商業智慧實務 (practices of business...

Post on 09-Oct-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

商業智慧實務 Practices of Business Intelligence

1

1032BI05 MI4

Wed, 9,10 (16:10-18:00) (B130)

商業智慧的資料探勘 (Data Mining for Business Intelligence)

Min-Yuh Day

戴敏育 Assistant Professor

專任助理教授 Dept. of Information Management, Tamkang University

淡江大學 資訊管理學系

http://mail. tku.edu.tw/myday/

2015-03-25

Tamkang University

週次 (Week) 日期 (Date) 內容 (Subject/Topics)

1 2015/02/25 商業智慧導論 (Introduction to Business Intelligence)

2 2015/03/04 管理決策支援系統與商業智慧 (Management Decision Support System and Business Intelligence)

3 2015/03/11 企業績效管理 (Business Performance Management)

4 2015/03/18 資料倉儲 (Data Warehousing)

5 2015/03/25 商業智慧的資料探勘 (Data Mining for Business Intelligence)

6 2015/04/01 教學行政觀摩日 (Off-campus study)

7 2015/04/08 商業智慧的資料探勘 (Data Mining for Business Intelligence)

8 2015/04/15 資料科學與巨量資料分析 (Data Science and Big Data Analytics)

課程大綱 (Syllabus)

2

週次 日期 內容(Subject/Topics)

9 2015/04/22 期中報告 (Midterm Project Presentation)

10 2015/04/29 期中考試週 (Midterm Exam)

11 2015/05/06 文字探勘與網路探勘 (Text and Web Mining)

12 2015/05/13 意見探勘與情感分析 (Opinion Mining and Sentiment Analysis)

13 2015/05/20 社會網路分析 (Social Network Analysis)

14 2015/05/27 期末報告 (Final Project Presentation)

15 2015/06/03 畢業考試週 (Final Exam)

課程大綱 (Syllabus)

3

Business Intelligence Data Mining, Data Warehouses

Increasing potential

to support

business decisions End User

Business

Analyst

Data

Analyst

DBA

Decision Making

Data Presentation

Visualization Techniques

Data Mining Information Discovery

Data Exploration

Statistical Summary, Querying, and Reporting

Data Preprocessing/Integration, Data Warehouses

Data Sources

Paper, Files, Web documents, Scientific experiments, Database Systems

4 Source: Han & Kamber (2006)

Data Mining at the Intersection of Many Disciplines

Sta

tistic

s

Management Science &

Information Systems

Artificia

l Inte

lligence

Databases

Pattern

Recognition

Machine

Learning

Mathematical

Modeling

DATA

MINING

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 5

A Taxonomy for Data Mining Tasks Data Mining

Prediction

Classification

Regression

Clustering

Association

Link analysis

Sequence analysis

Learning Method Popular Algorithms

Supervised

Supervised

Supervised

Unsupervised

Unsupervised

Unsupervised

Unsupervised

Decision trees, ANN/MLP, SVM, Rough

sets, Genetic Algorithms

Linear/Nonlinear Regression, Regression

trees, ANN/MLP, SVM

Expectation Maximization, Apriory

Algorithm, Graph-based Matching

Apriory Algorithm, FP-Growth technique

K-means, ANN/SOM

Outlier analysis Unsupervised K-means, Expectation Maximization (EM)

Apriory, OneR, ZeroR, Eclat

Classification and Regression Trees,

ANN, SVM, Genetic Algorithms

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 6

Data Mining Software

• Commercial – SPSS - PASW (formerly

Clementine)

– SAS - Enterprise Miner

– IBM - Intelligent Miner

– StatSoft – Statistical Data Miner

– … many more

• Free and/or Open Source – Weka

– RapidMiner…

0 20 40 60 80 100 120

Thinkanalytics

Miner3D

Clario Analytics

Viscovery

Megaputer

Insightful Miner/S-Plus (now TIBCO)

Bayesia

C4.5, C5.0, See5

Angoss

Orange

Salford CART, Mars, other

Statsoft Statistica

Oracle DM

Zementis

Other free tools

Microsoft SQL Server

KNIME

Other commercial tools

MATLAB

KXEN

Weka (now Pentaho)

Your own code

R

Microsoft Excel

SAS / SAS Enterprise Miner

RapidMiner

SPSS PASW Modeler (formerly Clementine)

Total (w/ others) Alone

Source: KDNuggets.com, May 2009

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

Data Mining Process

• A manifestation of best practices

• A systematic way to conduct DM projects

• Different groups has different versions

• Most common standard processes:

– CRISP-DM (Cross-Industry Standard Process for Data Mining)

– SEMMA (Sample, Explore, Modify, Model, and Assess)

– KDD (Knowledge Discovery in Databases)

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 8

Data Mining Process: CRISP-DM

Data Sources

Business

Understanding

Data

Preparation

Model

Building

Testing and

Evaluation

Deployment

Data

Understanding

6

1 2

3

5

4

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 9

Data Mining Process: CRISP-DM

Step 1: Business Understanding

Step 2: Data Understanding

Step 3: Data Preparation (!)

Step 4: Model Building

Step 5: Testing and Evaluation

Step 6: Deployment

• The process is highly repetitive and experimental (DM: art versus science?)

Accounts for

~85% of total

project time

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 10

Data Preparation – A Critical DM Task

Data Consolidation

Data Cleaning

Data Transformation

Data Reduction

Well-formed

Data

Real-world

Data

· Collect data

· Select data

· Integrate data

· Impute missing values

· Reduce noise in data

· Eliminate inconsistencies

· Normalize data

· Discretize/aggregate data

· Construct new attributes

· Reduce number of variables

· Reduce number of cases

· Balance skewed data

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 11

Data Mining Process: SEMMA

Sample

(Generate a representative

sample of the data)

Modify(Select variables, transform

variable representations)

Explore(Visualization and basic

description of the data)

Model(Use variety of statistical and

machine learning models )

Assess(Evaluate the accuracy and

usefulness of the models)

SEMMA

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 12

Evaluation

(Accuracy of Classification Model)

13

Estimation Methodologies for Classification

• Simple split (or holdout or test sample estimation)

– Split the data into 2 mutually exclusive sets training (~70%) and testing (30%)

– For ANN, the data is split into three sub-sets (training [~60%], validation [~20%], testing [~20%])

Preprocessed

Data

Training Data

Testing Data

Model

Development

Model

Assessment

(scoring)

2/3

1/3

Classifier

Prediction

Accuracy

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 14

Estimation Methodologies for Classification

• k-Fold Cross Validation (rotation estimation)

– Split the data into k mutually exclusive subsets

– Use each subset as testing while using the rest of the subsets as training

– Repeat the experimentation for k times

– Aggregate the test results for true estimation of prediction accuracy training

• Other estimation methodologies

– Leave-one-out, bootstrapping, jackknifing

– Area under the ROC curve

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 15

Assessment Methods for Classification

• Predictive accuracy

– Hit rate

• Speed

– Model building; predicting

• Robustness

• Scalability

• Interpretability

– Transparency, explainability

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 16

Accuracy

Precision

17

Validity

Reliability

18

Accuracy vs. Precision

19

High Accuracy

High Precision

High Accuracy

Low Precision

Low Accuracy

High Precision

Low Accuracy

Low Precision

A B

C D

Accuracy vs. Precision

20

High Accuracy

High Precision

High Accuracy

Low Precision

Low Accuracy

High Precision

Low Accuracy

Low Precision

A B

C D

High Validity

High Reliability

High Validity

Low Reliability Low Validity

Low Reliability

Low Validity

High Reliability

Accuracy vs. Precision

21

High Accuracy

High Precision

High Accuracy

Low Precision

Low Accuracy

High Precision

Low Accuracy

Low Precision

A B

C D

High Validity

High Reliability

High Validity

Low Reliability Low Validity

Low Reliability

Low Validity

High Reliability

Accuracy of Classification Models • In classification problems, the primary source for

accuracy estimation is the confusion matrix

True

Positive

Count (TP)

False

Positive

Count (FP)

True

Negative

Count (TN)

False

Negative

Count (FN)

True Class

Positive Negative

Po

sitiv

eN

eg

ative

Pre

dic

ted

Cla

ss FNTP

TPRatePositiveTrue

FPTN

TNRateNegativeTrue

FNFPTNTP

TNTPAccuracy

FPTP

TPrecision

P

FNTP

TPcallRe

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 22

Estimation Methodologies for Classification – ROC Curve

10.90.80.70.60.50.40.30.20.10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

0.9

0.8

False Positive Rate (1 - Specificity)

Tru

e P

osi

tive

Ra

te (

Se

nsi

tivity

) A

B

C

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 23

Sensitivity

Specificity

24

=True Positive Rate

=True Negative Rate

True Positive

(TP)

False Negative

(FN)

False Positive

(FP)

True Negative

(TN)

True Class

(actual value)

Pre

dic

tive C

lass

(pre

dic

tio

n o

utc

om

e)

Positiv

e

Nega

tive

Positive Negative

total P

total

N

N’

P’

25

FNTP

TPRatePositiveTrue

FPTN

TNRateNegativeTrue

FNFPTNTP

TNTPAccuracy

FPTP

TPrecision

P

FNTP

TPcallRe

FNTP

TPRatePositiveTrue

ty)(Sensitivi

10.90.80.70.60.50.40.30.20.10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

0.9

0.8

False Positive Rate (1 - Specificity)

Tru

e P

osi

tive

Ra

te (

Se

nsi

tivity

) A

B

C

TNFP

FPRatePositiveF

alse

FPTN

TNRateNegativeTrue

ty)(Specifici

TNFP

FPRatePositiveF

y)Specificit-(1 alse

Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

True Positive

(TP)

False Negative

(FN)

False Positive

(FP)

True Negative

(TN)

True Class

(actual value)

Pre

dic

tive C

lass

(pre

dic

tio

n o

utc

om

e)

Positiv

e

Nega

tive

Positive Negative

total P

total

N

N’

P’

26

FNTP

TPRatePositiveTrue

FNTP

TPcallRe

FNTP

TPRatePositiveTrue

ty)(Sensitivi

10.90.80.70.60.50.40.30.20.10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

0.9

0.8

False Positive Rate (1 - Specificity)

Tru

e P

osi

tive

Ra

te (

Se

nsi

tivity

) A

B

C

Sensitivity

= True Positive Rate

= Recall

= Hit rate

= TP / (TP + FN) Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

True Positive

(TP)

False Negative

(FN)

False Positive

(FP)

True Negative

(TN)

True Class

(actual value)

Pre

dic

tive C

lass

(pre

dic

tio

n o

utc

om

e)

Positiv

e

Nega

tive

Positive Negative

total P

total

N

N’

P’

27

FPTN

TNRateNegativeTrue

10.90.80.70.60.50.40.30.20.10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

0.9

0.8

False Positive Rate (1 - Specificity)

Tru

e P

osi

tive

Ra

te (

Se

nsi

tivity

) A

B

C

FPTN

TNRateNegativeTrue

ty)(Specifici

TNFP

FPRatePositiveF

y)Specificit-(1 alse

Specificity

= True Negative Rate

= TN / N

= TN / (TN+ FP)

Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

True Positive

(TP)

False Negative

(FN)

False Positive

(FP)

True Negative

(TN)

True Class

(actual value)

Pre

dic

tive C

lass

(pre

dic

tio

n o

utc

om

e)

Positiv

e

Nega

tive

Positive Negative

total P

total

N

N’

P’

28

FPTP

TPrecision

P

FNTP

TPcallRe

F1 score (F-score)(F-measure)

is the harmonic mean of

precision and recall

= 2TP / (P + P’)

= 2TP / (2TP + FP + FN)

Precision

= Positive Predictive Value (PPV)

Recall

= True Positive Rate (TPR)

= Sensitivity

= Hit Rate

recallprecision

recallprecisionF

**2

Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

29 Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

A

63 (TP)

37 (FN)

28 (FP)

72 (TN)

100 100

109

91

200

TPR = 0.63

FPR = 0.28

PPV = 0.69 =63/(63+28)

=63/91

F1 = 0.66

= 2*(0.63*0.69)/(0.63+0.69)

= (2 * 63) /(100 + 91)

= (0.63 + 0.69) / 2 =1.32 / 2 =0.66

ACC = 0.68 = (63 + 72) / 200

= 135/200 = 0.675

FPTP

TPrecision

P

FNTP

TPcallRe

F1 score (F-score)

(F-measure)

is the harmonic mean of

precision and recall

= 2TP / (P + P’)

= 2TP / (2TP + FP + FN)

Precision

= Positive Predictive Value (PPV)

Recall

= True Positive Rate (TPR)

= Sensitivity

= Hit Rate

= TP / (TP + FN)

recallprecision

recallprecisionF

**2

FNFPTNTP

TNTPAccuracy

FPTN

TNRateNegativeTrue

ty)(Specifici

TNFP

FPRatePositiveF

y)Specificit-(1 alse

Specificity

= True Negative Rate

= TN / N

= TN / (TN + FP)

30 Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

A

63 (TP)

37 (FN)

28 (FP)

72 (TN)

100 100

109

91

200

TPR = 0.63

FPR = 0.28

PPV = 0.69 =63/(63+28)

=63/91

F1 = 0.66

= 2*(0.63*0.69)/(0.63+0.69)

= (2 * 63) /(100 + 91)

= (0.63 + 0.69) / 2 =1.32 / 2 =0.66

ACC = 0.68 = (63 + 72) / 200

= 135/200 = 0.675

B

77 (TP)

23 (FN)

77 (FP)

23 (TN)

100 100

46

154

200

TPR = 0.77

FPR = 0.77

PPV = 0.50

F1 = 0.61

ACC = 0.50

FNTP

TPcallRe

Recall

= True Positive Rate (TPR)

= Sensitivity

= Hit Rate

Precision

= Positive Predictive Value (PPV) FPTP

TPrecision

P

31

C’

76 (TP)

24 (FN)

12 (FP)

88 (TN)

100 100

112

88

200

TPR = 0.76

FPR = 0.12

PPV = 0.86

F1 = 0.81

ACC = 0.82

C

24 (TP)

76 (FN)

88 (FP)

12 (TN)

100 100

88

112

200

TPR = 0.24

FPR = 0.88

PPV = 0.21

F1 = 0.22

ACC = 0.18

Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

FNTP

TPcallRe

Recall

= True Positive Rate (TPR)

= Sensitivity

= Hit Rate

Precision

= Positive Predictive Value (PPV) FPTP

TPrecision

P

Cluster Analysis

• Used for automatic identification of natural groupings of things

• Part of the machine-learning family

• Employ unsupervised learning

• Learns the clusters of things from past data, then assigns new instances

• There is not an output variable

• Also known as segmentation

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 32

Cluster Analysis

33

Clustering of a set of objects based on the k-means method.

(The mean of each cluster is marked by a “+”.)

Source: Han & Kamber (2006)

Cluster Analysis

• Clustering results may be used to

– Identify natural groupings of customers

– Identify rules for assigning new cases to classes for targeting/diagnostic purposes

– Provide characterization, definition, labeling of populations

– Decrease the size and complexity of problems for other data mining methods

– Identify outliers in a specific domain (e.g., rare-event detection)

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 34

35

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Point P P(x,y)

p01 a (3, 4)

p02 b (3, 6)

p03 c (3, 8)

p04 d (4, 5)

p05 e (4, 7)

p06 f (5, 1)

p07 g (5, 5)

p08 h (7, 3)

p09 i (7, 5)

p10 j (8, 5)

Example of Cluster Analysis

Cluster Analysis for Data Mining

• How many clusters?

– There is not a “truly optimal” way to calculate it

– Heuristics are often used 1. Look at the sparseness of clusters

2. Number of clusters = (n/2)1/2 (n: no of data points)

3. Use Akaike information criterion (AIC)

4. Use Bayesian information criterion (BIC)

• Most cluster analysis methods involve the use of a distance measure to calculate the closeness between pairs of items

– Euclidian versus Manhattan (rectilinear) distance

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 36

k-Means Clustering Algorithm

• k : pre-determined number of clusters

• Algorithm (Step 0: determine value of k)

Step 1: Randomly generate k random points as initial cluster centers

Step 2: Assign each point to the nearest cluster center

Step 3: Re-compute the new cluster centers

Repetition step: Repeat steps 2 and 3 until some convergence criterion is met (usually that the assignment of points to clusters becomes stable)

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 37

Cluster Analysis for Data Mining - k-Means Clustering Algorithm

Step 1 Step 2 Step 3

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 38

Similarity and Dissimilarity Between Objects

• Distances are normally used to measure the similarity or

dissimilarity between two data objects

• Some popular ones include: Minkowski distance:

where i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-

dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

qq

pp

qq

jx

ix

jx

ix

jx

ixjid )||...|||(|),(

2211

||...||||),(2211 pp j

xi

xj

xi

xj

xi

xjid

39 Source: Han & Kamber (2006)

Similarity and Dissimilarity Between Objects (Cont.)

• If q = 2, d is Euclidean distance:

– Properties

• d(i,j) 0

• d(i,i) = 0

• d(i,j) = d(j,i)

• d(i,j) d(i,k) + d(k,j)

• Also, one can use weighted distance, parametric Pearson

product moment correlation, or other disimilarity measures

)||...|||(|),(22

22

2

11 pp jx

ix

jx

ix

jx

ixjid

40 Source: Han & Kamber (2006)

Euclidean distance vs Manhattan distance

• Distance of two point x1 = (1, 2) and x2 (3, 5)

41

1 2 3

1

2

3

4

5 x2 (3, 5)

2 x1 = (1, 2)

3 3.61

Euclidean distance:

= ((3-1)2 + (5-2)2 )1/2

= (22 + 32)1/2

= (4 + 9)1/2

= (13)1/2

= 3.61

Manhattan distance:

= (3-1) + (5-2)

= 2 + 3

= 5

The K-Means Clustering Method

• Example

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

K=2

Arbitrarily choose K

object as initial

cluster center

Assign

each

objects

to most

similar

center

Update

the

cluster

means

Update

the

cluster

means

reassign reassign

42 Source: Han & Kamber (2006)

43

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Point P P(x,y)

p01 a (3, 4)

p02 b (3, 6)

p03 c (3, 8)

p04 d (4, 5)

p05 e (4, 7)

p06 f (5, 1)

p07 g (5, 5)

p08 h (7, 3)

p09 i (7, 5)

p10 j (8, 5)

K-Means Clustering Step by Step

44

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Point P P(x,y)

p01 a (3, 4)

p02 b (3, 6)

p03 c (3, 8)

p04 d (4, 5)

p05 e (4, 7)

p06 f (5, 1)

p07 g (5, 5)

p08 h (7, 3)

p09 i (7, 5)

p10 j (8, 5)

Initial m1 (3, 4)

Initial m2 (8, 5)

m1 = (3, 4)

M2 = (8, 5)

K-Means Clustering Step 1: K=2, Arbitrarily choose K object as initial cluster center

45

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

M2 = (8, 5)

Step 2: Compute seed points as the centroids of the clusters of the current partition

Step 3: Assign each objects to most similar center

m1 = (3, 4)

K-Means Clustering

Point P P(x,y) m1

distance

m2

distance Cluster

p01 a (3, 4) 0.00 5.10 Cluster1

p02 b (3, 6) 2.00 5.10 Cluster1

p03 c (3, 8) 4.00 5.83 Cluster1

p04 d (4, 5) 1.41 4.00 Cluster1

p05 e (4, 7) 3.16 4.47 Cluster1

p06 f (5, 1) 3.61 5.00 Cluster1

p07 g (5, 5) 2.24 3.00 Cluster1

p08 h (7, 3) 4.12 2.24 Cluster2

p09 i (7, 5) 4.12 1.00 Cluster2

p10 j (8, 5) 5.10 0.00 Cluster2

Initial m1 (3, 4)

Initial m2 (8, 5)

46

Point P P(x,y) m1

distance

m2

distance Cluster

p01 a (3, 4) 0.00 5.10 Cluster1

p02 b (3, 6) 2.00 5.10 Cluster1

p03 c (3, 8) 4.00 5.83 Cluster1

p04 d (4, 5) 1.41 4.00 Cluster1

p05 e (4, 7) 3.16 4.47 Cluster1

p06 f (5, 1) 3.61 5.00 Cluster1

p07 g (5, 5) 2.24 3.00 Cluster1

p08 h (7, 3) 4.12 2.24 Cluster2

p09 i (7, 5) 4.12 1.00 Cluster2

p10 j (8, 5) 5.10 0.00 Cluster2

Initial m1 (3, 4)

Initial m2 (8, 5)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

M2 = (8, 5)

Step 2: Compute seed points as the centroids of the clusters of the current partition

Step 3: Assign each objects to most similar center

m1 = (3, 4)

K-Means Clustering

Euclidean distance

b(3,6) m2(8,5)

= ((8-3)2 + (5-6)2 )1/2

= (52 + (-1)2)1/2

= (25 + 1)1/2

= (26)1/2

= 5.10

Euclidean distance

b(3,6) m1(3,4)

= ((3-3)2 + (4-6)2 )1/2

= (02 + (-2)2)1/2

= (0 + 4)1/2

= (4)1/2

= 2.00

47

Point P P(x,y) m1

distance

m2

distance Cluster

p01 a (3, 4) 1.43 4.34 Cluster1

p02 b (3, 6) 1.22 4.64 Cluster1

p03 c (3, 8) 2.99 5.68 Cluster1

p04 d (4, 5) 0.20 3.40 Cluster1

p05 e (4, 7) 1.87 4.27 Cluster1

p06 f (5, 1) 4.29 4.06 Cluster2

p07 g (5, 5) 1.15 2.42 Cluster1

p08 h (7, 3) 3.80 1.37 Cluster2

p09 i (7, 5) 3.14 0.75 Cluster2

p10 j (8, 5) 4.14 0.95 Cluster2

m1 (3.86, 5.14)

m2 (7.33, 4.33)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

m1 = (3.86, 5.14)

M2 = (7.33, 4.33)

Step 4: Update the cluster means,

Repeat Step 2, 3,

stop when no more new assignment

K-Means Clustering

48

Point P P(x,y) m1

distance

m2

distance Cluster

p01 a (3, 4) 1.95 3.78 Cluster1

p02 b (3, 6) 0.69 4.51 Cluster1

p03 c (3, 8) 2.27 5.86 Cluster1

p04 d (4, 5) 0.89 3.13 Cluster1

p05 e (4, 7) 1.22 4.45 Cluster1

p06 f (5, 1) 5.01 3.05 Cluster2

p07 g (5, 5) 1.57 2.30 Cluster1

p08 h (7, 3) 4.37 0.56 Cluster2

p09 i (7, 5) 3.43 1.52 Cluster2

p10 j (8, 5) 4.41 1.95 Cluster2

m1 (3.67, 5.83)

m2 (6.75, 3.50)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

M2 = (6.75., 3.50)

m1 = (3.67, 5.83)

Step 4: Update the cluster means,

Repeat Step 2, 3,

stop when no more new assignment

K-Means Clustering

49

Point P P(x,y) m1

distance

m2

distance Cluster

p01 a (3, 4) 1.95 3.78 Cluster1

p02 b (3, 6) 0.69 4.51 Cluster1

p03 c (3, 8) 2.27 5.86 Cluster1

p04 d (4, 5) 0.89 3.13 Cluster1

p05 e (4, 7) 1.22 4.45 Cluster1

p06 f (5, 1) 5.01 3.05 Cluster2

p07 g (5, 5) 1.57 2.30 Cluster1

p08 h (7, 3) 4.37 0.56 Cluster2

p09 i (7, 5) 3.43 1.52 Cluster2

p10 j (8, 5) 4.41 1.95 Cluster2

m1 (3.67, 5.83)

m2 (6.75, 3.50)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

stop when no more new assignment

K-Means Clustering

K-Means Clustering (K=2, two clusters)

50

Point P P(x,y) m1

distance

m2

distance Cluster

p01 a (3, 4) 1.95 3.78 Cluster1

p02 b (3, 6) 0.69 4.51 Cluster1

p03 c (3, 8) 2.27 5.86 Cluster1

p04 d (4, 5) 0.89 3.13 Cluster1

p05 e (4, 7) 1.22 4.45 Cluster1

p06 f (5, 1) 5.01 3.05 Cluster2

p07 g (5, 5) 1.57 2.30 Cluster1

p08 h (7, 3) 4.37 0.56 Cluster2

p09 i (7, 5) 3.43 1.52 Cluster2

p10 j (8, 5) 4.41 1.95 Cluster2

m1 (3.67, 5.83)

m2 (6.75, 3.50)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

stop when no more new assignment

K-Means Clustering

個案分析與實作一 (SAS EM 分群分析): Case Study 1 (Cluster Analysis – K-Means using SAS EM)

Banking Segmentation

51

行銷客戶分群

52

53

案例情境 • ABC銀行的行銷部門想要針對該銀行客戶的使用行為,進行分群分析,以了解現行客戶對本行的往來方式,並進一步提供適宜的行銷接觸模式。

• 該銀行從有效戶(近三個月有交易者), 取出10萬筆樣本資料。 依下列四種交易管道計算交易次數:

–傳統臨櫃交易(TBM)

–自動櫃員機交易(ATM)

–銀行專員服務(POS)

–電話客服(CSC) Source: SAS Enterprise Miner Course Notes, 2014, SAS

54

資料欄位說明 • 資料集名稱: profile.sas7bdat

Source: SAS Enterprise Miner Course Notes, 2014, SAS

55

• 分析目的

依據各往來交易管道TBM、ATM、POS、CSC進行客戶分群分析。

演練重點:

• 極端值資料處理 • 分群變數選擇 • 衍生變數產出 • 分群參數調整與分群結果解釋

行銷客戶分群實機演練

Source: SAS Enterprise Miner Course Notes, 2014, SAS

SAS Enterprise Miner (SAS EM) Case Study

• SAS EM 資料匯入4步驟

– Step 1. 新增專案 (New Project)

– Step 2. 新增資料館 (New / Library)

– Step 3. 建立資料來源 (Create Data Source)

– Step 4. 建立流程圖 (Create Diagram)

• SAS EM SEMMA 建模流程

56

57

Download EM_Data.zip (SAS EM Datasets)

http://mail.tku.edu.tw/myday/teaching/1022/DM/Data/EM_Data.zip

Upzip EM_Data.zip to C:\DATA\EM_Data

58

Upzip EM_Data.zip to C:\DATA\EM_Data

59

VMware Horizon View Client softcloud.tku.edu.tw SAS Enterprise Miner

60

SAS Locale Setup Manager English UI

61

SAS Enterprise Guide 5.1 (SAS EG)

62

SAS Enterprise Miner 12.1 (SAS EM)

63

SAS Locale Setup Manager 3.1

64

65 Source: http://www.sasresource.com/faq11.html

66

C:\Program Files\SASHome\SASEnterpriseMinerWorkstationConfiguration\12.1\em.exe

67

68

69

SAS Enterprise Miner 12.1 (SAS EM)

70

SAS Enterprise Miner (SAS EM)

71

SAS Enterprise Miner (SAS EM) English UI

SAS Enterprise Guide 5.1 (SAS EG)

Open SAS .sas7bdat File Export to Excel .xlsx File

Import Excel .xlsx File Export to SAS .sas7bdat File

72

SAS Enterprise Guide 5.1 (SAS EG)

73

New Project

74

Open SAS Data File: Profile.sas7bdat

75

76

77

78

79

80

81

82

83

84

85

86

Export SAS .sas7bdat to to Excel .xlsx File

Import Excel File to SAS EG

87

88

Import Excel File to SAS EG

89

90

91

92

93

94

95

Export Excel .xlsx File to SAS .sas7bdat File

96

97

98

99

Profile_Excel.xlsx

100

Profile_SAS.sas7bdat

101

SAS Enterprise Miner 12.1 (SAS EM)

102

SAS EM 資料匯入4步驟

• Step 1. 新增專案 (New Project)

• Step 2. 新增資料館 (New / Library)

• Step 3. 建立資料來源 (Create Data Source)

• Step 4. 建立流程圖 (Create Diagram)

103

Step 1. 新增專案 (New Project)

104

105

Step 1. 新增專案 (New Project)

106

Step 1. 新增專案 (New Project)

SAS Enterprise Miner (EM_Project1)

107

Step 2. 新增資料館 (New / Library)

108

109

Step 2. 新增資料館 (New / Library)

110

Step 2. 新增資料館 (New / Library)

111

Step 2. 新增資料館 (New / Library)

112

Step 2. 新增資料館 (New / Library)

Step 3. 建立資料來源 (Create Data Source)

113

114

Step 3. 建立資料來源 (Create Data Source)

115

Step 3. 建立資料來源 (Create Data Source)

116

Step 3. 建立資料來源 (Create Data Source)

117

Step 3. 建立資料來源 (Create Data Source)

118

EM_LIB.PROFILE

Step 3. 建立資料來源 (Create Data Source)

119

Step 3. 建立資料來源 (Create Data Source)

120

Step 3. 建立資料來源 (Create Data Source)

121

Step 3. 建立資料來源 (Create Data Source)

122

Step 3. 建立資料來源 (Create Data Source)

123

Step 3. 建立資料來源 (Create Data Source)

124

Step 3. 建立資料來源 (Create Data Source)

125

Step 3. 建立資料來源 (Create Data Source)

126

Step 3. 建立資料來源 (Create Data Source)

127

Step 3. 建立資料來源 (Create Data Source)

128

Step 4. 建立流程圖 (Create Diagram)

129

Step 4. 建立流程圖 (Create Diagram)

130

Step 4. 建立流程圖 (Create Diagram)

SAS Enterprise Miner (SAS EM) Case Study

• SAS EM 資料匯入4步驟

– Step 1. 新增專案 (New Project)

– Step 2. 新增資料館 (New / Library)

– Step 3. 建立資料來源 (Create Data Source)

– Step 4. 建立流程圖 (Create Diagram)

• SAS EM SEMMA 建模流程

131

132

案例情境模型流程

133

EM_Lib.Profile

134

135

136

137

138

139

篩選-間隔變數 …

140

141

141

篩選-匯入的資料 … [勘查]

142

143

篩選-匯入的資料

144

篩選-匯出的資料 … [勘查]

145

篩選-匯出的資料

勘查 (Explore)-群集 (Cluster)

146

147

148

149

150

群集 (Cluster) 結果

151

評估 (Assess)-區段特徵描繪(Segment Profile)

152

區段特徵描繪 (Segment Profile)

153

評估 (Assess)-區段特徵描繪(Segment Profile)

154

評估 (Assess)-區段特徵描繪(Segment Profile)

155

評估 (Assess)-區段特徵描繪(Segment Profile)

156

評估 (Assess)-區段特徵描繪(Segment Profile)

區段特徵描繪 (Segment Profile)

157

158

區段特徵描繪 (Segment Profile)

References • Efraim Turban, Ramesh Sharda, Dursun Delen,

Decision Support and Business Intelligence Systems, Ninth Edition, 2011, Pearson.

• Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, Second Edition, 2006, Elsevier

• Jim Georges, Jeff Thompson and Chip Wells, Applied Analytics Using SAS Enterprise Miner, SAS, 2010

• SAS Enterprise Miner Course Notes, 2014, SAS

• SAS Enterprise Miner Training Course, 2014, SAS

• SAS Enterprise Guide Training Course, 2014, SAS

159

top related