algorithms,,graph,theory,,and,, linear,equa9ons,in,laplacians, · 2010-08-15 ·...

80
Algorithms, Graph Theory, and Linear Equa9ons in Laplacians Daniel A. Spielman Yale University

Upload: others

Post on 08-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Algorithms, Graph Theory, and Linear Equa9ons in Laplacians

Daniel A. Spielman Yale University

Page 2: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Shang-­‐Hua Teng 滕 尚 華

Page 3: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Pavel Cur9s

David Harbater UPenn

Carter Fussell TPS

Todd Knoblock

CTY

Page 4: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Serge Lang 1927-­‐2005

Gian-­‐Carlo Rota 1932-­‐1999

Page 5: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Algorithms, Graph Theory, and Linear Equa9ons in Laplacians

Daniel A. Spielman Yale University

Page 6: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Solving Linear Equa9ons Ax = b, Quickly

Goal: In 9me linear in the number of non-­‐zeros entries of A

Special case: A is the Laplacian Matrix of a Graph

Page 7: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Solving Linear Equa9ons Ax = b, Quickly

Goal: In 9me linear in the number of non-­‐zeros entries of A

Special case: A is the Laplacian Matrix of a Graph

Page 8: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Solving Linear Equa9ons Ax = b, Quickly

Goal: In 9me linear in the number of non-­‐zeros entries of A

Special case: A is the Laplacian Matrix of a Graph

1. Why 2.  Classic Approaches 3.  Recent Developments 4.  Connec9ons

Page 9: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Graphs

Set of ver9ces V. Set of edges E of pairs u,v ⊆ V

Page 10: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Graphs

Erdös

Lovász Alon

Karp

8

1

2 7 5 3

4 10 9 6

Set of ver9ces V. Set of edges E of pairs u,v ⊆ V

Page 11: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Laplacian Quadra9c Form of G = (V,E)

For x : V → IR

xTLGx =

(u,v)∈E

(x (u)− x (v))2

Page 12: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Laplacian Quadra9c Form of G = (V,E)

For x : V → IR

−1−3 01

3

x :

xTLGx =

(u,v)∈E

(x (u)− x (v))2

Page 13: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Laplacian Quadra9c Form of G = (V,E)

For x : V → IR

−1−3 0x :

xTLGx = 15

22 1212

32

xTLGx =

(u,v)∈E

(x (u)− x (v))2

1

3

Page 14: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Laplacian Quadra9c Form for Weighted Graph

xTLGx =

(u,v)∈E

w(u,v) (x (u)− x (v))2

G = (V,E,w)

w : E → IR+ assigns a posi9ve weight to every edge

Matrix LG is posi9ve semi-­‐definite nullspace spanned by const vector, if connected

Page 15: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Laplacian Matrix of a Weighted Graph

LG(u, v) =

−w(u, v) if (u, v) ∈ E

d(u) if u = v

0 otherwise

4 -1 0 -1 -2! -1 4 -3 0 0! 0 -3 4 -1 0! -1 0 -1 2 0! -2 0 0 0 2!

1 2

3 4

5 1!

1!

2!

1!

3!

d(u) =

(v,u)∈E w(u, v)

the weighted degree of u

Page 16: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Laplacian Matrix of a Weighted Graph

LG(u, v) =

−w(u, v) if (u, v) ∈ E

d(u) if u = v

0 otherwise

4 -1 0 -1 -2! -1 4 -3 0 0! 0 -3 4 -1 0! -1 0 -1 2 0! -2 0 0 0 2!

1 2

3 4

5 1!

1!

2!

1!

3!

d(u) =

(v,u)∈E w(u, v)

the weighted degree of u combinatorial degree is # of aaached edges

3

2

2

2

1

Page 17: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Networks of Resistors

Ohm’s laws gives

In general, with w(u,v) = 1/r(u,v)

Minimize dissipated energy

i = v/r

i = LGv

vTLGv

1V

0V

Page 18: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

1V

0V

0.5V

0.5V

0.625V 0.375V

By solving Laplacian

1V

0V

Networks of Resistors

Ohm’s laws gives

In general, with w(u,v) = 1/r(u,v)

Minimize dissipated energy

i = v/r

i = LGv

vTLGv

Page 19: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Learning on Graphs

Infer values of a func9on at all ver9ces from known values at a few ver9ces.

Minimize xTLGx =

(u,v)∈E

w(u,v) (x (u)− x (v))2

Subject to known values

0

1

Page 20: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Learning on Graphs

0

1 0.5

0.5

0.625 0.375

By solving Laplacian

Infer values of a func9on at all ver9ces from known values at a few ver9ces.

Minimize xTLGx =

(u,v)∈E

w(u,v) (x (u)− x (v))2

Subject to known values

Page 21: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Spectral Graph Theory

Combinatorial proper9es of G are revealed by eigenvalues and eigenvectors of LG

Compute the most important ones by solving equa9ons in the Laplacian.

Page 22: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Solving Linear Programs in Op9miza9on

Interior Point Methods for Linear Programming: network flow problems Laplacian systems

Numerical solu9on of Ellip9c PDEs

Finite Element Method

Page 23: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

How to Solve Linear Equa9ons Quickly

Fast when graph is simple, by elimina9on.

Fast when graph is complicated*, by Conjugate Gradient (Hestenes ‘51, S9efel ‘52)

Page 24: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Cholesky Factoriza9on of Laplacians

Also known as Y-­‐Δ

When eliminate a vertex, connect its neighbors.

3 -1 0 -1 -1! -1 2 -1 0 0! 0 -1 2 -1 0! -1 0 -1 2 0! -1 0 0 0 1!

1 2

3 4

5 1!

1!

1!

1!

1!

Page 25: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Cholesky Factoriza9on of Laplacians

Also known as Y-­‐Δ

When eliminate a vertex, connect its neighbors.

3 -1 0 -1 -1! -1 2 -1 0 0! 0 -1 2 -1 0! -1 0 -1 2 0! -1 0 0 0 1!

1 2

3 4

5 1!

1!

1!

1!

1!.33!

.33!

.33!

3 0 0 0 0! 0 1.67 -1.00 -0.33 -0.33! 0 -1.00 2.00 -1.00 0! 0 -0.33 -1.00 1.67 -0.33! 0 -0.33 0 -0.33 0.67!

Page 26: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Cholesky Factoriza9on of Laplacians

Also known as Y-­‐Δ

When eliminate a vertex, connect its neighbors.

3 -1 0 -1 -1! -1 2 -1 0 0! 0 -1 2 -1 0! -1 0 -1 2 0! -1 0 0 0 1!

1 2

3 4

5

1!

1!.33!

.33!

.33!

3 0 0 0 0! 0 1.67 -1.00 -0.33 -0.33! 0 -1.00 2.00 -1.00 0! 0 -0.33 -1.00 1.67 -0.33! 0 -0.33 0 -0.33 0.67!

Page 27: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

3 0 0 0 0! 0 1.67 -1.00 -0.33 -0.33! 0 -1.00 2.00 -1.00 0! 0 -0.33 -1.00 1.67 -0.33! 0 -0.33 0 -0.33 0.67!

3 -1 0 -1 -1! -1 2 -1 0 0! 0 -1 2 -1 0! -1 0 -1 2 0! -1 0 0 0 1!

3 0 0 0 0! 0 1.67 0 0 0! 0 0 1.4 -1.2 -0.2! 0 0 -1.2 1.6 -0.4! 0 0 -0.2 -0.4 0.6!

1 2

3 4

5 1!

1!

1!

1!

1!

1 2

3 4

5 .33!

.33!

1!

1!.33!

1 2

3 4

5 .2!

1.2!

.4!

Page 28: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

1 0 0 0 0! 0 2 -1 0 -1! 0 -1 2 -1 0! 0 0 -1 2 -1! 0 -1 0 -1 2!

1 -1 0 0 0! -1 3 -1 0 -1! 0 -1 2 -1 0! 0 0 -1 2 -1! 0 -1 0 -1 2!

1 0 0 0 0! 0 2 0 0 0! 0 0 1.5 -1 -0.5! 0 0 -1.0 2 -1.0! 0 0 -0.5 -1 1.5!

2 3

4 5

1 1!

1!

1!

1!

1!

2 3

4 5

1 1!

1!

1!

1!

2 3

4 5

1

1!

1!

0.5!

The order maaers

Page 29: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Complexity of Cholesky Factoriza9on

#ops ~ Σv (degree of v when eliminate)2

Tree (connected, no cycles)

#ops ~ O(|V|)

Page 30: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Complexity of Cholesky Factoriza9on

#ops ~ Σv (degree of v when eliminate)2

#ops ~ O(|V|) Tree (connected, no cycles)

Page 31: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Complexity of Cholesky Factoriza9on

#ops ~ Σv (degree of v when eliminate)2

Tree #ops ~ O(|V|)

Page 32: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Complexity of Cholesky Factoriza9on

#ops ~ Σv (degree of v when eliminate)2

Tree #ops ~ O(|V|)

Page 33: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Complexity of Cholesky Factoriza9on

#ops ~ Σv (degree of v when eliminate)2

Tree #ops ~ O(|V|)

Page 34: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Complexity of Cholesky Factoriza9on

#ops ~ Σv (degree of v when eliminate)2

Tree #ops ~ O(|V|)

Page 35: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Complexity of Cholesky Factoriza9on

#ops ~ Σv (degree of v when eliminate)2

Tree #ops ~ O(|V|)

Planar #ops ~ O(|V|3/2) Lipton-­‐Rose-­‐Tarjan ‘79

Page 36: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Complexity of Cholesky Factoriza9on

#ops ~ Σv (degree of v when eliminate)2

Tree #ops ~ O(|V|)

Planar #ops ~ O(|V|3/2) Lipton-­‐Rose-­‐Tarjan ‘79

Page 37: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Complexity of Cholesky Factoriza9on

#ops ~ Σv (degree of v when eliminate)2

Tree #ops ~ O(|V|)

Planar #ops ~ O(|V|3/2) Lipton-­‐Rose-­‐Tarjan ‘79

Expander like random, but O(|V|) edges

#ops ≳ Ω(|V|3) Lipton-­‐Rose-­‐Tarjan ‘79

Page 38: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Conductance and Cholesky Factoriza9on

Cholesky slow when conductance high Cholesky fast when low for G and all subgraphs

For S ⊂ V

ΦG = minS⊂V Φ(S)

Φ(S) = # edges leaving Ssum degrees on smaller side, S or V − S

S

Page 39: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Conductance

S

Page 40: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Conductance

Φ(S) = 3/5

S

Page 41: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Conductance

S

Page 42: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Cheeger’s Inequality and the Conjugate Gradient

Cheeger’s inequality (degree-­‐d unwted case)

12λ2d ≤ ΦG ≤

2λ2

d

= second-­‐smallest eigenvalue of LG ~ d/mixing 9me of random walk

λ2

Page 43: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Cheeger’s Inequality and the Conjugate Gradient

Cheeger’s inequality (degree-­‐d unwted case)

12λ2d ≤ ΦG ≤

2λ2

d

= second-­‐smallest eigenvalue of LG ~ d/mixing 9me of random walk

λ2

Conjugate Gradient finds ∊ -­‐approx solu9on to LG x = b

in mults by LG O(d/λ2 log −1)

in ops O(|E|

d/λ2 log −1)

Page 44: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Fast solu9on of linear equa9ons

CG fast when conductance high.

Elimina9on fast when low for G and all subgraphs.

Page 45: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Fast solu9on of linear equa9ons

CG fast when conductance high.

Elimina9on fast when low for G and all subgraphs.

Planar graphs

Want speed of extremes in the middle

Page 46: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Fast solu9on of linear equa9ons

CG fast when conductance high.

Elimina9on fast when low for G and all subgraphs.

Planar graphs

Want speed of extremes in the middle

Not all graphs fit into these categories!

Page 47: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Precondi9oned Conjugate Gradient

Solve LG x = b by

Approxima9ng LG by LH (the precondi9oner)

In each itera9on solve a system in LH mul9ply a vector by LG

∊ -­‐approx solu9on ater O(

κ(LG, LH) log −1) itera9ons

Page 48: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Precondi9oned Conjugate Gradient

Solve LG x = b by

Approxima9ng LG by LH (the precondi9oner)

In each itera9on solve a system in LH mul9ply a vector by LG

∊ -­‐approx solu9on ater O(

κ(LG, LH) log −1) itera9ons

rela6ve condi6on number

Page 49: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Inequali9es and Approxima9on

if is positive semi-definite, "i.e. for all x,

xTLHx xTLGx

LH LG LG − LH

Example: if H is a subgraph of G

xTLGx =

(u,v)∈E

w(u,v) (x (u)− x (v))2

Page 50: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Inequali9es and Approxima9on

if is positive semi-definite, "i.e. for all x,

κ(LG, LH) ≤ t

LH LG tLH

LH LG LG − LH

if

iff for some c cLH LG ctLH

xTLHx xTLGx

Page 51: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Inequali9es and Approxima9on

if is positive semi-definite, "i.e. for all x,

κ(LG, LH) ≤ t

LH LG tLH

LH LG LG − LH

if

iff for some c cLH LG ctLH

Call H a t-­‐approx of G if κ(LG, LH) ≤ t

xTLHx xTLGx

Page 52: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Other defini9ons of the condi9on number

κ(LG, LH) =

max

x∈Span(LH)

xTLGx

xTLHx

max

x∈Span(LG)

xTLHx

xTLGx

pseudo-­inverse

min non-­zero eigenvalue

κ(LG, LH) =λmax(LGL

+H)

λmin(LGL+H)

(Golds9ne, von Neumann ‘47)

Page 53: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Vaidya’s Subgraph Precondi9oners

Precondi9on G by a subgraph H

LH LG so just need t for which LG tLH

Easy to bound t if H is a spanning tree

And, easy to solve equa9ons in LH by elimina9on

H

Page 54: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

The Stretch of Spanning Trees

Where

Boman-­‐Hendrickson ‘01:

stT (G) =

(u,v)∈E

path-lengthT (u, v)

LG stG(T )LT

Page 55: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

The Stretch of Spanning Trees

Where

Boman-­‐Hendrickson ‘01:

stT (G) =

(u,v)∈E

path-lengthT (u, v)

LG stG(T )LT

Page 56: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

The Stretch of Spanning Trees

path-­‐len 3

Where

Boman-­‐Hendrickson ‘01:

stT (G) =

(u,v)∈E

path-lengthT (u, v)

LG stG(T )LT

Page 57: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

The Stretch of Spanning Trees

path-­‐len 5

Where

Boman-­‐Hendrickson ‘01:

stT (G) =

(u,v)∈E

path-lengthT (u, v)

LG stG(T )LT

Page 58: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

The Stretch of Spanning Trees

path-­‐len 1

Where

Boman-­‐Hendrickson ‘01:

stT (G) =

(u,v)∈E

path-lengthT (u, v)

LG stG(T )LT

Page 59: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

The Stretch of Spanning Trees

In weighted case, measure resistances of paths

Where

Boman-­‐Hendrickson ‘01:

stT (G) =

(u,v)∈E

path-lengthT (u, v)

LG stG(T )LT

Page 60: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Low-­‐Stretch Spanning Trees

(Alon-­‐Karp-­‐Peleg-­‐West ’91)

(Elkin-­‐Emek-­‐S-­‐Teng ’04, Abraham-­‐Bartal-­‐Neiman ’08)

For every G there is a T with

where m = |E|

Solve linear systems in 9me O(m3/2 logm)

stT (G) ≤ m1+o(1)

stT (G) ≤ O(m logm log2 logm)

Page 61: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Low-­‐Stretch Spanning Trees

(Alon-­‐Karp-­‐Peleg-­‐West ’91)

(Elkin-­‐Emek-­‐S-­‐Teng ’04, Abraham-­‐Bartal-­‐Neiman ’08)

For every G there is a T with

where m = |E|

If G is an expander

stT (G) ≤ m1+o(1)

stT (G) ≤ O(m logm log2 logm)

stT (G) ≥ Ω(m logm)

Page 62: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Expander Graphs

Infinite family of d-­‐regular graphs (all degrees d) satsifying

Spectrally best are Ramanujan Graphs (Margulis ‘88, Lubotzky-­‐Phillips-­‐Sarnak ’88) all eigenvalues inside

λ2 ≥ const > 0

d± 2√d− 1

Amazing proper9es

Fundamental examples

Page 63: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Expanders Approximate Complete Graphs

Let G be the complete graph on n ver9ces (having all possible edges)

All non-­‐zero eigenvalues of LG are n

for all x ⊥ 1, x = 1xTLGx = n

Page 64: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Expanders Approximate Complete Graphs

Let G be the complete graph on n ver9ces

Let H be a d-­‐regular Ramanujan Expander

κ(LG, LH) ≤ d+ 2√d− 1

d− 2√d− 1

→ 1

for all x ⊥ 1, x = 1xTLGx = n

(d− 2√d− 1) ≤ xTLHx ≤ (d+ 2

√d− 1)

Page 65: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Sparsifica9on

Goal: find sparse approxima9on for every G

S-­‐Teng ‘04: For every G is an H with O(n log7 n/2) edges and κ(LG, LH) ≤ 1 +

Page 66: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Sparsifica9on

S-­‐Teng ‘04: For every G is an H with O(n log7 n/2) edges and κ(LG, LH) ≤ 1 +

Conductance high high (Cheeger) random sample good (Füredi-­‐Komlós ‘81)

λ2

Conductance not high can split graph while removing few edges

Page 67: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Fast Graph Decomposi9on by local graph clustering

Given vertex of interest find nearby cluster, small , in 9me

Φ(S)

Page 68: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Fast Graph Decomposi9on by local graph clustering

S-­‐Teng ’04: Lovász-­‐Simonovits Andersen-­‐Chung-­‐Lang ‘06: PageRank Andersen-­‐Peres ‘09: evoloving set Markov chain

Given vertex of interest find nearby cluster, small , in 9me

Φ(S)

Page 69: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Sparsifica9on

Goal: find sparse approxima9on for every G

S-­‐Teng ‘04: For every G is an H with O(n log7 n/2) edges and κ(LG, LH) ≤ 1 +

S-­‐Srivastava ‘08: with edges proof by modern random matrix theory Rudelson’s concentra9on for random sums

O(n log n/2)

Page 70: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Sparsifica9on

Goal: find sparse approxima9on for every G

S-­‐Teng ‘04: For every G is an H with O(n log7 n/2) edges and κ(LG, LH) ≤ 1 +

S-­‐Srivastava ‘08: with edges

Batson-­‐S-­‐Srivastava ‘09

dn edges and κ(LG, LH) ≤ d+ 1 + 2√d

d+ 1− 2√d

O(n log n/2)

Page 71: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Sparsifica9on by Linear Algebra

edges vectors

Given vectors s.t. v1, ..., vm ∈ IRn

e

vevTe = I

Find a small subset S ⊂ 1, ...,mand coefficients s.t. ce

||

e∈S

cevevTe − I|| ≤

Page 72: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Sparsifica9on by Linear Algebra

Given vectors s.t. v1, ..., vm ∈ IRn

e

vevTe = I

Find a small subset S ⊂ 1, ...,m

and coefficients s.t. ce ||

e∈S

cevevTe − I|| ≤

Rudelson ‘99 says can find if choose S at random*

* = In graphs, are effec9ve resistances

|S| ≤ O(n log n/2)

Pr [e] ∼ 1/ ve2

Page 73: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Sparsifica9on by Linear Algebra

Batson-­‐S-­‐Srivastava: can find by greedy algorithm

with S9eltjes poten9al func9on

|S| ≤ 4n/2

Given vectors s.t. v1, ..., vm ∈ IRn

e

vevTe = I

Find a small subset S ⊂ 1, ...,m

and coefficients s.t. ce ||

e∈S

cevevTe − I|| ≤

Page 74: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Rela9on to Kadison-­‐Singer, Paving Conjecture

e

vevTe = I

Exists

Would be implied by the following strong version of Weaver’s conjecture KS’2

ve2 =n

m≤ α

S ⊂ 1, ...,m , |S| = m/2

e∈S

vevTe − 1

2I

≤ 1

4

Exists constant α s.t. for s.t. for v1, ..., vm ∈ IRn

Page 75: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Rela9on to Kadison-­‐Singer, Paving Conjecture

Rudelson ‘99:

Batson-­‐S-­‐Srivastava ‘09: true, but with coefficients in sum

α = const/(log n)

e

vevTe = I

Exists

ve2 =n

m≤ α

S ⊂ 1, ...,m , |S| = m/2

e∈S

vevTe − 1

2I

≤ 1

4

Exists constant α s.t. for s.t. for v1, ..., vm ∈ IRn

Page 76: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Rela9on to Kadison-­‐Singer, Paving Conjecture

Rudelson ‘99:

Batson-­‐S-­‐Srivastava ‘09: true, but with coefficients in sum

α = const/(log n)

e

vevTe = I

Exists

ve2 =n

m≤ α

S ⊂ 1, ...,m , |S| = m/2

e∈S

vevTe − 1

2I

≤ 1

4

Exists constant α s.t. for s.t. for v1, ..., vm ∈ IRn

S-­‐Srivastava ‘10: Bourgain-­‐Tzafriri Restricted Invertability

Page 77: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Sparsifica9on and Solving Linear Equa9ons

Can reduce any Laplacian to one with non-­‐zero entries/edges.

S-­‐Teng ‘04: Combine Low-­‐Stretch Trees with Sparsifica9on to solve Laplacian systems in 9me

O(m logc n log −1)

m = |E| n = |V |

O(|V |)

Page 78: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Sparsifica9on and Solving Linear Equa9ons

S-­‐Teng ‘04: Combine Low-­‐Stretch Trees with Sparsifica9on to solve Laplacian systems in 9me

O(m logc n log −1)

m = |E| n = |V |

Kou9s-­‐Miller-­‐Peng ’10: 9me

Kolla-­‐Makarychev-­‐Saberi-­‐Teng ’09: ater preprocessing

O(m log2 n log −1)

O(m log n log −1)

Page 79: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

What’s next

Decomposi9ons of the iden9ty: Understanding the vectors we get from graphs the Ramanujan bound

Kadison-­‐Singer?

Other families of linear equa9ons: from directed graphs from physical problems from op9miza9on problems

Solving Linear equa9ons as a primi9ve

Page 80: Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, · 2010-08-15 · Algorithms,,Graph,Theory,,and,, Linear,Equa9ons,in,Laplacians, Daniel,A.,Spielman, Yale,University,

Conclusion

It is all connected