career-in-review keiji maruoka reporter: li chen supervisor: prof. david zhigang wang 2014. 05. 08

Post on 30-Dec-2015

216 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Career-in-reviewKeiji Maruoka

Reporter: Li Chen

Supervisor: Prof. David Zhigang Wang

2014. 05. 08

2

Introduction-Keiji Maruoka

EducationB. S. Department of Industrial Chemistry, School of Engineering, Kyoto University 1976Ph.D Department of Chemistry, University of Hawaii 1980 (with Prof. Hisashi Yamamoto)

Professional Appointments1980-1985 Assistant Professor School of Engineering, Nagoya University1985-1989 Lecturer School of Engineering, Nagoya University1990-1995 Associate Professor School of Engineering, Nagoya University1995-2000 Professor Graduate School of Science, Hokkaido University2000-2001 Professor Graduate School of Science, Kyoto University and Hokkaido University2001-present Professor Graduate School of Science, Kyoto University

Prof. Keiji Maruoka

3

Research Career

• Chiral Phase Transfer Catalysts• Alkylations• Enantioselective Synthesis of Amino Acids• Other Alkylations• N-Alkylations• Asymmetric Conjugate Addition• Asymmetric Amination• Aldol Reaction• Epoxidation• Cyanation

• Chiral Organocatalysts• Biaryl-Based Secondary Amine Catalysts• Axially Chiral Dicarboxylic Acid Catalysts

• Bidentate Lewis Acid Catalysts

4

Research Career

• Chiral Phase Transfer Catalysts• Alkylations• Enantioselective Synthesis of Amino Acids• Other Alkylations• N-Alkylations• Asymmetric Conjugate Addition• Asymmetric Amination• Aldol Reaction• Epoxidation• Cyanation

• Chiral Organocatalysts• Biaryl-Based Secondary Amine Catalysts• Axially Chiral Dicarboxylic Acid Catalysts

• Bidentate Lewis Acid Catalysts

5

Chiral Phase Transfer Catalysts

N Br

OH

ArAr

OH

Ar Ar

Ar

Ar(S,S)-2

N

Ar

Ar

Br

(R,R)-1a-f

N

Ar

Ar

Br

R

R

(S)-3

F

F

F

CF3

CF3

F3C

CF3

CF3

F3C

t-Bu

t-Bu

t-Bu

t-Bu

t-Bu

t-Bu

1a:Ar = 1b:Ar = 1c:Ar =

1d:Ar =1e:Ar =1d:Ar =

6

General mechanism

NPh2C

O

OtBuRX NPh2C

O

OtBu

R

cat. Q*X

solvent, MOH*

T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222.

7

Enantioselective Synthesis of α-Amino Acids

B. Lygo, P. G. Wainwright, Tetrahedron Lett. 1997, 38, 8595.

N CH2 COOtBu

NPh2C

O

OtBuH Ph

NPh2C

O

OtBuH Ph

N

N

HHO

H

H

Cl

N

NHO

H

H

ClH

chiral PTC 4(10 mol%)

chiral PTC 5(10 mol%)

PhCH2Br

50% aq KOH-toluene

20 oC, 18h

Ph2C

Chiral PTC 4 Chiral PTC 5

8

Enantioselective Synthesis of α-Amino Acids

NPh2C

O

OtBuPhCH2Br NPh2C

O

OtBu

CH2Ph

1 mol%(R, R)-1a

toluene/aq KOH

Natural Amino Acids95% yield, 96% ee (R)

N

Ar

Ar

Br

(R, R)-1

Ar =

T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 1999, 121, 6519.

9

Enantioselective Synthesis of α-Amino Acids

N

Br

N

-Np

-Np

Br

Ar1Ar2

Ar2 Ar1

N

BrAr1Ar2

Ar2 Ar1

N

-Np

-Np

Br

atropinversion

homochiral (S, S)-6 homochiral (S, S)-1a

heterochiral (R, S)-1aheterochiral (R, S)-6

diastereomer

(S)-6a: Ar1 = -Np, Ar2 = H

(S)-6b: Ar1 = 3,5-Ph2C6H3, Ar2 = Ph

NPh2C

O

OtBuPhCH2Br NPh2C

O

OtBu

catalyst(1 mol%)

toluene/aq KOH

0 oC H Ph

(S, S)-1a (3 h): 91%, 94% ee(R, S)-1a (60 h): 47%, 11% ee

(S)-6a (18 h): 85%, 87% ee(S)-6b (48 h): 81%, 95% ee

T. Ooi, Y. Uematsu, M. Kameda, K. Maruoka, Angew. Chem. Int. Ed. 2002, 41, 1551.T. Ooi, Y. Uematsu, M. Kameda, K. Maruoka, Tetrahedron 2006, 62, 11425.

10

Enantioselective Synthesis of α-Amino Acids

M. Kitamura, Y. Arimura, S. Shirakawa, K. Maruoka, Tetrahedron Lett. 2008, 49, 2026.M. Kitamura, S. Shirakawa, Y. Arimura, X. Wang, K. Maruoka, Chem. Asian J. 2008, 3, 1702.

N

Ar

Ar

Br

R

R

(S)-3

COOiPr

COOiPr

Br

Br

Ar B(OH)2 HNR

R

Ar = H, PhX

Y Z

Z

X = OMe, F, Cl, CN, CF3, NO2, Ph, C6F5)

Y = OMe, F, Cl,CN, CF3, NO2

Z = F, Cl, Ph,tBu, CF3

Cl

Cl

Cl

F

F

F

F

F

F

F

FHNR2 = HNMe2, HNBu2, HNHex2, HNDec2, HNiBu2,

HN HNHN

11

Enantioselective Synthesis of α-Amino Acids

M. Kitamura, Y. Arimura, S. Shirakawa, K. Maruoka, Tetrahedron Lett. 2008, 49, 2026.M. Kitamura, S. Shirakawa, Y. Arimura, X. Wang, K. Maruoka, Chem. Asian J. 2008, 3, 1702.

N

Ar

Ar

Br

R

R

(S)-3

COOiPr

COOiPr

Br

Br

Ar B(OH)2 HNR

R

NPh2C

O

OtBuPhCH2Br NPh2C

O

OtBu

(S)-3a(0.01 mol%)

toluene

50 % aq KOH

0 oC, 9 h

H Ph

(R)-8

92%, 98% ee

N

Ar

Ar

Br

Bu

Bu

Simplified Maruoka Catalyst(S)-3a

Ar = 3,4,5-F3-C6H2

12

Asymmetric α,α-Dialkyl-α-Amino Acids Synthesis

T. Ooi, M. Takeuchi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2000, 122, 5228.

N

O

OtBu 1 mol% (S,S)-1btoluene/aq CsOH

p-ClPh

Br BrPh

N

O

OtBup-ClPh

Ph

N

O

OtBu 1 mol% (S,S)-1btoluene/aq CsOH

p-ClPh

BrBrPhN

O

OtBup-ClPh

Ph

98% ee

92% ee

N

Ar

Ar

Br

(R, R)-1b

Ar = 3,4,5-F3-C6H2

N

OtBu

Op-ClPh

R1NR4

*

chiral ammonium enolate

13

Other Alkylations

T. Ooi, K. Fukumoto, K. Maruoka, Angew. Chem. Int. Ed. 2006, 45, 3839.

N

O

O

Ph

Ph

O

PhCH2Br

N

O

OPh

O

Ph

Ph

O

NH

Ph

OH

Ph

Ph

(S, S)-7(1 mol%)

25% aq KOH

tBuOMe

0 oC, 7h

dioxane

r.t., 1 h

82%, 92% ee

N

Ar

Ar

BrF3C

F3C

F3C CF3

CF3

CF3

Ar =

(S, S)-7

14

Other Alkylations

T. Hashimoto, K. Sakata, K. Maruoka, Angew. Chem. Int. Ed. 2009, 48, 5014.

COOtBu

Me

Me3Si

PhCH2Br COOtBu

Me3Si

Me Ph

(S)-3a(2 mol%)

KOH

mesitylene

-20 oC, 12h 70%, 86% ee

N

Ar

Ar

Br

Bu

Bu

F

F

F

Ar =

(S)-3a

15

N-Alkylations

S. Shirakawa, K. Liu, K. Maruoka, J. Am. Chem. Soc. 2012, 134, 916.

Me I

Me

HN

O

Me

PhCH2Br Me I

Me

N

O

MePh(S)-3d(2 mol%)

KOH

iPr2O

-20 oC, 24 h

N

Ar

Ar

Br

Hex

Hex

(S)-3d

Ar =

tBu tBu

tBu

tBu

95%, 92% ee

>>

16

Asymmetric Conjugate Addition

R. He, C. Ding, K. Maruoka, Angew. Chem. Int. Ed. 2009, 48, 4559.

N

Ph

O

Boc

O

NO

Boc

Ph O(S)-3c

(3 mol%)

PhCOOK

toluene

-60 oC, 24 h97%, 99% ee

P

Ar

Ar

Br

Bu

Bu

(S)-3c

CF3

CF3

Ar =

17

Asymmetric Conjugate Addition

R. He, S. Shirakawa, K. Maruoka, J. Am. Chem. Soc. 2009, 131, 16620.

NO

Boc

HPh

NO

Boc

DPh

NO

Boc

HPh

(S)-8 (1 mol%)

D2O/toluene

(ratio = 2:1)

5 oC, 2 h 11%88%

N

Ph

O

Boc

NR4*

N

Ph

O

Boc

NO2

NO

Boc

PhNO2

(S)-8(1 mol%)

H2O/toluene

(10:1)

0 oC, 2 h

base-free93%, d.r. 93:7, 90% ee

N

BrCF3

CF3

Ar =

Ph

O

OH

ArAr

OH

Ar Ar

Ph

(S)-8

18

Asymmetric Conjugate Addition

X.Wang,M. Kitamura, K. Maruoka, J. Am. Chem. Soc. 2007, 129, 1038.Q. Lan, X. Wang, K. Maruoka, Tetrahedron Lett. 2007, 48, 4675

COOtBu

Me

NC O

OtBu

OtBuO

NC

Me

COOtBu(S)-9(1 mol%)

Cs2CO3

toluene

-40 oC, 5 h99%, E/Z = 6.7:1

93% ee

O

COOtBu

O

Me

O

COOtBu

O(S)-10(1 mol%)

K2CO3

Et2O

-40 oC, 3 h 98%, E/Z = 1.2:190/85% ee

N

Ar

Ar

Br

X

F3C CF3

CF3

CF3

Ar =

(S)-9 (X = O)(S)-10 (X = NPh)

19

Asymmetric Amination

R. He, X. Wang, T. Hashimoto, K. Maruoka, Angew. Chem. Int. Ed. 2008, 47, 9466.R.He, K. Maruoka, Synthesis 2009, 2289.

O

COOtBu

NN

COORROOC

OCOOtBu

N NHCOORROOC

catalyst

K2HPO4

toluene

(S)-3d (3 mol%; -20 oC, 14h);

99%, 91% ee (R = tBu)

(S)-11 (1 mol%; -40 oC, 5h);

99%, 95% ee (R = Et)

P

Ar1

Ar1

Br

Bu

Bu

(S)-3d

Ar1 = 3,5-(CF3)2C6H3

N

Ar2

Ar2

Br

O

(S)-11

Ar2 = 3,5-(3,5-tBu2C6H3)2C6H3

20

Asymmetric Amination

L. Wang, S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 2011, 50, 5327.

NH

OBnBnO NO2Ph

NOBnBnO

PhNO2

(S)-12(0.05 mol%)

H2O/toluene(10:1)

r.t., 8 hbase free

N

BrOH

ArAr

OH

Ar Ar

F3C CF3

CF3

CF3

Ar =

(S)-12

91%, 90% ee

21

Aldol Reaction

T. Ooi, M. Taniguchi, M. Kameda, K. Maruoka, Angew. Chem. Int. Ed. 2002, 41, 4542.

COOtBuNPh2C

PhCHO

COOtBu

Ph OH

NH2

COOtBu

Ph OH

NH2

2 mol% (R,R)-1d

aq NaOHtoluene

1 N HCl

THF

anti-isomer syn-isomer

71% (anti/syn = 12/1)96% ee(anti)

N

Ar

Ar

Br

(R,R)-1

F3C CF3

CF3

CF3

Ar =

22

Epoxidation

T. Ooi, M. Taniguchi, M. Kameda, K. Maruoka, Angew. Chem. Int. Ed. 2002, 41, 4542.T. Ooi, M. Kameda, M. Taniguchi, K. Maruoka, J. Am. Chem. Soc. 2004, 126, 9685.

Ph Ph

O

Ph Ph

OO3 mol% (S,S)-13

13 % NaOCltoluene

99% yield96% ee

N Br

OH

ArAr

OH

Ar Ar

Ar

Ar

(S,S)-13Ar = 3,5-Ph2-C6H3

X-ray structure of 13-PF6 (N, blue; O, red; PF6, green)

23

Cyanation

T. Ooi, Y. Uematsu, K. Maruoka, J. Am. Chem. Soc. 2006, 128, 2548.T. Ooi, Y. Uematsu, J. Fujimoto, K. Fukumoto, K. Maruoka, Tetrahedron Lett. 2007, 48, 1337.

aq KCN

N

H

SO2Ar2

HN

CN

SO2Ar2

Ar2 = 2,4,6-Me3C6H2

(S)-14(1 mol%)

toluene

0 oC, 2 h

NMe

Me

(S)-14

Ar1

Ar1

Ar1

Ar1

CF3Ar1 =

89%, 95% ee

24

Research Career

• Chiral Phase Transfer Catalysts• Alkylations• Enantioselective Synthesis of Amino Acids• Other Alkylations• N-Alkylations• Asymmetric Conjugate Addition• Asymmetric Amination• Aldol Reaction• Epoxidation• Cyanation

• Chiral Organocatalysts• Biaryl-Based Secondary Amine Catalysts• Axially Chiral Dicarboxylic Acid Catalysts

• Bidentate Lewis Acid Catalysts

25

Chiral Secondary Amine Catalysts

T. Kano, K. Maruoka, Chem. Sci. 2013, 4, 907.

Typical secondary amine catalysts derived from proline:

NH

COOH NH

NH

NH

NH

HN NN

N Ar

OHAr

Ph

OTMSPh

Ph

PhPh

L-proline (S)-P1 (S)-P2a (Ar = Ph)(S)-P2b (Ar = 3,5-(CF3)2C6H3

(S)-P3 (S)-P4

NH

COOH

L-proline

NH

R

R'

R'''

R''

R''

R'''

No -Substituent

Mild Basicity and Nucleophilicity

C2-Symmetry (R = R')

Larger Space

Readily Tunable

26

Biaryl-Based Secondary Amine Catalysts

T. Kano, K. Maruoka, Chem. Sci. 2013, 4, 907.

Typical chiral biaryl-based secondary amine catalysts:

NH

NHTf

NH

OH

PhPh

OH

PhPh

NH

OTMS

PhPh

OTMS

PhPh

NH

NHTf

MeO

MeO

NHOMe

OMe

OH

ArAr

OH

ArAr

(S)-15 (S)-16

(S)-19

(S)-17 (S)-18a (Ar = Ph)(S)-18b (Ar = 3,5-F2-C6H3)

27

Aldol Reaction

T. Urushima, Y. Yasui, H. Ishikawa, Y. Hayashi, Org. Lett. 2010, 12, 2966.

Anti-selective aldol reaction of glyoxylate:O

Bn

O

COOEt

O

Bn

COOEt

OH

EtOOCCOOEt

Bn

OH10 mol% (S)-P2a

aq CH3CN

Ph3PCHCOOEt

benzene

92% anti/syn = 20/199% ee (anti)N

H

Ar

OHAr

(S)-P2b Ar = 3,5-(CF3)2C6H3

28

Aldol ReactionAnti-selective aldol reaction of glyoxylate:

O

Bn

O

COOEt

O

Bn

COOEt

OH

EtOOCCOOEt

Bn

OH10 mol% (S)-P2a

aq CH3CN

Ph3PCHCOOEt

benzene

92% anti/syn = 20/199% ee (anti)

Syn-selective aldol reaction of glyoxylate and glyoxamide:

O

Bn

O

COOtBuCOOtBu

O

Bu

OH2 mol% (S)-15

CH3CN

O

Bn

OH

Bu

OH2 mol% (S)-15

CH3CN

O

O

N

O

O

N

O

77% anti/syn = 1/4.796% ee (syn)

82% anti/syn = 1/1797% ee (syn)

NH

NHTf

(S)-15

T. Urushima, Y. Yasui, H. Ishikawa, Y. Hayashi, Org. Lett. 2010, 12, 2966.T. Kano, A. Noishiki, R. Sakamoto, K. Maruoka, Chem. Commun. 2011, 47, 10626.

29

Aldol ReactionAnti-selective aldol reaction of glyoxylate:

O

Bn

O

COOEt

O

Bn

COOEt

OH

EtOOCCOOEt

Bn

OH10 mol% (S)-P2a

aq CH3CN

Ph3PCHCOOEt

benzene

92% anti/syn = 20/199% ee (anti)

T. Urushima, Y. Yasui, H. Ishikawa, Y. Hayashi, Org. Lett. 2010, 12, 2966.T. Kano, A. Noishiki, R. Sakamoto, K. Maruoka, Chem. Commun. 2011, 47, 10626.

Syn-selective aldol reaction of glyoxylate and glyoxamide:O

Bn

O

COOtBuCOOtBu

O

Bu

OH2 mol% (S)-15

CH3CN

77% anti/syn = 1/4.796% ee (syn)

N

Ar

OAr

R

HEtO

O

O

s-trans-enamine

NTfN

OtBuO

O

H

s-cis-enamine

30

Cross-Aldol Reaction

T. Kano, H. Sugimoto, K. Maruoka, J. Am. Chem. Soc. 2011, 133, 18130.

O

iPr

O OH

iPr

OHaminecatalyst

DMF

anti

30 mol% L-proline: 65% anti/syn = 19/1, 96% ee (anti) 5 mol% (S)-16: 90%, anti/syn = 1/20, 96% ee (syn)

Cl

Bn Bn

OH

iPr

OH

Bn

LiAlH4

THF

syn

O

R

O aminecatalyst

Cl

R'

N

R

N

R'

Cl

O

Cl

R'

O

R

OH

Cl

R'R

O OH

RR

O

cross-aldol adduct homo-aldol adduct

more electrophilicacceptor aldehyde

31

Mannich Reaction

J. W. Yang, C. Chandler, M. Stadler, D. Kampen, B. List, Nature, 2008, 452, 453.T. Kano, Y. Yamaguchi, K. Maruoka, Angew. Chem., Int. Ed., 2009, 48, 1838.

NN

N

O

OH

O

R'

Tf

H

O

R'

reactive enamine less nucleophilic enamine

O N

R

O NH20 mol% L-proline

CH3CN

23~58%(TON 1.2~2.9), 96% ee

Boc

R

Boc

O N

R

O NH2 mol% (S)-15

70~92%(TON 35~46), 98% ee

Boc

R

Boc

Suppression of undesired aldol reactions:

32

Conjugate Addition

M. E. Kuehne, P. J. Reider, J. Org. Chem. 1985, 50, 1464.T. Kano, F. Shirozu, K. Tatsumi, Y. Kubota, K. Maruoka, Chem. Sci. 2011, 2, 2311.

O

Bn

OH

Bn

aminecatalyst

Et2OCOOtBu

COOtBu COOtBu

NaBH4

MeOH

COOtBu

10 mol% L-proline: 48%, -6% ee (THF) 3 mol% (S)-20: 83%, 95% ee

Suppression of catalyst consumption:

NH

MeO OMe

HOPh

PhOHPh

Ph

COOtBu

COOtBuO R

N

R

N

COOtBu

tBuOOC

enamineformation

catalystdeactivation

(S)-20

33

α-Hydroxyamination of Aldehydes

G. Zhong, Angew. Chem., Int. Ed. 2003, 42, 4247.T. Kano, M. Ueda, J. Takai, K. Maruoka, J. Am. Chem. Soc. 2006, 128, 6046.

α-Hydroxyamination of aldehydes:

OO

OH5 mol% L-proline

CHCl3

NaBH4

MeOHN

Ph

ONHPh

88%, 97% ee

α-Aminoxylation of aldehydes:

ON

OH10 mol% (S)-17

CHCl3

NaBH4

MeOHN

Ph

OOH

90%, 99% ee

Ph

Plausible transtion state models:

34

Research Career

• Chiral Phase Transfer Catalysts• Alkylations• Enantioselective Synthesis of Amino Acids• Other Alkylations• N-Alkylations• Asymmetric Conjugate Addition• Asymmetric Amination• Aldol Reaction• Epoxidation• Cyanation

• Chiral Organocatalysts• Biaryl-Based Secondary Amine Catalysts• Axially Chiral Dicarboxylic Acid Catalysts

• Bidentate Lewis Acid Catalysts

35

Axially Chiral Dicarboxylic Acid Catalysts

T. Hashimoto, K. Maruoka, J. Am. Chem. Soc. 2007, 129, 10054.

Mannichi-type addition of diazo compounds:

Ar

COOH

COOH

Ar

Me

Me

t-Bu

Me

Me

MeAr = Ar =

(R)-21a (R)-21b

• Locking the direction of the acidic OH group• Establishing the efficient chiral environment

NBoc

Ar N2

XNHBoc

ArX

N2

(R)-21a (5 mol%)

CH2Cl2, MS4Å

0 oCX = COOtBu or PO(OMe)2 up to 96% ee

36

Axially Chiral Dicarboxylic Acid Catalysts

T. Hashimoto, N. Uchiyama, K. Maruoka, J. Am. Chem. Soc. 2008, 130, 14380.

Trans-selective aziridination:

Ar

COOH

COOH

Ar

Me

Me

t-Bu

Me

Me

MeAr = Ar =

(R)-21a (R)-21b

• Locking the direction of the acidic OH group• Establishing the efficient chiral environment

NBoc

Ar1

N2

Ar1(R)-21b (5 mol%)

toluene, MS4Å

0 oCtrans-selectiveup to 99% ee

O

NH

Ar2

O

NH

Ar2NBoc

37

Axially Chiral Dicarboxylic Acid Catalysts

T. Hashimoto, M. Hirose, K. Maruoka, J. Am. Chem. Soc. 2008, 130, 7556.

Imino-azaenamine reaction:

Ar

COOH

COOH

Ar

Me

Me

t-Bu

Me

Me

MeAr = Ar =

(R)-21a (R)-21b

• Locking the direction of the acidic OH group• Establishing the efficient chiral environment

NBoc

Ar1 N

NHBoc

Ar1 N

Ar2

(R)-21a (5 mol%)

CHCl3, MS4Å

-30 oC84~95% ee

N

H

Ar2

N

38

Research Career

• Chiral Phase Transfer Catalysts• Alkylations• Enantioselective Synthesis of Amino Acids• Other Alkylations• N-Alkylations• Asymmetric Conjugate Addition• Asymmetric Amination• Aldol Reaction• Epoxidation• Cyanation

• Chiral Organocatalysts• Biaryl-Based Secondary Amine Catalysts• Axially Chiral Dicarboxylic Acid Catalysts

• Bidentate Lewis Acid Catalysts

39

Bidentate Lewis Acid Catalysts

H. Hanawa, T. Hashimoto, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 1708.

Bis-Titanium Chiral Lewis Acid Catalyst:

C

O M

A

C

OM

C

OMM

M

B C

C

OMM

D

O

OTi

OiPr

OTi

O

O

iPrO

(S,S)-22

RCHO

SnBu3R

OH5~10 mol% (S,S)-22

CH2Cl2

96~99% ee

OL*Ti TiL*

iPr

iPrO

O

+

-

[ L* = (S)-binaphthoxy ]

OL*Ti TiL*

iPrO

+-

OiPr

HR

1 2

40

Bidentate Lewis Acid Catalysts

H. Hanawa, T. Hashimoto, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 1708.T. Kano, T. Hashimoto, K. Maruoka, J. Am. Chem. Soc. 2005, 127, 11926.

Bis-Titanium Chiral Lewis Acid Catalyst:

C

O M

A

C

OM

C

OMM

M

B C

C

OMM

D

O

OTi

OiPr

OTi

O

O

iPrO

(S,S)-22

RCHO

SnBu3R

OH5~10 mol% (S,S)-22

CH2Cl2

96~99% ee

Bn

N

PhO

OHC

NO

Bn

Ph

HO

10 mol% (S,S)-22

CH2Cl2

NaBH4

EtOH

41

ConclusionBy using "design of catalysts as artificial enzymes" and "environmentally-benign organic synthesis" as two important key-words, the synthetic organic chemistry laboratory focuses on the following topics:1 Design of Chiral Phase Transfer Catalysts for Practical Amino Acid Synthesis2 Design of Chiral Organocatalysts for Practical Asymmetric Synthesis3 Development of Bidentate Lewis Acid Chemistry and Application to Selective Organic Synthesis

42

THANK YOU FOR YOUR ATTENTION!

top related