ammonia decomposition over ru/laal2o3 catalyst

31
thesis, Characterization, and Catalytic Activity Ru/La-Al 2 O 3 for Ammonia Dehydrogenation Dan Bi Chung Advisor: Prof. Kwan-Young Lee Dr. Chang Won Yoon Fuel cell Research Center, Korea Institute of Science and Technology, Chemical and Biological Engineering, Korea University, 2014.12.02 석석 석석 석석

Upload: hien-mira

Post on 16-Aug-2015

42 views

Category:

Environment


2 download

TRANSCRIPT

  1. 1. Synthesis, Characterization, and Catalytic Activity of Ru/La-Al2O3 for Ammonia Dehydrogenation Dan Bi Chung Advisor: Prof. Kwan-Young Lee Dr. Chang Won Yoon Fuel cell Research Center, Korea Institute of Science and Technology, Chemical and Biological Engineering, Korea University, 2014.12.02
  2. 2. INDEX Introduction Research background Literature precedents Motivation Experimental Catalyst preparation Characterization Results and discussions Catalytic dehydrogenation of ammonia over the Ru(1wt%)/La(x)-Al2O3 Structured catalysts for industrial application Conclusions
  3. 3. 1 Introduction
  4. 4. Exhaust of fossil fuel and global warming Need for sustainable energy source Solar, Wind, Biomass, Hydrogen Picture from movie The earth Picture from World Nature Organization4
  5. 5. Methane Wind Solar Electrolysis Reformer Water Oxygen Hydrogen Storage Hydrogen Fuel cell Hydrogen economy Hydrogen economy 5 Renewables energy
  6. 6. 6 Hydrogen storage
  7. 7. High hydrogen density (17.8wt%) Carbon-free chemical energy Developed technology for synthesis (Haber-Bosch process) Catalytic decomposition Solid ammine complexes Advantages 7 Life cycle of hydrogen stored as ammonia Dehydrogenation It is necessary to develop the catalyst for ammonia dehydrogenation A. Zttel et al., Soc, A 368 (2010) 3329-3342
  8. 8. Literature Precedents: Controlling Factors 8 (1) Influence of Metals: Ru Ru > Rh > Ni > Pd Pt > Fe Rh Ni Pd, Pt S.F. Yin et al., Appl. Catal. A 277 (2004) 1-9 S.F. Yin et al., Appl. Catal. 244 (2004) 384-396
  9. 9. Literature Precedents: Controlling Factors 9 (2) Influence of Supports: Ru CNTs MgO TiO2, AC ZrO2 Al2O3 ZrO2 S.F. Yin et al., Appl. Catal. 244 (2004) 384-396
  10. 10. Literature Precedents: Controlling Factors 10 (3) Influence of Promoters: Ru/CNTs S.F. Yin et al., Appl. Catal. A 277 (2004) 1-9
  11. 11. Motivation 11 Metal : Ru highly activity for ammonia decomposition Support : Al2O3 less-expensive Promoter : La Sustain high metal dispersity using thermally stable supports Ru supported on La doped Al2O3 Al2O3 surface LaAlO3LaAlO3 Ru particles
  12. 12. 2 Experimental Preparation Catalyst Catalyst characterization
  13. 13. 13 Preparation Catalyst Al2O3 La Impregnation La(x)-Al2O3 (x= 0, 1, 5, 10, 30) La(x)-Al2O3 Ru Impregnation Ru(1wt%)/La(x)-Al2O3
  14. 14. Characterization 14 SEM images of La(x)-Al2O3 200nm La(0)-Al2O3 La(1)-Al2O3 La(5)-Al2O3 La(10)-Al2O3 La(30)-Al2O3
  15. 15. Characterization XRD analysis of La(x)-Al2O3 15 20 30 40 50 60 70 80 ArbitaryIntensity(a.u) (deg) La(0)-Al2O3 La(1)-Al2O3 La(5)-Al2O3 La(10)-Al2O3 La(30)-Al2O3 LaAlO3 (012) # (110) # (202) # (024) # (122) # (300) # (220) # (312) # ** * * * * * *=La2O3
  16. 16. Characterization Ru particle size : 1~3 nm STEM images of Ru(1wt%)/La(x)-Al2O3 16 10nm 10nm 10nm 10nm Ru/La(0)-Al2O3 Ru/La(1)-Al2O3 Ru/La(5)-Al2O3 Ru/La(10)-Al2O3 10nm Ru/La(30)-Al2O3
  17. 17. 20 30 40 50 60 70 80 ArbitaryIntensity(a.u) (deg) Ru(1wt%)/La(0)-Al2O3 Ru(1wt%)/La(1)-Al2O3 Ru(1wt%)/La(5)-Al2O3 Ru(1wt%)/La(10)-Al2O3 Ru(1wt%)/La(30)-Al2O3 LaAlO3 (012) # (110) # (202) # (024) # (122) # (300) # (220) # (312) # Ru * Ru * Characterization Ru particle is very small and well distributed on the support XRD analysis of Ru(1wt%)/La(x)-Al2O3 17
  18. 18. 3Results and Discussions Catalytic dehydrogenation of ammonia over the Ru(1wt%)/La(x)/Al2O3 Structured catalysts for industrial application
  19. 19. Ammonia cracker Reaction conditions Catalyst : 100mg Reduction : 10% H2/N2, 2h NH3 concentration :10% Flow rate : 50ml/min, GHSVNH3 : 3,000ml/(h gcat) Temp. : 400 - 800 Experimental 19 2NH3 3H2 + N2 H = 46kJ/mol Catalytic test
  20. 20. Ammonia cracker 2NH3 3H2 + N2 H = 46kJ/mol Catalytic activity 10mol%>5mol%>30mol%>1mol%>0mol% Results & Discussions 20 400 500 600 700 800 0 20 40 60 80 100 Conversion(%) Temp.()
  21. 21. 290 285 280 Intensity(a.u) Binding energy (eV) Ru(1wt%)/La(0)-Al2O3 Ru(1wt%)/La(1)-Al2O3 Ru(1wt%)/La(5)-Al2O3 Ru(1wt%)/La(10)-Al2O3 Ru(1wt%)/La(30)-Al2O3 XPS Ru 3d profiles for Ru(1wt%)/La(x)-Al2O3 21 Results & Discussions RuO2 RuOx
  22. 22. 0 100 200 300 400 500 600 700 ArbitaryIntensity(a.u) Temp. () Ru(1wt%)/La(0)-Al2O3 Ru(1wt%)/La(1)-Al2O3 Ru(1wt%)/La(5)-Al2O3 Ru(1wt%)/La(10)-Al2O3 Ru(1wt%)/La(30)-Al2O3 Reduction ability of Ru(1wt%)/La(x)-Al2O3 22 Results & Discussions RuO2 RuOx
  23. 23. Sample Surface area ( m2 /g ) Pore volume ( cm3 /g ) Pore diameter ( ) La(0)-Al2O3 135.4 0.637 182.4 La(1)-Al2O3 136.9 0.655 159.9 La(5)-Al2O3 143.2 0.555 154.9 La(10)-Al2O3 102.5 0.414 161.6 La(30)-Al2O3 33.1 0.205 248.5 The textural properties of La(x)-Al2O3 23 Results & Discussions 20 30 40 50 60 70 80 ArbitaryIntensity(a.u) (deg) La(0)-Al2O3 La(1)-Al2O3 La(5)-Al2O3 La(10)-Al2O3 La(30)-Al2O3 LaAlO3 (012) # (110) # (202) # (024) # (122) # (300) # (220) # (312) # ** * * * * *
  24. 24. 24 Results & Discussions 100nm Ru/La(0)-Al2O3 Ru/La(1)-Al2O3 Ru/La(5)-Al2O3 Ru/La(10)-Al2O3 Ru/La(30)-Al2O3 100nm50nm Catalytic activity 10mol%>5mol%>30mol%>1mol%>0mol%
  25. 25. 25 Reaction conditions catalyst : 1 g, Reduction : 50% H2/N2, 3h, NH3 concentration :100%, Temp. : 500 - 800 Catalytic test Experimental Ru(1wt%)/La(10)-Al2O3
  26. 26. 500 550 600 650 700 750 800 0 20 40 60 80 100 Conversion(%) Temp. () 500 550 600 650 700 750 800 0 500 1000 1500 2000 NH3 (ppm) Temp. () 26 Results & Discussions Reaction conditions Reduction : 50% 3h, NH3 concentration: 100%, Temp. : 500 - 800 Ammonia cracker 2NH3 3H2 + N2 H = 46kJ/mol 4500 ml/h gcat 6000 ml/h gcat
  27. 27. 27 3000 3500 4000 4500 5000 5500 6000 1000 1200 1400 1600 1800 2000 2200 NH3 (ppm) GHSV (ml/h gcat ) Results & Discussions Ammonia cracker Reaction conditions Reduction : 50% 3h, NH3 concentration: 100%, Temp. : 500 2NH3 3H2 + N2 H = 46kJ/mol 3000 3500 4000 4500 5000 5500 6000 0 20 40 60 80 100 Conversion(%) GHSV (ml/h gcat )
  28. 28. 4Conclusions
  29. 29. Conclusions - Ru(1 wt%)/La(x)-Al2O3 (x=0, 1, 5, 10, and 30 mol%) were prepared for the dehydrogenation from ammonia. - Among the as-prepared catalysts, the Ru/La(10)- Al2O3 material proved to be superior. - The La addition with optimized quantities appears to be critical for enhancing the catalytic activity. - The enhanced activity of the catalyst was proposed to originate from the SMSI between RuOx and La(10)- Al2O3, which further resulted in improved catalyst stability. - The as-applied doping strategy would offer valuable insight into the development of highly efficient, transition-metal-based catalysts for ammonia dehydrogenation. 29
  30. 30. Thank you for your attention
  31. 31. Experiment 31 Preparation catalyst Al2O3 with (La 1, 5, 10, 30 mol% doped Al2O3) Precursor Lanthanum nitrate Solvent Distilled H2O Impregnation -Al2O3 Dry At 100 oC for 12hr Stirring At 80 oC for 3hr Calcination At 900 oC for 5hr Ru (1wt%)/La(x)-Al2O3 (x=0, 1, 5, 10, and 30 mol%) Precursor Ruthenium chloride Solvent Distilled H2O Impregnation La(x)-Al2O3 Dry At 100 oC for 12hr Rotary evaporation At 80 oC for 3hr Calcination At 800 oC for 5hr H2 : N2 = 1:1 Mixing Mixing