ess hs 2009 shepherd je

Post on 08-Aug-2018

213 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 1/160

 

California Institute of TechnologyPasadena, CA USA 91125

. . .

Presented at

The Fourth European Summer School on Hydrogen Safety

Coralia Marina Viva, Corsica, France

7th – 16th September 2009,

7 Sept 2009 Shepherd - Explosion Effects 1

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 2/160

Topics

 A. Introduction

B. Ideal Blast Waves 

C. Mechanics and Strength of Materials

.  

E. Modeling Structural Response

.   –

G. Internal Explosions – Deflagrations and Detonations

.

7 Sept 2009 Shepherd - Explosion Effects 2

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 3/160

Introduction

Ex losions create hi h- ressure, hi h-tem erature ases that can cause:

1. Mechanical failure due to pressure or blast waves or internal pressure build-up.

1. Permanent deformation or equipment or structures

.

3. Creating flying fragments or missiles

4. Blast, fragment or impact injury

2. Thermal failure due to heat transfer from fireball or hot combustion products.

1. Softening of metal structures

2. Ignition of building materials, electrical insulation, plastic or paper products

.

3. Combination of fire and explosion, thermal and mechanical effects often occur.

7 Sept 2009 Shepherd - Explosion Effects 3

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 4/160

Mechanical effects from high pressure

• Expansion of combustion products

due to conversion of chemical to

creation of gaseous products inhigh explosives

 

explosions depends on

thermodynamics 

chemical kinetics and fluid

mechanics

 –

 – Detonation velocity

7 Sept 2009 Shepherd - Explosion Effects 4

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 5/160

Thermal effects from high temperature

• Hot gases radiate strongly in IR, particularly for sooting

ex losion like BLEVE.

 – Fireballs cause injury (skin burns) and secondary ignition of structures

• Internal explosions create high-speed gas and convective heat

rans er n a on o ra a on – Heat up equipment, ignite flammable materials

7 Sept 2009 Shepherd - Explosion Effects 5

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 6/160

Fragment effects from structural failure

• Primary fragments

 – Created by rupture of vessel or structure –

 – Follows a ballistic trajectory

• Secondary fragments

 – Created by blast wave and following flow

 – Accelerated by flow, eventually follows a ballistic trajectory

7 Sept 2009 Shepherd - Explosion Effects 6

 

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 7/160

Pasadena TX 1989 – C2H4 Flixborough 1974 - cyclohexane

 

7 Sept 2009 Shepherd - Explosion Effects 7

Port Hudson 1974 – C3H8

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 8/160

Pasadena TX 1989

7 Sept 2009 Shepherd - Explosion Effects 8

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 9/160

Nuclear Blast Wave Damage – 5 psi (34 kPa)

7 Sept 2009 Shepherd - Explosion Effects 9

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 10/160

Effects of High Explosive Detonation

7 Sept 2009 Shepherd - Explosion Effects 10

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 11/160

Truck Bomb – 4000 lb TNTe

7 Sept 2009 Shepherd - Explosion Effects 11

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 12/160

Response of a Large Structure is Complex!

• as e ec s cause a sma num er o co umns anslabs to directly fail

progressive collapse• In Murrah Buildin , 40% of floor area destro ed due

to progressive collapse, only 4% due to direct blast.

• Factors in progressive collapse – Building design (seismic resistance can help)

 – Fires can weaken structural elements (WTC)

 understand or predict response

7 Sept 2009 Shepherd - Explosion Effects 12

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 13/160

Preview – Structural Response Analysis

• First, estimate static capacity of structure. Failure can occur to do either  – Excessive stress – plastic deformation or fracture makes structure too weak for

service

 – Excessive deformation – structure not useable due to leaks in fittings or misfit of

components (rotating shafts, etc).• Second, what are structural response times?

• Lar e s ectrum for a com lex structure

• Single value for simple structure

 – How do these compare to loading and unloading times of pressure wave?

• Loading time• Unloadin time

• Third, estimate dynamic peak deflection and stresses based on responsetimes and loading history – High peak load is acceptable if duration is short (impulsive case)

 – ower pea oa m ura on s ong an rap y app e su en case

7 Sept 2009 Shepherd - Explosion Effects 13

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 14/160

Structural Response

• Structures move in response to forces (Newton’s

 – Structure has mass and stiffness

 – Structure “ ushes back”

7 Sept 2009 Shepherd - Explosion Effects 14

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 15/160

Determining structural loads

• Load generally means “applied force” in this

.

due to pressure differences created by theex losion rocess. Pressure differences across

components of a structure create forces on the

structure and internal stresses.• Three simple cases

 – External explosion

 – Blast wave interaction – Internal explosion

7 Sept 2009 Shepherd - Explosion Effects 15

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 16/160

External Explosion

• Explosion due to accidentalvapor cloud release andi nition source startin acombustion wave

• Flame accelerates due toinstabilities and turbulence dueo ow over ac y s ruc ures

• Volume displacement of

combustion (“source of volume”)

motion locally and at a distance

 – Blast wave propagates awayfrom source

Unconfined Vapor Cloud Explosion (UVCE)

7 Sept 2009 Shepherd - Explosion Effects 16

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 17/160

Blast Wave Interaction

• Blast wave consists of 

 – Leadin shock front

 – Flow behind front• Pressure loading

 – nc en an re ec e pressure

behind shock

 – Stagnation pressure from flow

• Factors in loading

 – Blast decay time

 –

 – Distance from blast origin

7 Sept 2009 Shepherd - Explosion Effects 17

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 18/160

Internal Explosion

• Can be deflagration or detonation• Deflagration

 – Pressure independent of position, slow

• Detonation

 – Spatial dependence of pressure

 – Local peak associated with detonation wave formationand propagation

7 Sept 2009 Shepherd - Explosion Effects 18

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 19/160

Loading Histories

• Pressure-time histories can be derived

from several sources

 – Experimental measurements Slow flame in vessel

 – Analytical models with thermodynamic

computation of parameters

 – Detailed numerical simulations using

 – Empirical correlations of data

 – Approximate numerical models of blast

wave propagation (Blast-X)

 

• Characterizing pressure-time

histories

 – Single peak or multiple peaks

 – Rise time – Peak pressure

 – Duration

 

7 Sept 2009 Shepherd - Explosion Effects 19Ideal blast wave

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 20/160

 

7 Sept 2009 Shepherd - Explosion Effects 20

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 21/160

Ideal Blast Wave Sources

Simplest form of pressure loading – due concentrated, rapid release of energy

High explosive or “prompt” gaseous detonation. Main shock wave followed by

pressure wave and gas motion, possibly secondary waves.

Inside Explosion

7 Sept 2009 Shepherd - Explosion Effects 21

Pfortner 

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 22/160

Blast Wave from Hydrogen-Air Detonation

Outside

7 Sept 2009 Shepherd - Explosion Effects 22

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 23/160

Blast and Shock Waves

• Leading shock frontpressure jump determinedby wave speed – shock

Mach number.• Gas is set into motion b

shock then returns to rest

• Wave decays with distance  – Peak pressure rise

 – Impulse

 – os ve an nega ve p asedurations

Specific impulse!

7 Sept 2009 Shepherd - Explosion Effects 23

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 24/160

Scaling Ideal Blast Waves I.

• Dimensional analysis (Hopkinson 1915, Sachs 1944, Taylor-

Sedov

 – Total energy release E = Mq• M = mass of explosive atmosphere (kg)

• =

 – Initial state of atmosphere Po or o and co

• Limiting cases – Strength of shock wave

• Strong P >> Po

• Weak P << Po

 – Distance from source• Near R ~ Rsource

• Far R >> Rsource

7 Sept 2009 Shepherd - Explosion Effects 24

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 25/160

Scaling Ideal Blast Waves II.

• Scale parameters

 – Blast length scale Rs = (E/Po)1/3

 – Time scale Ts

= Rs/c

o – Pressure scale

• ose o exp os on exp usua y oun e y CJ  

• Far from explosion Po

• Relationshi s:

 – pressure P/Po

 – distance R/Rs

P = Po F(R/Rs)

 – time t/Ts

 – Impulse (specific) I/(Po Ts)

 =o s s

7 Sept 2009 Shepherd - Explosion Effects 25

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 26/160

Cube Root Scaling in Standard atmosphere

• Simplest expression of scaling (Hopkinson)

 – At a given scaled range R/M1/3, you will have the same

scaled impulse I/M1/3

and overpressure P – When you increase the charge size by K, overpressure will

remain constant at a distance KR, and the duration and

7 Sept 2009 Shepherd - Explosion Effects 26

  .

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 27/160

TNT Equivalent

• ea as wave rom gaseous exp os on equ va en o afrom High Explosive (TNT) when energy of gaseous explosive

is correctly chosen

• Universal blast wave curves in far field when expressed inSachs’ scaled variables

 

of the heat of combustion (Q = qM)

• For nonideal gas explosions (unconfined vapor clouds), E is

quite a bit smaller. Key issues: – How to correctly select energy equivalence?

7 Sept 2009 Shepherd - Explosion Effects 27

 –

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 28/160

Energy Equivalent for Common Explosives

Explosive Q (MJ/kg) Density

(g/cc)

CJ velocity

(km/s)

CJ

Pressure

ar 

TNT 4.52 1.6 6.7 210

. . .

HMX 5.68 1.9 9.1 390

. . .

C6H14 45 (1.62) 0.66 1.8 0.018

H2 100 2.7* 8.2E-5 1.97 0.015

Values from Baker et al.

7 Sept 2009 Shepherd - Explosion Effects 28

  or ue -a r m x ure

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 29/160

Scaling of Blast Pressure – Ideal Detonation

Comparison of fuel-air

Work done at DRES

(Suffield, CANADA) in 1980s

Moen et al 1983

7 Sept 2009 Shepherd - Explosion Effects 29

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 30/160

Scaling of Impulse – Ideal Detonation

Surface burst

 Air burstMoen et al 1983

7 Sept 2009 Shepherd - Explosion Effects 30

For the same overpressure or scaled impulse at a given distance, M(surface) = 1/2 M(air)

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 31/160

Energy scaling of H2-air blast

Energy Equivalence

100 MJ/kg of H2

or

-.

mix for stoichiometric.

Shepherd 1986

7 Sept 2009 Shepherd - Explosion Effects 31

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 32/160

Hydrogen-air Detonation in a Duct

• Blast waves in ducts decay

much more slowl than

unconfined blasts

P ~ x-1/2

• u p e s oc waves

created by reverberation of

transverse waves withinduct

• Pressure profile approaches

large distances.

7 Sept 2009Shepherd - Explosion Effects 32

Thibault et al 1986

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 33/160

Interaction of Blast Waves with Structures

Blast-wave interactions with multiple

structures LHJ Absil, AC van den Berg,

J. Weerheijm p. 685 - 290,

oc aves, o . , . turtevant,

Hornung, Shepherd, World Scientific,

1996.

7 Sept 2009Shepherd - Explosion Effects 33

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 34/160

Idealized Interactions

Enhancement depends:

Incident wave strength

 Angle of incidence

7 Sept 2009Shepherd - Explosion Effects 34

“Explosions in Air” Baker 

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 35/160

Nonideal Explosions

• Blast pressure depends on magnitude of maximum flame

• Flame speed is a function of  – Mixture composition

 – ur u ence eve

 – Extent of confinement

• There is no fixed energy equivalent – E varies from 0.1 to 10% of Q

• Impulse and peak pressure depend on flame speed and sizeof cloud – Sachs’ scalin has to be ex anded to include these

7 Sept 2009Shepherd - Explosion Effects 35

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 36/160

Pressure Waves from Fast Flames

Sachs’ scaling with addition parameter – effective flame Mach number Mf . Numerical

simulations based on ‘porous piston’ model and 1-D gas dynamics.

Tang and Baker 1999

7 Sept 2009Shepherd - Explosion Effects 36

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 37/160

What is Effective Flame Speed?

Consider volume displacement

of a wrinkled (turbulent) flame growing in

a mean spherical fashion.

Expansion

ratio

7 Sept 2009

Shepherd - Explosion Effects 37

 

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 38/160

 

7 Sept 2009

Shepherd - Explosion Effects 38

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 39/160

Forces, Stresses and Strains

• Loading becomes destructive when forces are

or else the forces (or thermal expansion) createstresses that exceed ield stren th of the material.

• Important cases

 – Rigid body motion – fragments and overturning – Deformation due to internal stresses

• Bending, beams and plates

• em rane s resses, pressure vesse s

7 Sept 2009

Shepherd - Explosion Effects 39

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 40/160

Rigid Body Forces due to Explosion

• Pressure varies with position

and time over surface – has

to be measured or

computed

• Local increment of force on

surface due to ressure onlin high Reynolds’ number

flow

Geometry and distribution of pressure willresult in moments as well as forces!

Be sure to add in contributions from bod

7 Sept 2009

Shepherd - Explosion Effects 40

forces (gravity) to get total force.

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 41/160

Consequence of Forces I.

• Rigid body motions

 – Translation

 – Rotation

7 Sept 2009 Shepherd - Explosion Effects 41

  –  cm

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 42/160

Internal Forces Due to an Explosion

• Force on a surface element dS

7 Sept 2009 Shepherd - Explosion Effects 42

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 43/160

Consequence of forces – small strains (<0.2 %)

• Elastic deformation

• Elastic shear 

Youngs’ modulus E, shear modulus E, and Poisson ratio are material properties

7 Sept 2009 Shepherd - Explosion Effects 43

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 44/160

Consequences of forces – large strains

• Onset of yielding for ~

• Necking occurs inplastic regime > Y

• Plastic instability and

rupture for > u

•plastic deformation

Plot is in terms of engineering stress and strain, apparentmaximum in stress is due to area reduction caused by necking

7 Sept 2009 Shepherd - Explosion Effects 44

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 45/160

Stress-Strain Relationships

7 Sept 2009 Shepherd - Explosion Effects 45

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 46/160

Yield and Ultimate Strength

• Yield point YP determined by uniaxial tension test

• .

Extension of tension test to multi-axial loading: – Maximum shear stress model max < YP/2

 – on ses or oc a e ra s ear s ress cr er on

• Onset of localized permanent deformation occurs well beforecomplete plastic collapse of structure occurs.

7 Sept 2009 Shepherd - Explosion Effects 46

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 47/160

Some Typical Material Properties

E G   y   u   rupture

Material (kg/m3) (GPa) (GPa) (MPa) (MPa)

 Aluminum 6061-T6 2.71 x 103

70 25.9 0.351 241 290 0.05

 Aluminum 2024-T4 2.77 x 103 73 27.6 0.342 290 441 0.3

Steel (mild) 7.85 x 103

200 79 0.266 248 410-550 0.18-0.253

ee s a n ess . . - - . - .

Steel (HSLA) 7.6 x 103

200 0.29 1500-1900 1500-2000 0.3-0.6

Concrete 7.6 x 103

30-50 20-30 - 0

Fiberglass 1.5-1.9 x 103

35-45 - 100-300 -3

. - . . -

PVC 1.3-1.6 x 103

0.2-0.6 45-48 - -

Wood 0.4-0.8 x 103

1-10 - 33-55 -

Polyethylene (HD) 0.94-0.97 x 103

0.7 20-30 37 -

7 Sept 2009 Shepherd - Explosion Effects 47

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 48/160

Considerations about material properties

• Simple models:

 – 

  ,

 – elastic perfectly plastic• More realistic models

ddt

 – Strain hardening Y ()  

 – , Y

 – 

 Y

7 Sept 2009 Shepherd - Explosion Effects 48

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 49/160

 

7 Sept 2009 Shepherd - Explosion Effects 49

f S f

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 50/160

Mechanism of Structural Deformation

• Stress waves

 –

 – Short time scale

• Flexural waves

 – Shock or detonation propagation inside tubes

 – Vibrations in shells

• ens on or compress on

 – Deforms shells

 – Bends beams and plates

7 Sept 2009 Shepherd - Explosion Effects 50

Pressure Loading Characterization

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 51/160

Pressure Loading Characterization

P

• Structural response time T vs. loading and unloading time scales

• Peak pressure P vs. Capacity of structure

• Loadin re imes

 – Slow (quasi-static), typical of flame inside vessels T << L or u – Sudden, shock or detonation waves L << T

• Short duration – Impulsive U << T

7 Sept 2009 Shepherd - Explosion Effects 51

  - U

St ti D i

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 52/160

Statics vs. Dynamics

• Static loading T << l, u

 –

characteristic structural response time – Inertia unimportant

 – Response determined completely by stiffness, magnitude

of load.

• Dynamic loading T ≥ l, u

 – Loading or unloading time short compared to characteristic

 – Inertia important

 – Res onse de ends on time histor of loadin

7 Sept 2009 Shepherd - Explosion Effects 52

St ti St i S h i l Sh ll

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 53/160

Static Stresses in Spherical Shell

• Balance membrane stresses

with internal ressure

loading

• Force balance on equator  R

R

 

7 Sept 2009 Shepherd - Explosion Effects 53

Validate only for thin-wall vessels h < 0.2 R

St ti St i C li d i l Sh ll

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 54/160

Static Stresses in Cylindrical Shells

• Biaxial state of stress

projected force on end caps.

• Radial (hoop) stress due to

7 Sept 2009 Shepherd - Explosion Effects 54

Bending of Beams

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 55/160

Bending of Beams

• Force on beam due to

inte rated effects of

pressure loading

• Pure bending has no net

• Deflection for uniform

loading

7 Sept 2009 Shepherd - Explosion Effects 55

Stress Wave propagation in Solids

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 56/160

Stress Wave propagation in Solids

• Dynamic loading by impact or high explosive detonation in contact with structure

• Two main types

 – -,

 – Transverse (shear, S-waves

• Stress-velocity relationship (for bar P-waves)

 

7 Sept 2009 Shepherd - Explosion Effects 56

Is direct stress wave propagation important?

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 57/160

Is direct stress wave propagation important?

• Time scale very fast compared to main structural

res onse T ~ L/C

Cl (m/s) Cs(m/s)Steel 6100 3205

 – Average out in microseconds (10-6

s)

 Aluminum 3205 3155

• Stress level low compared to yield stress

  Y   -

Direct stress propagation within the structural elements is usually

not relevant for structural response to gaseous explosions. Important for high

7 Sept 2009 Shepherd - Explosion Effects 57

exp os ve w en s ruc ure s very c ose or n rec con ac w exp os ve

Vibration of Plates Beams & Structures

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 58/160

Vibration of Plates, Beams, & Structures

• Element vibrations

 –

 – Plates or beams

 – Modes of flexural motion

• Standing waves, frequencies i

• Propagating dispersive waves (k)

• Coupled motions of entire structure

7 Sept 2009 Shepherd - Explosion Effects 58

Free Vibration of Clamped Plate

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 59/160

Free Vibration of Clamped Plate

7 Sept 2009 Shepherd - Explosion Effects 59

 

Transient Response of Clamped Plate

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 60/160

Transient Response of Clamped Plate

Morse and Ingard

Theoretical Acoustics

7 Sept 2009 Shepherd - Explosion Effects 60

Two Special Situations

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 61/160

Two Special Situations

• Loading on small objects

 – Re resent forces as dra coefficients de endent on sha e and

orientation and function of flow speed.

F = ½ V2 CD(Mach No, Reynolds No) x Frontal Area

  .

 – Thermal stresses are stresses that are created by differential thermal

expansion caused by time-dependent heat transfer from hot explosion

.heating, which is a very important factor in fires which occur over very

much longer durations than explosions.

 

7 Sept 2009 Shepherd - Explosion Effects 61

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 62/160

 

7 Sept 2009 Shepherd - Explosion Effects 62

Determining structural response

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 63/160

Determining structural response

• Issues

 –

• depends on time scale of response compared to that of load – impulsive (short loading duration)

 – sudden (short rise time)

 – quasi-static (long rise time)

 – Elastic or elastic-plastic• depends on magnitude of stresses and deformation

 – yield stress limit appropriate for vessels designed to contain

explosions

 – maximum displacement or deformation limit appropriate fordetermining or preventing leaks or rupture under accident conditions

7 Sept 2009 Shepherd - Explosion Effects 63

Simple estimates

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 64/160

Simple estimates• Strength of materials approach assuming equivalent static load

 – Useful only for very slow combustion (static loads) and negligible thermal load

• Theory of elasticity and analytical solutions

 – ’ 

 – dynamic solutions available for simple shapes – mode shapes and vibrational periods are tabulated.

 – Energy methods with assumed mode shapes (Baker et al method)

 – Analytical models for traveling loads available for shock and detonation waves

 – Transient thermo-elastic solutions available for sim le sha es

• Theory of plasticity

 – rigid-plastic solutions available for simple shapes and impulsive loads.

 – Energy methods can provide quick bounds on deformation

• – Test data available for certain shapes (clamped plates) and impulsive loads

 – Pressure-impulse damage criteria have been measured for many items and people subjected to blast loading

• Spring-mass system models

 –

 – multi-degree of freedom

 – elastic vs plastic spring elements

7 Sept 2009 Shepherd - Explosion Effects 64

Simple Structural Models

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 65/160

S p e St uctu a ode s

• Ignore elastic wave propagation within structure

• Lum mass and stiffness into discrete elements – Mass matrix M

 – Stiffness matrix K – Dis lacements X

 – Applied forces Fi

• Equivalent to modeling structure as coupled “spring-mass”

• Results in a spectrum of vibrational frequencies Icorresponding to different vibrational modes – Fundamental lowest mode usuall most relevant

7 Sept 2009 Shepherd - Explosion Effects 65

 

Single Degree of Freedom Models (SDOF)

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 66/160

g g ( )

• Effective mass M

 

• One displacement motion X• =

• Equivalent to spring-mass

s stem• Elastic motion is oscillation of

displacement x = X-Xo with

period T

7 Sept 2009 Shepherd - Explosion Effects 66T

Forced Oscillation of SDOF system

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 67/160

y

• Blast wave characterized by

 – Peak pressure P  

p

 – Decay time

• Forced harmonic oscillator,t

F(t) = AP(t)

• Response is forced oscillation

7 Sept 2009 Shepherd - Explosion Effects 67

Example of SDOF Modeling

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 68/160

p g

• Radial oscillation of cylindersR

h

P(t)x

• Bending of beams or columns

Frequencies are “lowest or fundamental mode” – these are usually the most important modes for 

structural res onse to ex losions.

7 Sept 2009 Shepherd - Explosion Effects 68

 

Modes of Beam Oscillation

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 69/160

7 Sept 2009 Shepherd - Explosion Effects 69

  –

SODF - Square Pulse

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 70/160

7 Sept 2009 Shepherd - Explosion Effects 70

SDOF -Impulsive Regime

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 71/160

• Sudden load application, shortduration of loading << T

• Linear scaling between maximum

strain/ displacement and impulse

in elastic regime:• Impulse generates initial velocity

•maximum deflection

7 Sept 2009 Shepherd - Explosion Effects 71

SDOF – Sudden regime

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 72/160

• Quick application of load and long duration

>>u  

• Peak deflection is twice static value for same maximum

load

FMax force

displacement

7 Sept 2009 Shepherd - Explosion Effects 72

T

SDOF – Static Regime

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 73/160

• Very slow application of load – (quasi-static) no

T << u or L

 

FMaxforce

displacement

7 Sept 2009 Shepherd - Explosion Effects 73

T

SDOF - D namic load factor DLF

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 74/160

SDOF D namic load factor DLF

7 Sept 2009 Shepherd - Explosion Effects 74

SDOF - Plasticity

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 75/160

• Replace kX with nonlinear

relationshi based on flow

stress curve ()

• Energy absorbed by plasticwor s muc g er an

elastic work

• Peak deformation forimpulsive load scales with

impulse squared.

7 Sept 2009 Shepherd - Explosion Effects 75

Pressure-Impulse (P-I) Structure Response

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 76/160

• More realistic representation of response

• max   ,

between peak pressure (P) and impulse (I)

Shock wave with

exponential tail

Limiting cases:

1. Short pulse – impulse

determines damage

. ong pu se – pea

pressure determines

7 Sept 2009 Shepherd - Explosion Effects 76

P-I Damage thresholds II

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 77/160

1000

 

800

  -  s   )

400   I  m  p  u   l  s  e   (   P

50-75% demolished 

200minor damage

0

0 20 40 60 80 100

7 Sept 2009 Shepherd - Explosion Effects 77From Baker et al.

Overpressure (kPa)

P-I Damage Thresholds II

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 78/160

Ear drums

7 Sept 2009 Shepherd - Explosion Effects 78

Example

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 79/160

• Blast wave from 50 lbs TNT equivalent at 100 ftrange

• Use charts or correlations from Dorofeev

E = 4.52x50/2.2 = 103 MJ Rs = (1 x 108 / 105 )1/3 = 10 m or 33 ft

R* = 30.5/10 = 3 P* = 0.085 or P = 1.25 psi (8.5 kPa)

I* = 0.012 T = 3/340 = 8.8 ms I = 10 Pa s

These are “side-on” parameters, normal reflection will approximately double

7 Sept 2009 Shepherd - Explosion Effects 79

overpressure an mpu se n s reg me.

P-I Results

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 80/160

Brick structures Ear drums

800

1000

400

600

   I

  m  p  u   l  s  e   (   P  a  -  s   )

50-75% demolished 

0

200minor damage

0 20 40 60 80 100

Overpressure (kPa)

Your ears wi ll be ringing but the building is undamaged!

7 Sept 2009 Shepherd - Explosion Effects 80

Numerical simulation

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 81/160

• Finite element models

• vibration: mode shape and frequencies

• dynamic

 – transient response to specified loading

 – elastic

 – lastic/fracture

• Numerical integration of simple models with

com lex loadin histories 

 – spring-mass systems

 – Elasticit with assumed mode sha e

7 Sept 2009 Shepherd - Explosion Effects 81

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 82/160

 

Example: Cantilever Beam

7 Sept 2009 Shepherd - Explosion Effects 82

Blast Incident on a Cantilever Beam

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 83/160

• Blast loading of a

• Forces – Initial impulse of shock

 – Flow and drag

• Elastic response

 – Giordona et al• plastic response

 – Van Netton and Dewey

7 Sept 2009 Shepherd - Explosion Effects 83

Forces on Blast-loaded Cantilever 

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 84/160

• Shock wave interaction

 – Sudden load to arrival of

shock and propagation

around cylinder  – Usuall im ulsive

• Following flow

 – Continuous load due to

cylinder.

 – Transient drag loading

7 Sept 2009 Shepherd - Explosion Effects 84

  , – 

Force due to flow induced by blast wave

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 85/160

Van Netten and Dewe , Shock Waves 1997 7: 175–190

7 Sept 2009 Shepherd - Explosion Effects 85

Initial stages of shock diffraction over a cantilever beam

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 86/160

 

shock wave passes over

the beam there is nodeflection.

Purely elastic case.

 Computation (right)

7 Sept 2009 Shepherd - Explosion Effects 86

Giordano et al, Shock Waves 14 (1-2), 103-110, 2005.

Later stages of diffraction over a cantilever beam

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 87/160

 After some time, the

beam starts to deform.

Dynamic response of

beam and inertia are

.

Purely elastic case.

Experiment (left)

Computation (right)

7 Sept 2009 Shepherd - Explosion Effects 87

Giordano et al, Shock Waves 14 (1-2), 103-110, 2005.

 Applied Load and Oscillations of Beam

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 88/160

Note the harmonic motion of thebeam after incident and reflected shock.

7 Sept 2009 Shepherd - Explosion Effects 88

Giordano et al, Shock Waves 14 (1-2), 103-110, 2005.

Plastic Deformation of Blast loaded Cantilever 

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 89/160

Permanent deformation of

beam due to formation of a

“plastic hinge” at the base.

Stresses exceed the yield

strength of the material and

bent over. Deflection

depends on loading history.

Can be used as a “blast

gage” for ideal explosives.

7 Sept 2009 Shepherd - Explosion Effects 89

Van Netten and Dewey, Shock Waves (1997) 7: 175–190

Shock tube experiments

Deformation of a 200 mm long 1 55 Final angle of deformation for 50 mm

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 90/160

Deformation of a 200 mm long, 1.55mm dia aluminum rod due to a M =

1.23 shock, 1 ms intervals

Final angle of deformation for 50 mmlong, 1 mm dia solder rods.

Van Netten and Dewey, Shock Waves (1997) 7: 175–190

7 Sept 2009 Shepherd - Explosion Effects 90

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 91/160

 

Deflagrations and Detonations in Vessels

7 Sept 2009 Shepherd - Explosion Effects 91

Creation of flow by Explosions I.

• ames crea e ow ue o expans on o pro uc s pus ng

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 92/160

• ames crea e ow ue o expans on o pro uc s pus ngagainst confining surfaces

• - 

 – Expansion ratio   u    

 – Flame velocity  eff 

T  f T  f    S  A AS V           /

b

 – Flow velocityeff 

eff 

T  f    S S V U    )1(      

Burned (u =0) V f  Unburned u > 0

flame

Blast wave

u = 0

7 Sept 2009 Shepherd - Explosion Effects 92

Creation of flow by Explosions II

• Detonations and shock waves create flow due to

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 93/160

• Detonations and shock waves create flow due toacceleration by pressure gradients in waves

• ons er gn on o e ona on a e c ose -en o a u e

Burned (u =0) Burned u >0 Unburned u = 0

 

Expansion wave

 wave

u

7 Sept 2009 Shepherd - Explosion Effects 93

x

Internal Explosion - Deflagration

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 94/160

• Limiting pressure determined by thermodynamic

 – Adiabatic combustion process

 – Chemical equilibrium in products

Combustion wave

 – Constant volume

• Initial pressure-time history determined

  ro ucts

=

Sf  u

fuel-air mixturef    f   

Vf 

7 Sept 2009 Shepherd - Explosion Effects 94

Pressure in Closed Vessel Explosion

Peak pressure limited by heat transfer during burn and any

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 95/160

Peak pressure limited by heat transfer during burn and any

Venting that takes place due to openings or structural failure

7 Sept 2009 Shepherd - Explosion Effects 95

Burning Velocity

•Laminar burning speed depends on substance composition

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 96/160

Laminar burning speed depends on substance, composition,pressure, temperature

  ,

much higher 

7 Sept 2009 Shepherd - Explosion Effects 96

 Adiabatic Explosion Pressure

• Pressure of products if there are no heat losses and complete reaction occurs

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 97/160

• Pressure of products if there are no heat losses and complete reaction occurs

• Energy balance at constant volume

Ereactants(Treactants) = Eproducts(Tproducts)

Vreactants = Vproducts

P = P N T /N T

• Products in thermodynamic equilibrium

• For stoichiometric HC fuel-air mixtures: Pp ~ 8-10 Pr 

  - , ,• Values are similar for all HC fuels when expressed in terms of equivalence

ratio.

occurs

7 Sept 2009 Shepherd - Explosion Effects 97

Measured Peak Pressure vs Calculated

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 98/160

7 Sept 2009 Shepherd - Explosion Effects 98

Structural Response to Deflagration

• Quasi static pressurization

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 99/160

• Quasi-static pressurization

 –

• Structure response can be

 – Thermochemical computations

 –• Internal pressure

• Thermal stress

8/31/2009 99

Thermal Stress from Deflagrations

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 100/160

•   .

insulated on the inside with 6

mm of neoprene.

Neoprene

insulation

6mm

Ignition

insulation

S0 S1 S2 S3 S4 -

8/31/2009 100

 

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 101/160

•  

of 50 ms

• Contribution to hoopstrain is about 125% of  

peak value due to

mechanical loading

alone.

• Dominates long-time (>

100-200 ms)

observations

8/31/2009 101

Structural failure due to deflagration

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 102/160

 Aviation kerosene (Jet A) at 40 C, pressure of .58 bar (14 kft pressure altitude)

7 Sept 2009 Shepherd - Explosion Effects 102

Detonations in Piping

A id t l l i

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 103/160

• Accidental explosions

• o en a azar n

 – Chemical processing plants

 – Nuclear facilities

• Waste processing

• Fuel and waste storage

• Power lants

• Test facilities

 – Detonation tubes used in laboratory facilities

 – e es ns a a ons vapor recovery sys ems

7 Sept 2009 Shepherd - Explosion Effects 103

Recent Accidental Detonations in NPP

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 104/160

Hamaoka-1 NPP

Brunsbuettel KBB

Both due to generation of H2+1/2O2 by radiolysis and accumulation in

7 Sept 2009 Shepherd - Explosion Effects 104

s agnan p pe egs w ou g -po n ven s or o -gas sys ems.

Explosion Scenario

Plug of waste material Radial motion of pipe wall

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 105/160

L

“ bubble” of explosive gas (H2-N2O) ignitionExplosion wave propagation

Motion of piping

8/31/2009 105

Bubble

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 106/160

Propagating

detonation

Reflected

detonation

Deflagration-to-Detonation

Transition followed by

reflection PRC-DDT

8/31/2009 106

Example of Bubble Explosion

Hoop strain [Pa]D=127 mm

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 107/160

t=13 mm

  m

   L  =   1 .   2   4

P

  u   b  e  a

  x   i  s

8/31/2009 107

 

factor: 2000

H2-N2O Explosion Pressure Estimates

60 Reflected CJ

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 108/160

60Detonation

40

50

   0

30   P   /   P

CJ Detonation

10

20 CV Explosion

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

  3

8/31/2009 108

2  

Radial (Hoop) motion of Pipes:

o e

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 109/160

  o e 

surface

P(t)x

R

ssumes ra a an ax a symme ry o oa

Stress in hoop direction is restoring force   E hoohoo       

Results in harmonic oscillator for tube

 

reduced

frequency

reduced

driving force

8/31/2009 109

Dynamic Loading Factor 

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 110/160

1.6

1.8

.

1.0

1.2

1.4

  c   l  o  a   d   f  a  c   t  o  r

Quasi-static

0.4

0.6

0.8

   d  y  n  a  m

   i

Impulsive

0.0

0.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

8/31/2009 110

Effect of load localization 

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 111/160

Infinite thin-walled

(R/t>10) cylinder ofradius R under

uniform radial

pressure p over

.

p

w

2R

8/31/2009 111

Load Length Factor 

1 2

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 112/160

1.2  n

0.8

1

   i  s  p   l  a  c  e  m

0.6

   s   t  r  a   i  n  o  r

4/12 )1(3

 

   

   

 

0.2

.

  n  o  r  m  a   l   i  z  e

0 2 4 6 8 10

w*

8/31/2009 112

BOC Methodology

Estimate loadin sin SDOF model and acco nt

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 113/160

• Estimate loadin usin SDOF model and accountYield stress

for finite length of load.

  Y hoop   wF  RP

P      

     

 

  max

0max,

0

From explosion

pressure

estimate

Diameter andSchedule of DynamicLoad Factor  Load length factor 

8/31/2009 113

Hazard larger for bigger, thinner pipes

6 Schedule 10

Schedule 40

0.2% strain limit for reflecteddetonation pressure in H2-N2O

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 114/160

Schedule 80

4  e   (   b  a  r   )

Schedule 160

WT1

WT2

WT3

2-in schedule 40

3

   t   i  a   l   p  r  e  s  s  u  r

.

2

   M  a  x   i  n

   i

0

10-in schedule 40

8/31/2009 114Radius/thickness

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 115/160

7 Sept 2009 Shepherd - Explosion Effects 115

Detonations are

ressure waves

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 116/160

 Austin & Shepherd 2003

7 Sept 2009 Shepherd - Explosion Effects 116

Detonation Followed by an Expansion Wave

“Taylor-Zel’dovich”

wave – similarity

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 117/160

wave – similarity

   d particle path   n   d

solution for constant

detonation speed and

Isentropic flow in

  s  e   d  e

  o  p  e  n

3

  .

  c   l

2

 

Lx0

1 - at restexpans on an

7 Sept 2009 Shepherd - Explosion Effects 117detonation

Spatial distribution of Pressure

Spreads linearly with increasing time.

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 118/160

7 Sept 2009 Shepherd - Explosion Effects 118

Detonations Excite Flexural Waves in Piping

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 119/160

7 Sept 2009 Shepherd - Explosion Effects 119

Measuring Elastic Vibration

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 120/160

7 Sept 2009 Shepherd - Explosion Effects 120

ao

Flexural Wave Resonance in Tubes

Measured strain (hoop)

-4

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 121/160

-4

• Coupled response due to hoopt (ms)

2

 

• Traveling load can excite

resonance when flexural wave

group velocity matches wave speed

 Amplification factor 

• Can be treated with analytical and

FEM models

7 Sept 2009 Shepherd - Explosion Effects 121

U (m/s)e tman an ep er

Detonation-Induced Failure of Piping Systems

• Initiation of cracks at flaws

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 122/160

 – Location of transition from deflagration to detonation

 – , ,

• Rupture

 –

pressure

• Bending pipes or support structures

 – Forces created by detonation wave changing direction

7 Sept 2009 Shepherd - Explosion Effects 122

Detonation-Induced Fracture

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 123/160

External Blast

Chao 2004

7 Sept 2009 Shepherd - Explosion Effects 123

Fracture Behavior is a Strong Function of Init ial Flaw Length

  . , . , .

Surface notch dimensions: Width: 0.25 mm, Notch depth: 0.56 mm

Chao 2004

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 124/160

- -

Specimens (Pcj = 6.2 MPa)

=  .

.

Surface Notch Length = 5.08 cm

Surface Notch Length = 7.62 cm

7 Sept 2009 Shepherd - Explosion Effects 124Detonation wave direction

Special Issues in Piping Systems

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 125/160

• Two types of loads :

 – Short period hoop oscillation – Long period beam bending modes

• Significant in piping systems

 – Traveling load creates series of impulses at bends, tees and closed ends

 – Dynamic pressure must be accounted for in computing magnitude of impulse – Strains due to bending comparable or larger than hoop strains

7 Sept 2009 Shepherd - Explosion Effects 125

Piping System Response

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 126/160

 

bend

8/31/2009 126tee closed end

Pressure Waves on 90o Bend

extrados intrados

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 127/160

Extrados compression waves

hi her ressure eaksIntrados expansion waves

7 Sept 2009 Shepherd - Explosion Effects 127

 

Liang, Curran and Shepherd 2007

Transverse Flow Forces in a 90o Bend

d~ ~ ~~ ˆ ˆ

Momentum equation (general case):

ρu = ρuu n n

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 128/160

          dt

  ρu   = − −   ρuu · n   −   n

Simplification for uniform, steady flow:

~ F   = xA1

¡P 1 +  ρ1u

2

1

¢ + yA2

¡P 2 +  ρ2u

2

2

¢General unsteady case:

~ F   = xF x(t) + yF y(t)

2 ~   PPu   D namic ressure within Ta lor wave

 Approximate transverse force

7 Sept 2009 Shepherd - Explosion Effects 128

Behind detonation front 33

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 129/160

8/31/2009 129

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 130/160

 

17 strain gages

3 displacement gages

Spark ignition on W end

1 MHz recording for 0.5 s

8/31/2009 130

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 131/160

8/31/2009 131

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 132/160

8/31/2009 132

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 133/160

8/31/2009 133

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 134/160

8/31/2009 134

350

300

  = 1 Reflected CJ250

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 135/160

200

150

  s   t  r  a   i  n

Shot 3

100 shot 4shot 5

Shot 6

Shot 22

  = 1 Propagating CJ

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Shot 23

CJ

CJ - Ref 

8/31/2009 135

Gage number 

DDT

• Deflagration to detonation transition is a common

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 136/160

• Compression of gas by flame increases pressure

“ ”  .

• Represents upper bound in severity of pressure

loadin .

7 Sept 2009 Shepherd - Explosion Effects 136

Deflagration to Detonation Transition

burned unburned

1. A smooth flame with laminar flow ahead

• Flame creates flow

 – Pressure build-up

•  

L li d

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 137/160

2. First wrinkling of flame and instability of upstream flow

 – Localized

3. Breakdown into turbulent flow and a corrugated flame

4. Production of pressure waves ahead of turbulent flame

5. Local explosion of vortical structure within the flame

7 Sept 2009 Shepherd - Explosion Effects 137

6. Transition to detonation

DDT Near End Flange

Pressure History Strain History

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 138/160

  r  a   i  n

   )

   t  r  a   i  n   (  m   i  c  r  o  s   t

   S

•15% H2 in H2-N2O at 1 atm init ial pressure

•Thermal ignition’

8/31/2009 138

• a o s ac es ns e ong u e

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 139/160

8/31/2009 139

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 140/160

8/31/2009 140

Other DDT Testing

 

• Thin-walled vessels for plastic response and failure• Use bars or tabs as “obstacles” to cause flame acceleration

• Range of mixtures studied H2-N2O, H2-O2, CH4, C2H4, C3H8-O2

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 141/160

• Measurement of strain and pressure

7 Sept 2009 Shepherd - Explosion Effects 141

DDT Near End Flange

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 142/160

   (  m   i  c  r  o  s   t  r  a   i  n   )

   S   t  r  a

   i  n

•15% H2 in H2-N2O at 1 atm initial pressure•Thermal ignition

7 Sept 2009 Shepherd - Explosion Effects 142

•Tab obstacles inside tube Liang, Karnesky & Shepherd 2006

H2-O2

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 143/160

CJ- ref 

CJ

CV

Pint en, Lian , & She herd 2007

7 Sept 2009 Shepherd - Explosion Effects 143

CH4-O2

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 144/160

Pint en, Lian , & She herd 2007

7 Sept 2009 Shepherd - Explosion Effects 144

Conclusions of DDT Testing

• Peak pressures in DDT up to 10 X CJ-ref 

 – e , ogar o , raven an r eg , e c.

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 145/160

• Load is in impulsive regime

• ea s ra n s compara e o . x s a c s ra n o

reflected detonation

• -(H2, CH4, C2H4, C3H8)

7 Sept 2009 Shepherd - Explosion Effects 145

Water-Hammer Induced by

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 146/160

8/31/2009 146

Elementary Theory 

precursor 

sound speed in water

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 147/160

• sound speed in water

• Flexural wave in tube

coup e to watercompression wave

• wa er ammer  

(Al tube)

8/31/2009 147147147

Joukowsky 1898, von Karman 1911, Skalak 1956, Tijsseling 1996

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 148/160

8/31/2009 148

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 149/160

8/31/2009 149

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 150/160

8/31/2009 150

Modeling Piping Response To Detonations

• SDOF model for hoop oscillations

Beam on an elastic foundation

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 151/160

 – Beam on an elastic foundation

 

 – (Tang) with rotary inertia

 

 – Shell models (Cirak)

 – - 

• Structural models for piping systems with bends,

tees su orts and nozzles.

7 Sept 2009 Shepherd - Explosion Effects 151

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 152/160

 

7 Sept 2009 Shepherd - Explosion Effects 152

References on Gaseous Explosions

1. W. E. Baker, P. A. Cox, P. S.Westine, J. J. Kulesz, and R. A. Strehlow. ExplosionHazards and Evaluation. Elsevier, 1983. This is the classic monograph with anextensive discussion of all aspects of explosion and structural response. It isn en e o e a e a e ec n ca re erence an gu e or eng neers nvo ve nsafety assessments. The book emphasizes hand calculation methods and isapproximately evenly divided between the topics of characterizing explosion

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 153/160

approximately evenly divided between the topics of characterizing explosion

loading, and models of structural response. There are chapters on fragment and, .

2. Anon. Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions,Flash Fires, and BLEVEs. AIChE, 1994. Center for Chemical Process Safety. This

Safety (CCPS) of the American Institute of Chemical Engineershttp://www.aiche.org/ccps/. The emphasis is on pressure wave and thermalradiation from uncon¯ ned vapor clouds and boiling liquid expanding vaporexplosions (BLEVE). Oriented toward chemical process plant safety.

7 Sept 2009 Shepherd - Explosion Effects 153

References on Gaseous Explosions (cont)

3. J. M. Kuchta. Investigation of re and explosion accidents in chemical, mining, and fuel-related industries - a manual. Bulletin 680, Bureau of Mines, 1985. The Bureau of Minescarried out an extensive research program on gaseous explosions and this publication

° group through the mid 1980s.

R G

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 154/160

4. Dag Bjerketvedt, Jan Roar Bakke, and Kees van Wingerden. Gas explosion handbook.

Journal Of Hazardous Materials, 52(1):1{150, January 1997. See the most recent onlinevers on a p: www.gexcon.com . e group a as een very ac ve yinvolved in explosion incident investigation and explosion protection studies. Their FLACSprogram is one of the most widely used tools for evaluating pressure wave generation byvapor cloud explosions in industrial facilities. This handbook (now online) provides arelatively easy to read introduction to all aspects of explosions with Chapter 8 providing ann ro uc on o s ruc ura response.

5. K. Gugan. Unconfined Vapor Cloud Explosions. Gulf Publishing Company, 1978. Incidentsof unconfined vapor cloud explosions from 1921 through 1979 are reviewed and detailed

.the factual material is very useful.

7 Sept 2009 Shepherd - Explosion Effects 154

References on Blast Waves

1. S. Glasstone and P. J. Dolan. The Effects of Nuclear Weapons. United States Department ofDefense and Department of Energy, 3rd edition, 1977. As title indicates, the focus is onnuclear weapons. Air blasts are a significant aspect of nuclear weapons effects and provided

.Glasstone provides a detailed description of blast wave phenomena and the effect of nuclearblasts on structures.

2 W E Baker Explosions in Air University of Texas Press Austin Texas 1973 Substantially

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 155/160

2. W. E. Baker. Explosions in Air . University of Texas Press, Austin, Texas, 1973. Substantially

overlaps material in Engineering Design Handbook. Explosions in Air. Volume 1. US Army, . - .is more oriented to conventional high explosives than Glasstone.

3. G. F. Kinney and K. J. Graham. Explosive Shocks in Air . 2nd Ed. Springer, 1985. Coverssimilar topics as both Baker and Glasstone but more oriented to classroom study. Somelimited discussion of structural effects.

4. Anon. Estimating air blast characteristics for single point explosions in air, with a guide toevaluation of atmospheric propagation and effects. Technical Report ANSI S2.20-1983(ASA20-1983), American National Standards Institute, 1983. Discusses standardizedapproach for scaling air blasts from an ideal (point) explosion. Discusses long range

ro a ation in the atmos here and effect of various weather features. Some discussion aboutstructural effects such as window breakage.

7 Sept 2009 Shepherd - Explosion Effects 155

References on Structural Response1. W. E. Baker, P. A. Cox, P. S. Westine, J. J. Kulesz, and R. A. Strehlow. Explosion Hazards and Evaluation.

Elsevier, 1983. This is probably still the best single reference on analytical methods of structural responseto explosion.

. . . m t an . . et er ngton. ast an a st c oa ng o tructures. utter-wort e nemann, .

 An alternative to Baker et al., covers much of same material, much less detail so that it is easier to grasp

the concepts

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 156/160

the concepts.

3. M. Paz and W. Lei h. Structural D namics. S rin er ¯ fth edition 2004. Modern all-around text on structural

response, oriented to civil engineers that are interested in earthquake response of structures. Integrates use

of computer simulation (SAP2000) intothe text.

4. J. Biggs. Introduction to structural dynamics. McGraw-Hill, Inc., 1964. ISBN 07-005255-7. This is the classic

ex oo on s ng e egree o ree om mo e ng.

5. N. Jones. Structural Impact. Cambridge University Press, 1989. ISBN 0-521-30180-7. Jones has a detailed

discussion of plastic deformation which applications to both impact and impulsive pressure loading.

6. Anon. Structures to Resist the Effects of Accident Ex losions. De artments of the Arm the Nav and the

 Air Force, 1990. Design guide for concrete-reinforced structures. Very comprehensive but oriented to

military installations.

7 Sept 2009 Shepherd - Explosion Effects 156

References on Mechanics

1. M. F. Ashby and D. R. H. Jones. Engineering Materials I. Butterworth Heinemann, second

edition, 1996. Elementary discussion of the material properties relevant to mechanics withformulas and data that are useful for order of magnitude computations.

2. W. Nash. Stren th of Materials. Schaum's Outlines McGraw Hill fourth edition 1998. A 

tutorial approach to the theory of the strength of materials that concentrations on beams.

3. A.C. Ugural and S.K. Fenster. Advanced Strength and Applied Elasticity. Elsevier, 2nd SIedition, 1987. An all-around text of elasticity, plasticity and applications to static problems in

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 157/160

edition, 1987. An all around text of elasticity, plasticity and applications to static problems in

the strength of materials.. . . mos en o an . . oo er. eory o as c y. c raw- u s ng ompany,third edition, 1970. This is the classic text on elasticity. Emphasizes analytical solutions.

5. N. Noda, R.B. Hetnarski, and Y. Tanigawa. Thermal Stresses. Taylor and Francis, 2002.ISBN 1-56032-971-8. If you need to solve a problem that involves thermal stresses, this is thebook to go to.

6. D. Broek. Elementary Engineering Fracture Mechanics. Kluwer Academic Publishers, fourthrevised edition, 1991. Fracture mechanics is a key part of the modern approach to designingpressure vessels and piping.

7. W. Johnson and P. B. Mellor. Engineering Plasticity. Ellis Horwood Limited, 1983.

. . . . . , .

7 Sept 2009 Shepherd - Explosion Effects 157

Handbooks

1. W. Young and R. Budynas. Roark's formulas for stress and strain. McGraw-Hill, 2002. ISBN0-07-072542-X. Seventh Edition. Roarks is an essential compendium of solutions for staticproblems in elasticity. Formulas for stress and strain for many shapes, boundary conditions,

.

2. R. D. Blevins. Formulas for natural frequency and mode shape. van Nostrand ReinholdCompany 1979 Blevins compilation is similar in philosophy to Roark’s but focuses on

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 158/160

Company, 1979. Blevins compilation is similar in philosophy to Roark s but focuses on

dynamic solutions, speci¯ cally elastic vibrations of structures. He tabulates mode shapes andv ra ona requenc es or many s ruc ura e emen s an oun ary con ons.

3. A. S. Kobayashi, editor. Handbook on Experimental Mechanics. Society of ExperimentalMechanics, second revised edition, 1993. If you have to perform or interpret experiments,

' .

4. J.R. Davis. Carbon and Alloy Steels. ASM international, 1996. ISBN 0-87170-557-5. Data onthe most common construction material for piping and pressure vessels.

5. C. Moosbrugger. Atlas of stress-strain curves. Materials Park, OH : ASM international, 2002.Measured stress-strain curves for a wide range of materials.

7 Sept 2009 Shepherd - Explosion Effects 158

Books on Related Subjects are Useful

• Earthquake engineering – Strong ground motion excites building motion

• Terminal ballistics

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 159/160

 – Projectile impact creates stress waves and vibration• Crashworthiness

 – Vehicle crash mitigation

• Weapons effects – Conventional (High explosive and FAE)

 – Nuclear and nuclear simulation testing

TIP – Many recent studies on structural response to blasts have beensponsored to counter terrorism – the results are often restricted to

7 Sept 2009 Shepherd - Explosion Effects 159

government agencies or official use only.

Web Resources

• For more resources, preprints, and reports from,

http://www.galcit.caltech.edu/EDL

8/21/2019 Ess Hs 2009 Shepherd Je

http://slidepdf.com/reader/full/ess-hs-2009-shepherd-je 160/160

7 Sept 2009 Shepherd - Explosion Effects 160

top related