1 analysis for adaptive doa estimation with robust beamforming in smart antenna system...

Post on 02-Jan-2016

244 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Analysis for Adaptive DOA Estimation with Robust Analysis for Adaptive DOA Estimation with Robust Beamforming in Smart Antenna SystemBeamforming in Smart Antenna System

指導教授:黃文傑 W.J. Huang研究生 :蔡漢成 H.C. Tsai

2

OutlineOutline

• Conception of Smart Antenna• Beamforming Method• DOA Estimation• θ- LMS Algorithm (My Point)• Local Minimum problems• θ- LMS Algorithm with Robust Beamforming• Conclusion

3

Conception of Smart AntennaConception of Smart Antenna

• There are constructed by some specially geometric antenna array.

• It changes the beam-pattern with some different methods.

• It increases the CINR and Capacity

4

Category -1Category -1

• Switched Beam System

5

Category -2Category -2

• Adaptive Beam System

6

OutlineOutline

• Conception of Smart Antenna• Beamforming Method• DOA Estimation• θ- LMS Algorithm• Local Minimum problems• θ- LMS Algorithm with Robust Beamforming• Conclusion

7

Beamforming MethodBeamforming Method

Summation

Beamforming Weighting

DO

A E

stim

atio

n

*

1

( ) ( ) ( )L

Hl l

l

y t w x t t

w x

8

Beamforming Tech.Beamforming Tech.

Array Response y(t)*

1

( ) ( ) ( )L

Hl l

l

y t w x t t

w x

Output power P(w) 2

1

1

1( ) ( )

1( ) ( )

N

l

NH

l

H

P y tN

t tN

w

w x x w

w R w

1. Conventional Beam-former

2. Capon’s Beam-former

9

Conv. Conv. BeamformingBeamforming & Steering Vector & Steering Vector

( ) ( ) ( ) ( )

( ) ( )

n s n n

n n

u a n

x n

TkdLjjkd ee ]1[)( cos)1(cos a

22

c

fk

d d

θ(M-1)d

X

Y

)()(

)(

aa

aw

H

BF

)()(

)()()(

aa

aRaH

H

BFP

10

ULA

d = 0.5 λ

M = 4 、 8 、 12

11

MVDR Beamforming(Capon’s)MVDR Beamforming(Capon’s)

1)( awH

)()(

)(1

1

aRa

aRw

H

CAP

)()(

1)( 1

aRa

H

CAPP

2 22 2

min{ ( )}

min ( ) ( )H

P

E s t w

w

w a w

12

OutlineOutline

• Conception of Smart Antenna• Beamforming Method• DOA Estimation• θ- LMS Algorithm• Local Minimum problems• θ- LMS Algorithm with Robust Beamforming• Conclusion

13

DOA EstimationDOA Estimation

• Conventional • Capon’s• Subspace

– MUSIC

14

Conventional DOA EstimationConventional DOA Estimation

w(0~180)Conventional

u(n)Receiving signal

Pattern(0~180)

DOAEst.

w(n)

BeamformingWeighting

15

Capon’s DOA EstimationCapon’s DOA Estimation

w(0~180)Capon’s

u(n)Receiving signal

Pattern(0~180)

DOAEst.

w(n)

BeamformingWeighting

16

MUSICMUSIC((MUMUltiple ltiple SISIgnal gnal CClassificationlassification ) )

PMUSIC Pattern

u(n)Receiving signal

Eigen decompositionNoise Space

Vn

1( )

( ) ( )MUSIC H H Hn n

P

a V V a

a(0~180)

DOAEst.

w(n)Weighting Vector

17

Compare the three methodsCompare the three methods

ULA

M = 4

d = 0.5λ

User’s DOA =

90°、 120 °

SNR=10dB

18

OutlineOutline

• Conception of Smart Antenna• Beamforming Method• DOA Estimation• θ- LMS Algorithm (My point)• Local Minimum problems• θ- LMS Algorithm with Robust Beamforming• Conclusion

19

LMS (Least Mean Square ) LMS (Least Mean Square )

1

0

( ) ( ) ( ) ( ) ( )M

Hi i

i

y n n n w n u n

w u

( 1) ( ) { ( )}n n w w J w

( ) ( ) ( ) ( )He n d n n n w u

20

ww – LMS Algorithm – LMS Algorithm

d(n)

w - LMS

u(n)

w(n)

w(n+1)

y(n)

e(n)+

21

θθ- LMS Algorithm- LMS Algorithm

+

d(n)

ө- LMS

u(n)

w(n)

w(n+1) y(n)

e(n)

ө(n+1)ө(n)

4 x1

22

θθ- LMS Algorithm - LMS Algorithm

u(n) w(n) wH(n) u(n)-d(n)

Cost functionJ(θ)

find DOA θ0 Beamforming

Weighting by DOA θ0

w(n)Weighting

23

Weighting is Instead of Weighting is Instead of θθ

( 1) ( ) { ( )}n n w w J w

2

( 1) ( ) { ( )}

( )( )

n n

e nn

J

24

2

* cos ( 1) cos0

( , )( )

12 sin 0 1 ( 1) ( , )ikd i M kd

e nn

e ikd e M e nM

u

( 1) ( ) ( )n n n

• Adaptive θ(n) is defined

DefinitionDefinition

=

25

ULA

M = 4

d = 0.5λ

DOA= 120 °

Initial DOA = 90 °

Step size = 0.01

SNR =20

26

ULA

M = 4

d = 0.5λ

DOA= 0 ° ~180 °

Initial DOA = 90 °

Step size = 0.01

SNR =20

DOA=90*sin(0:0.01:80*pi) + 90;

27

Steering Vector TrackingSteering Vector Tracking

ULA

M = 4

d = 0.5λ

DOA= 0 ° ~180 °

Initial DOA = 90 °

Step size = 0.01

“*” steering vector

“o” tracking vector

DOA=90*sin(0:0.05:80*pi) + 90;

28

Beampattern TrackingBeampattern Tracking

ULA

M = 4

d = 0.5λ

DOA= 0 ° ~360 °

Initial DOA = 90 °

Step size = 0.01

“o” DOA

DOA=180*sin(0:0.05:80*pi) + 180;

29

OutlineOutline

• Conception of Smart Antenna• Beamforming Method• DOA Estimation• θ- LMS Algorithm• Local Minimum problems• θ- LMS Algorithm with Robust Beamforming• Conclusion

30

Converse to Error DirectionConverse to Error Direction

ULA

M = 4

d = 0.5λ

DOA= 90 °

Initial DOA = 120 °

Step size = 0.01

31

Error patternError pattern

d(n )

x(n)4 x1

d(n )

x(n)

w(0~180)

e(0~180)4 x1 +

32

Cost functionCost functionULA

M = 4

d = 0.5λ

DOA= 90 °

33

ULA

M = 4

d = 0.5λ

DOA= 0 ° ~180 °

DOA=90 °

Error Surface (DOA )Error Surface (DOA )

34

Error Surface (d )Error Surface (d )ULA

M = 4

d = 0 ~1λ

DOA= 90 °

d=0.5 λ

35

Error Surface (M )Error Surface (M )ULA

M = 2 ~8

d = 0.5λ

DOA= 90 °

M=4

36

2 Ants2 Antsθθ- LMS Algorithm- LMS Algorithm

d(n)

ө- LMS

u(n)

w(n)

w(n+1) y(n)

e(n)

ө(n+1)ө(n)

2 x1 +

37

Error Surface Error Surface (M=2 d=0.5 )(M=2 d=0.5 )

ULA

M = 2

d = 0.5λ

DOA= 90 °

38

Error Surface Error Surface (M=2 d=0.25 )(M=2 d=0.25 )

ULA

M = 2

d = 0.25λ

DOA= 90 °

39

Simulation (1)Simulation (1)

ULA

M = 2

d = 0.25λ

DOA= 5 °

Initial DOA = 175 °

SNR = 30 dB

40

ULA

M = 2

d = 0.25λ

DOA= 170 °

Initial DOA = 5 °

SNR = 30dB

Simulation (2)Simulation (2)

41

2 – 4 “2 – 4 “θθ-LMS” -LMS”

2 antennas “θ-LMS”

4 antennas “θ-LMS”

Initial θ

42

OutlineOutline

• Conception of Smart Antenna• Beamforming Method• DOA Estimation• θ- LMS Algorithm• Local Minimum problems• θ- LMS Algorithm with Robust Beamforming• Conclusion

43

Noise problemNoise problem

• θ- LMS Algorithm needs high SNR level.

• High noise level brings the DOA estimation result worse.

• The DOA estimation error will cause the terrible performance

• We use the Robust Beamforming Method to conquer the estimation error problem.

44

The flow chart of Robust BeamformingThe flow chart of Robust Beamforming

SOI DOATracker

Sample correlation matrix

Parametric desired correlation matrix

From average correction matrices

{y(k)}

DOA spreading matrix

Compute robustBeamformer

0(0) (0)dR

(0)yR

( )d KR

( )y KR

2max ( )K

( )r Kw

0max

max max

( )( )r H

d

kk

w e

e R e

Ref : Riba J., Goldberg J., Vazquez G., “Robust Beamforming for Interference Rejection in Mobile Communications”, Signal Processing, IEEE Transactions on

45

Robust BeamformingRobust Beamforming

46

BER AnalysisBER Analysis

BPSK

ULA

M = 4

d = 0.5 λ

DOA = 90°

47

OutlineOutline

• Conception of Smart Antenna• Beamforming Method• DOA Estimation• θ- LMS Algorithm• Local Minimum problems• θ- LMS Algorithm with Robust Beamforming• Conclusion

48

ConclusionConclusion

• DOA is an important parameter for beamforming system.

• But, the MUSIC algorithm is complex.• The new method “ө - LMS” is simpler to realized• Robust Beamforming can repair the fault of “ө - L

MS”

49

Future WorkFuture Work

• Noise and channel problem • Multi-user problems• SINR Analysis• Multi-path & DOA distribution• Moving Source analysis• Performance Analysis

(User # 、 DOA 、 SNR 、 Beamforming method 、 Antenna # …etc.)

• Adaptive Analysis (Step-size Moving DOA 、 SNR 、 other adaptive structure)

Hancheng
1. 使用 2-4“θ-LMS”何時切換? (SNR Users StepSize)

50

Capon’s BeamformingCapon’s Beamforming

Hancheng
Hancheng2004/6/27SNR = 30dBM = 4d = 0.5 lamdaULA

51

Step SizeStep Size

Hancheng
SNR = 30dBM = 4d = 0.5 lamdaULA

52

Cost functionCost function

22( ) ( ) HE e n E d

J w w u

2

*

*

*

2

( ) ( ) ( )2

( ) ( )

2 ( )

H

e ee

d n n ne

n n

e n

w w

w u

w w

u

53

New cost functionNew cost function

{J()} is defined partial J() by

2

*

*

( ) ( )2

( ) ( ) ( )2

H

e n e ne

d n n ne

w u

0 0( , ) ( ) ( )n s n u a

54

cos ( )

( 1) cos ( )

1

( , ( )) 1( , ( ))

ikd n

i M kd n

en nn n

M M

e

aw

2

*0

*0

* cos ( 1) cos0

( , ) ( , )2 ( , )

1 ( , )2 ( , )

12 sin 0 1 ( 1) ( , )

H

H

ikd i M kd

e n ne n

ne n

M

e ikd e M e nM

wu

au

u

The Formula Derives The Formula Derives

55

Initial = 90 ° DOA = 0 °

ULA

M = 2

d = 0.25λ

DOA= 0 °

Initial DOA = 90 °

56

Initial = 90 ° DOA = 180 °

ULA

M = 2

d = 0.25λ

DOA= 180 °

Initial DOA = 90 °

57

Noise problemNoise problem

58

Degree spreadingDegree spreading

k = 0

2 2( ), ( (0), ( )), (0) 0m m m mk N k 2| (0), ( )m m mp k

,( ) ( ) ( )y d i nk yk E k k R R R R

Ref : Riba J., Goldberg J., Vazquez G., “Robust Beamforming for Interference Rejection in Mobile Communications”, Signal Processing, IEEE Transactions on

59

Robust BeamformingRobust Beamforming

0max

max max

( )( )r H

d

kk

w e

e R e

( ) arg min ( )Hyr k k

ww w R w

0( )Hd k w R w

20 0 0 0 0 0 0( ) | (0), ( ) ( ) ( )H

d k p k d R a a

1

2 2(0) (0)

0

( ) (0), ( )N

Hy m m mm m

m

k k

R a a Q I

2 2 2(0)2 2 ( ) cos

(0), ( )( ) m m

m

d p qkm pq

e

Q

1

2 2

1

( ) | (0), ( ) ( ) ( )N

Hi n m m m m m m m

m

k p k d

R a a I

60

Complex SurfaceComplex Surface

top related