judy p. yang (楊子儀 · 2020. 4. 13. · 10.1 isoparametric formulation • isoparametric...

Post on 19-Jan-2021

13 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Introduction to Finite Element Method

Judy P. Yang (楊子儀)

Nov. 22, 2016

Department of Civil Engineering National Chiao Tung University (NCTU)

Chapter 10 Isoparametric Formulation and Numerical Integration

• 10.1 Isoparametric Formulation – Element stiffness matrix

• 10.2 Gauss Quadrature

10.1 Isoparametric Formulation

• Isoparametric elements – Non-rectangular quadrilateral elements with curved

boundary • Useful for modelling structures with curved edges and for

grading a mesh from coarse to fine • Effective in 2D and 3D elasticity problems, shell analysis,

non-structural application

10.1 Isoparametric Formulation

• Isoparametric elements – If the same shape function defines both

• the displacements of a point in the element

𝑢 = 𝑁1 𝑁2𝑢1𝑢2 = 𝑵𝑵

– 𝑵: nodal displacements

• the global coordinates of the point in the element

𝑥 = 𝑁1 𝑁2𝑥1𝑥2 = 𝑵𝒄

– 𝒄: nodal coordinates

10.1 Isoparametric Formulation

• Isoparametric elements – Computation of stiffness matrix is done on element

defined in natural coordinates (η, ξ, ζ = < −1, 1 >): line, rectangle, cube

– Element in natural coordinates (η, ξ, ζ) is transformed to real finite in (x, y, z) coordinates with use of shape functions

– Shape functions are used also as approximation functions of unknown displacements

• A two-node bar element – Consider a straight bar

– 𝜉: natural coordinate • 𝜉: the axial coordinate of the bar regardless of the bar’s

orientation in global coordinates

10.1 Isoparametric Formulation

• A two-node bar element – The assumed displacement function

• 𝑢 = 𝑎1 + 𝑎2𝜉 = 1 𝜉𝑎1𝑎2

– Nodal conditions • 𝑢 𝜉 = −1 = 𝑢1 • 𝑢 𝜉 = 1 = 𝑢2

– 𝑢 = 1−𝜉2

1+𝜉2

𝑢1𝑢2 = 𝑵𝑵

• The displacement of a point in the element is expressed in terms of nodal displacements

10.1 Isoparametric Formulation

10.1 Isoparametric Formulation • A two-node bar element

– Consider the interpolation

• 𝑥 = 𝑵𝑥1𝑥2 (*)

• The 𝑥 coordinate of a point in the element is expressed in terms of nodal coordinates 𝑥𝑖

– Recall the displacement

• 𝑢 = 𝑵𝑢1𝑢2

– Since both 𝑢 and 𝑥 are defined by the same nodes and by the same 𝑵, the element is isoparametric

• 𝑵 = 1−𝜉2

1+𝜉2

10.1 Isoparametric Formulation • A two-node bar element

– Strain-displacement relationship

• 𝜀𝑥 = 𝑑𝑑𝑑𝑥

= 𝑑𝑵 𝜉𝑑𝑥

𝑢1𝑢2 = 𝑩

𝑢1𝑢2

• 𝑑𝑑𝑥

= 𝑑𝜉𝑑𝑥

𝑑𝑑𝜉

• From (*), 𝑑𝑥𝑑𝜉

= −12

12

𝑥1𝑥2 = 𝐿

2

– In calculus, the scale factor between two coordinate systems is called the Jacobian (denoted by 𝐽)

• In this case, 𝐽 = 𝑑𝑥𝑑𝜉

= 𝐿2

⇒𝑑𝜉𝑑𝑥 =

2𝐿

10.1 Isoparametric Formulation

• A two-node bar element – Strain-displacement matrix

• 𝑩 = 𝑑𝑵 𝜉𝑑𝑥

= 𝑑𝜉𝑑𝑥

𝑑𝑵𝑑𝜉

= 1𝐽𝑑𝑵𝑑𝜉

= 2𝐿

−12

12

= −1𝐿

1𝐿

– Stiffness matrix

• 𝒌 = ∫ 𝑩T𝐴𝐴𝑩𝐿0 𝑑𝑥 = ∫ 𝑩T𝐴𝐴𝑩𝐽1

−1 𝑑𝜉

10.1 Isoparametric Formulation • A three-node bar element

– The assumed displacement function

• 𝑢 = 1 𝜉 𝜉2𝑎1𝑎2𝑎3

– Nodal conditions • 𝑢 𝜉 = −1 = 𝑢1, 𝑢 𝜉 = 1 = 𝑢2, 𝑢 𝜉 = 0 = 𝑢3 • Find 𝑎𝑖

– 𝑢 = 𝑵𝑵

• 𝑵 = −𝜉+𝜉2

2𝜉+𝜉2

21 − 𝜉2

10.1 Isoparametric Formulation

• A three-node bar element

– 𝑢 = 𝑵 𝜉𝑢1𝑢2𝑢3

and 𝑥 = 𝑵 𝜉𝑥1𝑥2𝑥3

– Strain-displacement relationship

• 𝜀𝑥 = 𝑑𝑑𝑑𝑥

= 𝑑𝑵 𝜉𝑑𝑥

𝑵 = 𝑩𝑵

– Jacobian

• 𝐽 = 𝑑𝑥𝑑𝜉

= −1+2𝜉2

1+2𝜉2

−2𝜉𝑥1𝑥2𝑥3

• Only if 𝑥3 represents the midpoint of the bar, then

𝐽 = −1+2𝜉2

0 + 1+2𝜉2

𝐿 − 2𝜉 𝐿2

= 𝐿2

10.1 Isoparametric Formulation • A three-node bar element

– Strain-displacement matrix

• 𝑩 = 𝑑𝑵 𝜉

𝑑𝑥= 1

𝐽 −1+2𝜉

21+2𝜉2

−2𝜉

– Stiffness matrix • 𝒌 = ∫ 𝑩T𝐴𝐴𝑩𝐿

0 𝑑𝑥 = ∫ 𝑩T𝐴𝐴𝑩𝐽1−1 𝑑𝜉

– Comment • 𝐽 and 𝑩 are functions of 𝜉, especially for polynomials in 𝜉 in

denominator of 𝑩, which infers that 𝒌 cannot be integrated in closed form in general

10.1 Isoparametric Formulation

• The isoparametric formulation can be applied to other isoparametric elements – e.g. rectangular plane element

10.1 Isoparametric Formulation

• The isoparametric formulation can be applied to other isoparametric elements – e.g. rectangular plane element

10.2 Gauss Quadrature

• Gauss quadrature – A technique for numerical integration used to

approximate a function

– The Gauss quadrature locates the sampling points (Gauss points) so that the greatest accuracy is achieved

10.2 Gauss Quadrature

• Consider the integral 𝐼

𝐼 = ∫ 𝜙 𝜉 𝑑𝜉1−1

– The integration can be approximated by

𝐼 ≈ 𝑊1𝜙 𝜉1 + 𝑊2𝜙 𝜉2 + ⋯+ 𝑊𝑛𝜙 𝜉𝑛

• 𝜉𝑖 : Gauss point • 𝑊𝑖: Gauss weight

10.2 Gauss Quadrature • Integration table

– The Gauss points and weights for Gauss quadrature up to order 𝑛 = 4 are shown below

– The Gauss points are located symmetrically w.r.t. the

center of the interval

10.2 Gauss Quadrature

• 1D example • Consider 𝑛 = 1 𝐼 ≈ 𝑊1𝜙 𝜉1 = 2.0𝜙 0 • Consider 𝑛 = 2 𝐼 ≈ 𝑊1𝜙 𝜉1 + 𝑊2𝜙 𝜉2 = 1.0𝜙 0.57735 + 1.0𝜙 −0.57735 • In general, a polynomial of degree 2𝑚− 1 is integrated

exactly by an 𝑚-point Gauss quadrature

10.2 Gauss Quadrature

• 1D example – Use Gaussian quadrature to obtain an exact value for

the integral

– For a polynomial of degree 𝑛 = 2 • Choose Gauss points 𝑚 = 2, then 2𝑚− 1 = 3 > 𝑛 = 2

( )1 2

13 7I r r dr

−= − +∫

( )2 2

1 2

1

1 1 1 13 7 1 3 7 1 3 73 3 3 3

14.6667

r r dr−

− + = ⋅ − + + ⋅ − − − +

=

10.2 Gauss Quadrature • 2D example

• 𝐼 = ∫ ∫ 𝜙 𝜉, 𝜂 𝑑𝜉1−1 𝑑𝜂1

−1 ≈ ∑ ∑ 𝑊𝑖𝑊𝑗

𝑛𝑗=1

𝑚𝑖=1 𝜙 𝜉𝑖 , 𝜂𝑗

• For 𝑚 = 𝑛 = 3, – 9 Gauss points – The integration is approximated by order of 5

𝐼 ≈ ∑ ∑ 𝑊𝑖𝑊𝑗3𝑗=1

3𝑖=1 𝜙 𝜉𝑖 , 𝜂𝑗

= ∑ 𝑊1𝑊𝑗𝜙 𝜉1, 𝜂𝑗3𝑗=1 + ∑ 𝑊2𝑊𝑗𝜙 𝜉2, 𝜂𝑗3

𝑗=1 + ∑ 𝑊3𝑊𝑗𝜙 𝜉3, 𝜂𝑗3𝑗=1

= 𝑊1𝑊1𝜙 𝜉1, 𝜂1 + 𝑊1𝑊2𝜙 𝜉1, 𝜂2 + 𝑊1𝑊3𝜙 𝜉1, 𝜂3 +𝑊2𝑊1𝜙 𝜉2, 𝜂1 + 𝑊2𝑊2𝜙 𝜉2, 𝜂2 + 𝑊2𝑊3𝜙 𝜉2, 𝜂3 +𝑊3𝑊1𝜙 𝜉3, 𝜂1 + 𝑊3𝑊2𝜙 𝜉3, 𝜂2 + 𝑊3𝑊3𝜙 𝜉3, 𝜂3

10.2 Gauss Quadrature

• 2D example 𝐼 ≈ ∑ ∑ 𝑊𝑖𝑊𝑗3

𝑗=13𝑖=1 𝜙 𝜉𝑖 , 𝜂𝑗

= ∑ 𝑊1𝑊𝑗𝜙 𝜉1, 𝜂𝑗3𝑗=1 + ∑ 𝑊2𝑊𝑗𝜙 𝜉2, 𝜂𝑗3

𝑗=1 + ∑ 𝑊3𝑊𝑗𝜙 𝜉3, 𝜂𝑗3𝑗=1

= 𝑊1𝑊1𝜙 𝜉1, 𝜂1 + 𝑊1𝑊2𝜙 𝜉1, 𝜂2 + 𝑊1𝑊3𝜙 𝜉1, 𝜂3 +𝑊2𝑊1𝜙 𝜉2, 𝜂1 + 𝑊2𝑊2𝜙 𝜉2, 𝜂2 + 𝑊2𝑊3𝜙 𝜉2, 𝜂3 +𝑊3𝑊1𝜙 𝜉3, 𝜂1 + 𝑊3𝑊2𝜙 𝜉3, 𝜂2 + 𝑊3𝑊3𝜙 𝜉3, 𝜂3

𝜉1 = 0.7746 𝜉2 = 0 𝜉3 = −0.7746 𝜂1 = 0.7746 𝜂2 = 0 𝜂3 = −0.7746

𝑊1 = 0.5556 𝑊2 = 0.8889 𝑊3 = 0.5556

top related