.390

10.00kHz

m13noisefreq=pnmx=-98.340

100.0kHz

m14noisefreq=pnmx=-118.079

1.000MHz

4.22 (pnmx)

Page 17: Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

16

4.4

HB