fourier transforms of special functions 主講者:虞台文

Post on 16-Dec-2015

219 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Fourier Transforms of Special Functions

主講者:虞台文

http://www.google.com/search?hl=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=unit+step+fourier+transform&spell=1

Content Introduction More on Impulse Function Fourier Transform Related to Impulse Function Fourier Transform of Some Special Functions Fourier Transform vs. Fourier Series

Introduction

Sufficient condition for the existence of a Fourier transform

dttf |)(|

dttf |)(|

That is, f(t) is absolutely integrable. However, the above condition is not the

necessary one.

Some Unabsolutely Integrable Functions

Sinusoidal Functions: cos t, sin t,…Unit Step Function: u(t).

Generalized Functions:– Impulse Function (t); and– Impulse Train.

Fourier Transforms of Special Functions

More on

Impulse Function

Dirac Delta Function

0

00)(

t

tt and 1)(

dtt

0 t

Also called unit impulse function.

Generalized Function

The value of delta function can also be defined in the sense of generalized function:

)0()()(

dttt )0()()(

dttt (t): Test Function

We shall never talk about the value of (t). Instead, we talk about the values of integrals

involving (t).

Properties of Unit Impulse Function

)()()( 00 tdtttt

)()()( 00 tdtttt

Pf)

dtttt )()( 0

Write t as t + t0

dtttt )()( 0

)( 0t

Properties of Unit Impulse Function

)0(||

1)()(

adttat )0(

||

1)()(

adttat

Pf)

dttat )()(

Write t as t/a

Consider a>0

dt

a

tt

a)(

1

)0(||

1

a

dttat )()(

Consider a<0

dt

a

tt

a)(

1

)0(||

1

a

Properties of Unit Impulse Function

)()0()()( tfttf )()0()()( tfttf

Pf)

dttttf )()]()([

dtttft )]()()[(

)0()0( f

dtttf )()()0(

dtttf )()]()0([

Properties of Unit Impulse Function

)()0()()( tfttf )()0()()( tfttf

Pf)

dttat )()(

)(||

1)( t

aat )(

||

1)( t

aat

)0(||

1

a

dttt

a)()(

||

1

dttt

a)()(

||

1

Properties of Unit Impulse Function

)()0()()( tfttf )()0()()( tfttf )(

||

1)( t

aat )(

||

1)( t

aat

0)( tt 0)( tt )()( tt )()( tt

Generalized Derivatives

The derivative f’(t) of an arbitrary generalized function f(t) is defined by:

dtttfdtttf )(')()()('

dtttfdtttf )(')()()('

Show that this definition is consistent to the ordinary definition for the first derivative of a continuous function.

dtttf )()(' dtttfttf

)(')()()(

=0

Derivatives of the -Function

)0(')(')()()('

dtttdttt )0(')(')()()('

dtttdttt

0

)()0(' ,

)()('

tdt

td

dt

tdt

)0()1()()( )()( nnn dttt

)0()1()()( )()( nnn dttt

0

)()( )()0( ,

)()(

t

n

nn

n

nn

dt

td

dt

tdt

Product Rule

)(')()()(')]'()([ ttfttfttf )(')()()(')]'()([ ttfttfttf

dttttf )(')]()([

Pf)dttttf )(')]()([

dtttft )](')()[(

dtttfttft )}()(')]'()(){[(

dtttftdtttft )]()'()[()]'()()[(

dtttftdtttft )]()'()[()]()()[('

dtttfttft )()](')()()('[

Product Rule

)()0(')(')0()(')( tftfttf )()0(')(')0()(')( tftfttf

)()'()]'()([)(')( ttfttfttf

Pf)

)]'()0([ tf )(')0( tf

)()0(' tf

Unit Step Function u(t)

Define

0)()()( dttdtttu

0)()()( dttdtttu

0 t

u(t)

00

01)(

t

ttu

Derivative of the Unit Step Function

Show that )()(' ttu

dtttu )()('

0)(' dtt

)]0()([ )0(

dtttu )(')(

dttt )()(

Derivative of the Unit Step Function

0 t

u(t)

DerivativeDerivative

0 t

(t)

Fourier Transforms of Special Functions

Fourier Transform Related to

Impulse Function

Fourier Transform for (t)

1)( Ft 1)( Ft

dtett tj)()]([F 10

t

tje

0 t

(t)

0

1

F(j)

F

Fourier Transform for (t)

Show that

det tj

2

1)(

det tj

2

1)(

]1[)( 1 Ft

de tj12

1

de tj

2

1

de tj

2

1The integration converges to

in the sense of generalized function.

)(t

Fourier Transform for (t)

Show that

0

cos1

)( tdt

0

cos1

)( tdt

det tj

2

1)(

dtjt )sin(cos

2

1

td

jtd sin

2cos

2

1

0

cos1

td Converges to (t) in the sense of generalized function.

Two Identities for (t)

dxey jxy

2

1)(

dxey jxy

2

1)(

0cos

1)( xydxy

0cos

1)( xydxy

These two ordinary integrations themselves are meaningless.

They converge to (t) in the sense of generalized function.

Shifted Impulse Function

0)( 0tjett F 0)( 0tjett F

0)()]([ 0tjejFttf F

0

1

|F(j)|

F

Use the fact

0 t

(t t0)

t0

Fourier Transforms of Special Functions

Fourier Transform of a Some Special Functions

Fourier Transform of a Constant

)(2)()( AjFAtf F )(2)()( AjFAtf F

dAeAjF tj][)( F

dteA tj )(

2

12

)(2 A

Fourier Transform of a Constant

)(2)()( AjFAtf F )(2)()( AjFAtf F

F

0 t

A A2()

0

F(j)

Fourier Transform of Exponential Wave

)(2)()( 00 jFetf tj F )(2)()( 0

0 jFetf tj F

)(2]1[ F

)]([])([ 00 jFetf tjF )]([])([ 0

0 jFetf tjF

)(2][ 00 tjeF

Fourier Transforms of Sinusoidal Functions

)()(cos 000 Ft )()(cos 000 Ft

)()(sin 000 jjt F )()(sin 000 jjt F

F

(+0)

0

F(j)

(0)

0 0

t

f(t)=cos0t

Fourier Transform of Unit Step Function

)()]([ jFtuFLet )()]([ jFtuF

)0for (except 1)()( ttutu

]1[)]()([ FF tutu

)(2)]([)]([ tutu FF

)(2)()( jFjF

F(j)=?

Can you guess it?

Fourier Transform of Unit Step Function

)(2)()( jFjF

Guess )()()( BkjF

)()()()()()( BBkkjFjF

)()()(2 BBk

k

0B() must be odd

Fourier Transform of Unit Step Function

Guess )()()( BkjF k

)()(' ttu

)()]([ jFtuF

1)]([)]('[ ttu FF

)()]('[ jFjtuF

)]()([ Bj

)()( Bjj

0

jB

1)(

Fourier Transform of Unit Step Function

Guess )()()( BkjF k

jB

1)(

jtu

1)()( F

jtu

1)()( F

Fourier Transform of Unit Step Function

jtu

1)()( F

jtu

1)()( F

F()

0

|F(j)|

0 t

1

f(t)

Fourier Transforms of Special Functions

Fourier Transform vs. Fourier Series

Find the FT of a Periodic Function

Sufficient condition --- existence of FT

dttf |)(|

dttf |)(|

Any periodic function does not satisfy this condition.

How to find its FT (in the sense of general function)?

Find the FT of a Periodic Function

We can express a periodic function f(t) as:

Tectf

n

tjnn

2 ,)( 0

0

Tectf

n

tjnn

2 ,)( 0

0

n

tjnnectfjF 0)]([)( FF

n

tjnn ec ][ 0F

n

n nc )(2 0

n

n nc )(2 0

Find the FT of a Periodic Function

We can express a periodic function f(t) as:

Tectf

n

tjnn

2 ,)( 0

0

Tectf

n

tjnn

2 ,)( 0

0

n

n ncjF )(2)( 0

n

n ncjF )(2)( 0

The FT of a periodic function consists of a sequence of equidistant impulses located at the harmonic frequencies of the function.

Example:Impulse Train

0 tT 2T 3TT2T3T

n

T nTtt )()(

n

T nTtt )()( Find the FT of the impulse train.

Example:Impulse Train

0 tT 2T 3TT2T3T

n

T nTtt )()(

n

T nTtt )()( Find the FT of the impulse train.

n

tjnT e

Tt 0

1)(

n

tjnT e

Tt 0

1)(

c n

Example:Impulse Train

0 tT 2T 3TT2T3T

n

T nTtt )()(

n

T nTtt )()( Find the FT of the impulse train.

n

tjnT e

Tt 0

1)(

n

tjnT e

Tt 0

1)(

c n

n

T nT

t )(2

)]([ 0F

n

T nT

t )(2

)]([ 0F

0

Example:Impulse Train

0 tT 2T 3TT2T3T

n

T nT

t )(2

)]([ 0F

n

T nT

t )(2

)]([ 0F

0

0 0 20 3002030

2/T

F

Find Fourier Series Using Fourier Transform

n

tjnnectf 0)(

2/

2/

0)(1 T

T

tjnn etf

Tc

T/2 T/2

f(t)t

T/2 T/2

fo(t)

t

tjoo etfjF )()(

2/

2/)(

T

T

tjetf

)(1

0 jnFT

c on

Find Fourier Series Using Fourier Transform

n

tjnnectf 0)(

2/

2/

0)(1 T

T

tjnn etf

Tc

T/2 T/2

f(t)t

T/2 T/2

fo(t)

t

tjoo etfjF )()(

2/

2/)(

T

T

tjetf

)(1

0 jnFT

c on

Sampling the Fourier Transform of fo(t) with period 2/T, we can find the Fourier Series of f (t).

Example:The Fourier Series of a Rectangular Wave

0

f(t)

d

1

t0

t

fo(t)1

dtejFd

d

tjo

2/

2/)(

2sin

2 d

n

tjnnectf 0)(

)(1

0 jnFT

c on

2sin

2 0

0

dn

Tn

2sin

1 0dn

n

Example:The Fourier Transform of a Rectangular Wave

0

f(t)

d

1

t

n

tjnnectf 0)(

)(1

0 jnFT

c on

2sin

2 0

0

dn

Tn

2sin

1 0dn

n

F [f(t)]=?

n

n ncjF )(2)( 0

n

n ncjF )(2)( 0

)(2

sin2

)( 00

ndn

njF

n

)(2

sin2

)( 00

ndn

njF

n

top related