chapter 4. dynamic analysis and forces...

Post on 24-Jun-2020

27 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

로봇공학 (KAU AME)

로봇공학, Chapter 4

1

Chapter 4. Dynamic Analysis and Forces

로봇 동역학

1. Newtonian mechanics vs. Lagrangian mechanics

2. Robot dynamics:

- Forward dynamics & Inverse dynamics

- 2-DOF manipulator의 예

3. Static force relationship between joint forces/torques

and end-effector ones

로봇공학 (Robotics)

로봇공학 (KAU AME)

로봇공학, Chapter 4

2

Robot dynamics

1

2

3

1 1 1q q q→ →

2 2 2q q q→ →

3 3 3q q q→ →

1

2

n

Robot armdynamics

1

2

n

q

q

q

1) Applied joint torques ➔ 각 관절에 발생하는 가속도 계산

Inverse dynamics

Forward dynamics

2) Required Joint torque 계산 Desired Joint trajectory

Dynamic Relationship(Dynamic equation of

Motion)

torques applied at

joints

Joint accelerations

ˆev

ˆe

로봇공학 (KAU AME)

로봇공학, Chapter 4

1

2

3

3

1

2

n

11 1

22 2

nn n

→ →

Joint torques

Inverse dynamics

Forward dynamics

조인트 가속도, 속도, 위치

( , , )

( , , )

( , , )

( , , )

x y z

x y z

p p p

v v v

말단부 위치 및 자세

말단부 속도

Position

Orientaion

Velocity

RPY rate

로봇공학 (KAU AME)

로봇공학, Chapter 4

4

Robot Dynamics

▪ Robot dynamics 해석의 필요성

• 로봇의 동적 거동(Dynamic behavior) 예측

• 로봇이 원하는 힘과 속도를 낼 수 있는 구동기(motor) 선정

• Model-based Control: 궤적 추종제어 알고리즘에서 로봇 동역학 식을 이용하여

필요한 토크 계산 → Computed Torque Method (CTM)

• 로봇이 핸들링 할 수 있는 가반 하중(Payload) 계산

( )

( )

d mvF ma

dt

d IM I

dt

= =

= =

1) Translational equation of motion:

: (3-DOF)

2) Rotational equation of motion:

: (3-DOF)

FC.G.

CGM

ma

C.G.

I

=

▪ Single rigid-body dynamics (6-DOF):

로봇공학 (KAU AME)

로봇공학, Chapter 4

5

Robot Dynamics

▪ Robot manipulator의 특징

• 다자유도, 다물체(Multi-body) 시스템

• 3차원 운동 (3-dimensional motion)

• 각 관절의 운동을 직전 링크에 대한 상대 운동으로 기술

→ 운동방정식을 관절좌표계(일반좌표계)에 대하여 표현

▪ Robot dynamics 방정식 유도 방법

1) Newtonian mechanics approach (Newton-Euler formulation)

2) Lagrangian mechanics approach (Lagrangian formulation)

로봇공학 (KAU AME)

로봇공학, Chapter 4

6

4.2 Lagrangian Mechanics: An Overview

2 2

( )

( )

1 1

2 2

d mvF ma

dtd I

M Idt

K mv I

P mg

= =

= =

= +

=

Newtonian Mechanics

- Translation:

- Rotation:

Lagrangian Mechanics

- Kinectic energy (KE): ( ) ( )

- Potential energy(PE):

병진운동 회전운동

21( (

2

( 1 ~ )

( 1 ~ )

( 1 ~ )

i

i i

i

i

h kx

L K P

d L LQ i n

dt q q

q i n

Q i n

+

− = =

= →

= →

) )

- Lagrnagian:

-

: generlaized coordinates

Lagrnagian equation of

( )

m

ot

: genera

ion:

중력 스프링 힘

일반좌표계=관절좌표계

( / )

lized force

: KE( ) PE( )

일반좌표에 해당하는 운동을 일으키는 외부 힘 토크

속도와 각속도 와 위치 를 일반좌표계의 함수로 표현

로봇공학 (KAU AME)

로봇공학, Chapter 4

7

Lagrangian Mechanics

1

1

( 1 ~ )

( ~ )

( ~ )

i

i i

n

n

d L LQ i n n

dt q q

q q q

Q

− = =

Lagrnagian eq. of motion:

: joint variables

: joint torques/Forces

Revolute J

원 연립미방

다자유도 로봇 매니퓰레이터의 의 경우

- 일반 좌표계

- 일반 힘

i

i i

i

ii

Rotational motion

d L L

dt

Translational motion

d L LF

dt dd

− =

• →

− =

oint

Prismatic Joint

◆ Lagrangian mechanics is based on the differentiation of energy terms only,

with respect to the system’s variables and time.

로봇공학 (KAU AME)

로봇공학, Chapter 4

8

Examples

▪ 예제 4.1~ 4.4

• 각각 Newton 역학과 Lagrange 역학을 이용하여 운동방정식을 유도하고

결과 비교

1 1 1 1

1 1 1 1

2 2 2 2

2 2

ˆ ( )

ˆ ˆ,

ˆ ( ) ( sin ) (1 cos )

ˆ ( cos )

m p x i y j xi

m v xi m a xi

m p x i y j x l i l j

m v x l

= + =

→ = =

= + = + + −

→ = +

Ex. 4.2 (Cart-pendulum system)

position:

position:

-

속도: 가속도:

-

속도:

2 2

sin

ˆ ( sin ) (1 cos )

i l j

m a x l i l j

+

→ = + + − 가속도:

1

1 1 1 1 1 1 1

2

2 2 2 1 2 12 1 2 12

ˆ ( ) ( sin ) ( cos )

ˆ ( ) ( sin ) ( cos )

m

p x i y j l i l j

m

p x i y j x l i y l j

= + = + −

= + = + + −

Ex. 4.3 (double pendulum system)

position:

position:

-

-

로봇공학 (KAU AME)

로봇공학, Chapter 4

9

2 2

1 1 1 1 1 1 1 1

2

1

1 1 1

(

1 1

2 21

2A

c

K m v I v

I

P m gl

= +

=

=

link 1 A rotation)

* link (C.G. translation + C.G. rotation)

link 1: ( : link1 c.g. , = )

은 점에 대하여

각 의 운동 = 의 에 대한

- 의 속도

11 1 1

2 2

2 2 2 2 2 2 2 1 2

2 2 1 1 2 12

1 2 1 2

sin sin2

1 1

2 2( sin sin )

( ) ( )

c

lm g

K m v I v

P m g l l

L K K P P

=

= + = +

= +

= + − +

link 2: ( : link2 c.g. , )

Lagrange's eq. of motion:

- Lagrangian:

- 의 속도

1

1 1

2

2 2

d L L

dt

d L L

dt

− =

− =

- For joint 1:

- For joint 2:

• Ex. 4.4 (Two link robot manipulator)

로봇공학 (KAU AME)

로봇공학, Chapter 4

10

4.3 Effective Moment of Inertia

211 12 1 11 1 1 2

212 22 2 22 2 2 1

D D G

D D G

+ + + =

2-DOF manipulator

Inertial force effect

Centrifugal force effect

Gravitational effect

Joint torques

Coriolis force effectInertial force interaction

between two links

( ) ( , ) ( ) ( )

( ) :

:

( ) :

( , ) :

( ) :

H q q C q q G q t

t

q

H q

C q q

G q

+

+ =

Input torque

Output state vector

Inertial

General form of Euler-Lagrange system dynam

matrix

Coriolis and centrifual vecto

ics

r

Gravitational vector

로봇공학 (KAU AME)

로봇공학, Chapter 4

11

4.4 Multi-DOF Manipulators

V

• Equations for a multiple-degree-of-freedom robot are very long and

complicated,

• But can be found by calculating the kinetic and potential

energies of the links and the joints,

• By defining the Lagrangian and by differentiating the Lagrangian equation

with respect to the joint variables.

• The kinetic energy of a rigid body with motion in three dimension :

__1 1

2 2GK V mV h= +

• The kinetic energy of a rigid body in planar motion

22

2

1

2

1IVmK +=

A rigid body in three-dimensional motionand in plane motion.

V

로봇공학 (KAU AME)

로봇공학, Chapter 4

12

General Formulation

0 0 0

00

1 1

( )

( )

( ) ( ) ( )

( , , ,1)T

i

ij

i

i i i i i i

i ij ji i

i i i i i

j jj

r

dm

p T r R r p

dq dqdp Td

x

v T r r rdt dt q dt dt

y z

U= =

= = +

→ =

=

=

=

Position of element mass in base frame

iz

{ }joint i

i

1 iz −

ix

iy

x y

z

idm

ir

0

i i ip T r=

( )idm link i의미소질량

0

ci i ip T r=

( )

2 2 2

1 1

1

( )

1 1( ) ( )

2 2

1( ) ( )

2

1[

2i

i

T

i i i i i i i i

Ti i

p ri i i

p r

i

i i i

ip ir

T

p i i i

J

r

dm

dK x y z dm Trace v v dm

dq dqTrace r r dm

dt dt

K dK Trace

U U

rrU dm

= =

=

= + + =

=

→ = =

Kinetic energy of element mass

1

]i

T

ir r p

p

U q q=

로봇공학 (KAU AME)

로봇공학, Chapter 4

13

Pseudo-inertia matrix

2 2 2 2

2 2 2 2

2 2 2 2

( ) ( ) / 2

( ) ( ) / 2

( ) ( ) / 2

z i i i y z x

y i i i z x y

x i i i x y z

I r dm x y dm x dm I I I

I r dm z x dm y dm I I I

I r dm y z dm x dm I I I

= = + = + − = = + = + − = = + = + −

Mass moment of inertia of link i w.r.t. {i}-frame

<Note>

2

2

20

,

i i i i

i i i iT

i i i i

i i i i

i i i i

i i i

i i i

x dm xydm xzdm xdm

yxdm y dm yxydm yzdm zxdm

x

zdm ydmJ rr dm

zxdm zydm z dm zdm

xdm x m

dm ydm zdm dmy

= =

= = =

=

Pseudo-inertia matrix

Symmetric link

의 경우

,i i i i i idm y m zdm z m

= =

2

2

2

y z x

xy xz i i

z x y

T yx yz i ii i i i

x y z

zx zy i i

i i i i i i i

I I II I m x

I I II I m y

J rr dm

I I II I m z

m x m y m z m

+ −

+ − = =

+ −

로봇공학 (KAU AME)

로봇공학, Chapter 4

14

Kinetic Energy

0

00

1 1

0

1 2 1 2

( , , ,1)

( ) ( ) ( )

( )0

0 0 0 1

j

j

j

T

i

ij

i

i i i

i ij ji i

i i i i i

j jj

j j j j j j

j j j j j j jij i i j

j jj j j

j

a

a

d

p T r

dq dqdp Tdv T r r r

dt dt q dt dt

c s c s s c

A s c c c s sTA A A A A A A A

s cq q

r x y z

U

Uq

= =

• =

→ = = =

− −

• = = =

=

=

)

0 1 0 0

1 0 0 0(

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

)

Revolute joint

revolute)

Prismatic joint

j

j

j j j j j j

j j j j j j j j

j j j

j j

j

a

a

i

s c c c s s

A A c s c s s cA Q A

q

ii

A

− − − − → = = =

0

1 2 1 2

1 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0(

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

( )

prismatic)

,

j

j

i

j j

j j

jii j j i

j j

j j k k i

j

ij

k

k

ij

AA Q A

q d

ATA A A A A Q A A

q q

A A Q A Q A A j kq

U

UU

= = =

=

=

=

마찬가지로

로봇공학 (KAU AME)

로봇공학, Chapter 4

15

Kinetic Energy & Potential Energy

0

0

1 1

( , ,( )

( )

,0)T

x y z

T

i i i i

T

i i i i

i i

g g gP m g T r

P P m g

L P

g

T r

K

= =

= −

= = −

= −

=

n n

Tota

Potential energy of l

l potential

ink i

Lagrangia

ene

n:

rg

y

1 1 1 1

2

( )

1

1( )

2

1(

2

i iT

i ip ir r p

i i p r

i act i

i

iK K Trace U U q

I

J q

q

= = = =

=

= =

+

n n

n

Total kin

actuator inerti

etic

a

energy

)에 의한 K.E

izi

1 iz −

ix

iy

x y

z

im

0

ci i ip T r=

ir

로봇공학 (KAU AME)

로봇공학, Chapter 4

16

Dynamic Equation of Motion for General Robots

1 max

2

( )

1 1 1 1

( )

1( , )

, 1 ~

( )

1 1( )

2 2

n n

Lagrange's eq. of motion:

i

i i

i iT

ip ir r p i act i

i p r ii i

n

i ac

i

n nT

pj p t i ij j ipi j

j p i j j

d L LQ i n

dt q q

L KK Trac J

Trace U J

e U U q q I qq q

I q DU q q I

= = =

= =

=

=

− = =

= = +

= + +

( )

( ) ( )

1 1 1 1 1

( )

1 1 1

(

act i

n n n n nij ij

ij j i act i j ij j i act i k j

j j j j ki k

i i i

n n n

ij j i act i ijk k j i i

j j k

ij p

q

dD Dd LD q I q q D q I q q q

dt q dt q

L K P

q q q

D q I q D q q D

D Trace U

= = = = =

= = =

→ = + + = + +

= − =

+ + + =

=

최종적으로max( , )

max( , , ) 1

)

( ), )n

nT

j p pi

p i j

nT T

ijk pjk p pi i p ppi

p i j k p

J U

D Trace UU J U D m g r

=

= =

= = −

로봇공학 (KAU AME)

로봇공학, Chapter 4

17

(Ref.) Lagrangian Formulation (Asada & Slotine’s Book)

0.

[1]

1 1( )

2 21 1

( )2 2

[2]

ˆ ( , , )

G i i

i i ci ci i G

T T

i ci ci

T

x y

i i i

T

i i i zc

h I

K m v v h

m v v I

g g gm gP gr

=

= +

=

=

+

= −

* angular momentum)

Kinetic energy of i-th link

Potential energy of link i

각운동량(

ci

i

i

v

I

base frame i-th link

base frame i-th link

base frame i-th link MOI)

는 에 대한 무게중심의 속도

는 에 대한 의 각속도

는 에 대한 의 질량관성모멘트(

iz

{ }joint i

( , , )link i i ii l m I

i

1 iz −

ix

iy

civi

x y

z0,ˆ

cir

ir

xx xy xz

yx yy yz

zx zy zz

i

I I I

I I I

I I I

I

=

로봇공학 (KAU AME)

로봇공학, Chapter 4

18

Lagrangian Formulation

1

2

1

(3 )

(3 )

Jacobian relationship between joint velocity and end-effector velocity

x

y

e z

e x

ny

z n

qv

qv

v v

q

n

nq

= =

− − − −

− −

P

O

J

J

1 2

1 2

1 1, 1

1 0

P P P Pn

O O O On

Pi i i e i

Oi i

z p z

z

− − −

=

• •

= =

For revolute joints For prismatic joints

Pi

Oi

J J J JJ =

J J J J

J J

J J

ci i

i

How to determine the velocity(v ) and angular velocity(ω )

of the centroid and the moment of inetia(I )?

로봇공학 (KAU AME)

로봇공학, Chapter 4

3-19

1ˆ ˆ

e ip p −− 1

ˆ ˆ ˆ( )i e ip p −= −

i iz −=

i-th Revolute joint

i-th Prismatic joint

ˆep

1

ˆˆ

i i iz −=

ip −

i-th link

ˆev

ˆe

ii-th joint

end-effector

각속도( )가

속도에 기여하는 양

ii-th joint

end-effector

각속도( )가

각속도에 기여하는 양

로봇공학 (KAU AME)

로봇공학, Chapter 4

20

Lagrangian Formulation

( ) ( ) ( )

1 1 2 2

( ) ( ) ( )

1 1 2 2

ˆ

ˆ

ˆ

ˆ

i i ici p p pi i

i i ii o o oi i

x

y

ci z

i x

y

z

v J q J q J q

J q J q J q

v

v

v v

+ + + =

+ + +

→ =

Similary, the velocity of the centroid of the i-th link is given by

1 1( ) ( ) ( )

1

( ) ( ) ( )

1

( )

(

( )

1

( )

)

1,

0

0

i i i

p pi p

i i i

o oi o

n n

i

j

i

p

i

o

j c

i

ipj

ioj

q qJ J J qJ

J J J qq q

z

J

z

rJ

J

− −

= =

=

For revolute joints For prismatic joints

where ( )

1

( )

1 0

(1 )

i

pj i

i

oj

J z

J

j i

=

<주의!> {j-1} 좌표계 원점에서i-th link 중심까지의 거리

로봇공학 (KAU AME)

로봇공학, Chapter 4

21

iz

{ }joint i

( , , )link i i ii l m I

ii z −

ix

iy

civi

x y

z

0,ˆ

cir

ir

1

1,

( )

1

( )

ˆ( )

ˆ

ˆ

( ) (1 )

i

pj j j j

i

oj j j

j ci

j

J q z q

J q z q j i

r−

−=

=

jj z −

1,j cir −

( ) ( ) ( ) ( )

1 1 2 2

( ) ( ) ( ) ( )

1 1 2 2

ˆ

ˆ

i i i i

ci p p pi i p

i i i i

i o o oi i o

v J q J q J q J q

J q J q J q J q

= + + + =

= + + + =

im g

로봇공학 (KAU AME)

로봇공학, Chapter 4

22

Lagrangian Formulation

( ) ( )

1 1

( ) ( ) ( )

1

)

( )

)

(

(

1 1( )

2 2

1

2

1

2

n nT T

i ci

ici p

ici i i i

i i

nT T

T i i T i i

i p p o i o

i

T

i o

K m v v I

m q J J q q J I J

v J q

q

Hq

q

q

J

= =

=

= +

=

= +

=

Kinetic energy of manipulator links

Manipula

tor i

( ) ( )( )2

( ) ( ) ( ) ( )

1

1 1

0,

1

( )

1

1

2

0

1

2

( , , )

nT T

i i i i

i p p o i o

i

n n

ij i j

i j

nT

i ci

i act i

i

T

i

x y z

H m J J J I J

H q q I q

g gP m g g gr

=

= =

=

=

+

= +

=

= − =

n

n

Potential energy of of manipulator links

ertia tenso

r

1( ~ )nq qconfiguration

dependent!

( )i actI : actuator inertia at joint

로봇공학 (KAU AME)

로봇공학, Chapter 4

23

Lagrangian Formulation

1 1 1

1 1 1 1 1

,

1

1

2

~

n n n

ij i j ij j

i j ji i i

n n n n nij ij

ij j j ij j k j

j j j j

i

i

k

i

ki

L KH q q H q

q q q

dH Hd L

d L LQ i n

dt q q

H q q H q q qdt q dt q

= = =

= = = = =

= = =

→ = + = +

− = =

Lagrange's eq. of motion:

( )

0, 1, (

1 1 1 1

0, ( ))

1 1

1

1 1

2 2

1

2

cj i c

n n n njk

jk j k j k

j k j ki i i

n ncjT T j

j i

j j

pi

i

T

e

i j pi

j ji i

i i

nij jk

ij j

j i

i

k

xt

ih

r r

HKH q q q q

q q q

rPm g G G m g J

q q

Q

H H

J

H

q

q

F

Jq

qq

= = = =

= =

=

= =

= − = −

=

+ −

= =

+

정리하면, 1 1

n n

j k i i

j k

jk

q q G = =

+ =

로봇공학 (KAU AME)

로봇공학, Chapter 4

24

Lagrangian Formulation

( ) ( )( )( ) ( ) ( ) ( )

1

( )

1

1 1 1

1

2

nT T

i i i i

i p p o i o

i

ij jk

k in

T j

i j pi

j

n n n

i

ij

j j j

j

k

jk

j k

i

H m J J J I J

H H

q q

G m g J

H q q q

h

h

=

=

= = =

= +

+

=

= −

General dynamic equation of motion for robot manipulators

, ( ( , ) ( ) )1 ~k i i Hq C q q qn GG i + + =+ = =

각가속도에 의한 관성력 모멘트

Centrifugal force 및 Coriolis force에 의한 moment

Gravity force에 의한 moment

Joint torques

로봇공학 (KAU AME)

로봇공학, Chapter 4

25

(Example) 2-DOF Manipulator

1 1 1, ,l m I

1

1x

0x

0y

1y2

2 2 2, ,l m I

( )

1

1 1 (1) (1)21 1

1 1 (1)

1 0 0, 1

(1) (1) (1)

1 1 1 0

1 2 2

2

1 2 2

1 1 00

1 1 0

1 0 0 (0,0,1)

1 12 12

1 12 12

c c

c p p

c c

p c

T

o o o

c c

c

c c

qql s l s

qv q q J q J ql c l c

J z r

q J q J q J z

l s l s l sv

l c l c l c

=− −

= = = =

=

= = = = =

− − −

=

+

( )

(2) (2)

1 2

(2) (2) (2) (1) (1)

2 1 2 1 2 0 11 1 (0,0,1)

p p

T

o o o o o

q J J q

q J J q J q J J z z

=

= = = = = = =

( ) ( )( )( ) ( ) ( ) ( )(1) (1) (1) (1) (2) (2) (2) (2)

1 1 2 2

2 2 222 21 2 1 2 1 2 2 2 1 21 1

2 222 2 1

( ) ( ) ( ) ( )

1

2 2 2

0 ( 2 2) ( 2)0

0 0 ( 2)0 0

T T T T

p p o o p p o o

z zz c c c cc

nT T

i i i i

i p p o i

zc

o

i

c c

m J J J I J m J J J I J

I II m l l l l c m l l l cm

H m J J J

l

I Im l l l c m l

I J=

= + + +

+ + + = + + +

= +

+

2

11 12

12 22

z

H H

H H

로봇공학 (KAU AME)

로봇공학, Chapter 4

26

2-DOF Manipulator

1 111 122 112 121

2

111 121 122 2 1 2 2 112 2 1 2 1 2

2 211 212 221 222

2

222 212 221 211 2 1

( )

1

2 1

( ,

1

2

)

* 0, ( 2) (2 2)

( , )

* 0, 0, ( 2)

,c c

c

ij jk

ijk

k i

nT j

i j pi

j

h q q h h h h

h h h m l l s q h m l l s q q

h q q

H Hh

q q

G m

h h h h

h h h h m l

J

l

g

s q

g=

= −

= −

= + + +

= = = − = −

= + + +

= + = =

(1) (2)

1 1 1 2 1 1 1 2 2 1

(1) (2)

2 1 2 2 2 2 2

11 12 1 1 1 1

12 22 2 2 2

1 ( 12 1)

12

( , ) ( ) (

( , ) ( )

(0, ,0)

T T

p p c c

T T

p p c

T

G m g J m g J m gl c m g l c l c

G m g J m g J m gl c

H H q h q q G q

H G

g

H q h q q q

= − − = + +

= − − =

+ + =

=

2-DOF manipulator dynamics

2

)

( )

t

t

로봇공학 (KAU AME)

로봇공학, Chapter 4

27

2-DOF Manipulator

( )

2 2 2 2 2

1 1 2 2 2 1 2 2 2 2

2 2 2

2 2 2 2 2 1 2 1 1 2 12 2 1 1( ) 1

2 2 2 2

2 2 2 2 1 2 2 2 2 2

1 4 1 1

3 3 3 2

1 1 1

2 2 2

1 1 1 1 1

3 2 3 2 2

act

m l m l m l C m l m l C

m l S m l S m glC m glC m glC I

m l m l C m l m l S m glC

= + + + +

+ + + + + +

= + + + +

12 2( ) 1actI +

로봇공학 (KAU AME)

로봇공학, Chapter 4

28

Newton-Euler formulation (Ref.) Asada & Slotine’s Book

1, , 1

1, , 1 , , 1 1, 1,( ) ( ) ( )

Translational eq. of motion

Rotational eq. of motion

i i i

cii i i i i i i ci

ici i i i i i ci i i i ci i i

ii i i i i i i i

dI dII I I

dt

dvF f f m g m m v

dt

dHM N N r f r f

dt

dH

dt dt

− +

− + + − −

= = + =

= − + = =

+

= − + − − + − =

1,i i iN −

=

{ }joint i

( , , )link i i ii l m I

civi

1,i if −1,i iN −

, 1i if +−

, 1i iN +−

im g

iz

ix

iy

,i cir

로봇공학 (KAU AME)

로봇공학, Chapter 4

29

(Example) 2-DOF Manipulator

0,1 1,2 1 1 1

0,1 1,2 1, 1 1,2 0, 1 0,1 1 1

1,2 2 2 2

1,2 1, 2 1,2 2 2

0,1 1 1,2 2

0,1 1,2

1

2

,

(

(

for link 1

for lin

scalar)

scalar)

k 2

c

c c

c

c

f f m g m v

N N r f r f I

f m g m v

N r f I

N N

f f

I

I

− + =

− + − =

+ =

− =

= =

과 을 소거하면

2 1, 2 2 2 1, 2 2 2 2

1 2 0, 1 1 1 0,1 2 2 0, 1 1 0,1 2 1 1

c c c

c c c c

r m v r m g I

r m v r m v r m g r m g I

− − = − − − + − =

로봇공학 (KAU AME)

로봇공학, Chapter 4

30

4.5 Static Force Analysis

▪ Position control → end-effector(hand)가 주어진 궤적을 추종

▪ Force control→ end-effector와 접촉면 사이의 force/torque를 일정하게 유지 또

는 주어진 force/torque 궤적을 추종

[ ]

[ ]

H T

x y z x y z

H T

x y z x y z

F f f f m m m

D d d pd

=

=

=

External Force/torque at hand frame

Differen

Cartesian space (Task space, Operational space)

Joint spac

tial motion of the hand

Joint torques (revolu

e

te) an

1 2 6

1 2 6

[ ]

[ ]

T

T

T T T T

D d qd d

=

=

==

d Forces (prismatic)

Differential motion of joints

1

2

3

H F

로봇공학 (KAU AME)

로봇공학, Chapter 4

31

Static Force Analysis

H H TT TTW FF W Dp qD T

= = = =

=

Total virtual work Total

Principle of virt

virtual work

at task

ual work

Differential relati

o

sp

ns

ace at joint space

hip between joint m

otio

)

(

)

(

)

(

H

H T H H T T

T H

T T

T

p J qD JD

W F D F JD T D

FF

F

T

p

J

q

J

=

=

→ ==

== =

=

n and end-effector motion

Required joint torques/forces(or trajectory)

Desired force/torque (or trajectory)at hand frame(task space)

ManipulatorJacobian

로봇공학 (KAU AME)

로봇공학, Chapter 4

32

H.W. #3

▪ 예제 Example 4.1 ~4.5, 4.8~4.10 (8 probs.) = 40점

▪ 연습문제 Problem 1, 2, 3, 7, 8 (5 probs.)= 50점

top related