observations of supernovae through the kno...• using 9 telescopes with 0.43m – 2.1m in korea,...

Post on 21-Jan-2021

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1https://www.scientificamerican.com/article/found-the-most-powerful-supernova-ever-seen/

http://www2.mpia-hd.mpg.de/IRSPACE/Tycho_release/tycho1572/Tycho_observation_image.pdf

Observations of Supernovae through the KNO

2020 Aug 28 (Fri)(Sang Chul KIM)

Korea Astronomy & Space Science Institute (KASI)

4th Workshop on Korean Neutrino Observatory (UNIST)

1

김상철

2

Neutrinos from Supernovae (SNe)

(1) Neutrinos from thermonuclear explosions in core collapse SNe

(2) Various SN survey projects

- Korean projects for the SN follow-up observations

(3) SN Rate Estimation for the Milky Way and the Local Group

- KNO observations of neutrinos from MW/LG SNe

3

Neutrinos from Supernovae (SNe)

(1) Neutrinos from thermonuclear explosions in core collapse SNe

(2) Various SN survey projects

- Korean projects for the SN follow-up observations

(3) SN Rate Estimation for the Milky Way and the Local Group

- KNO observations of neutrinos from MW/LG SNe

4

×

(1) Neutrinos from Core Collapse SNe• At final stage of massive ( ) star evolution, at T 3 109 K Si-burning starts

producing 56Ni

• Then, the Fe core collapses and SN explosion occurs when the explosion energy is larger than the binding energy of the stellar envelope

• (Explosion energy 1053 erg) > (Binding energy 1049 - 1051 erg)

• Most ( 99%) of the energy is released as neutrinos, some of them interact with infalling matter

https://www.researchgate.net/publication/306091657

=8 M⊙ ~

~

à

5

(1) Neutrinos from Core Collapse SNe• 1053 erg Most ( 99%) of the energy is released as neutrinos, some of them

interact with infalling matter

https://www.researchgate.net/publication/306091657https://www.researchgate.net/publication/306091657

à ~

6

(1) Neutrinos from Core Collapse SNe• Neutrino from each nucleosynthesis stage

Woosley & Janka 2005 NatPh, 1, 147

7

Three Phases of Neutrino Emission

Georg G. Raffelt 2017 CNNP Conference (Catania) (https://agenda.infn.it/event/12166/contributions/12610/attachments/9378/10583/HALO_HALO-1kT_CNNP.pdf)

• Shock breakout

• De-leptonization of outer core layers

• Shock stalls 150 km

• Neutrinos powered by infalling matter

• Cooling on neutrino diffusion time scale

Spherically symmetric Garching model (25 M ) with Boltzmann neutrino transport

~

8

Neutrino : Luminosities and EnergiesHoriuchi+18 (MNRAS 475 1363)

Collapse of a 35 M star1-Dim

Neutrinoluminosity

Mean energy

Shape parameter

Collapse of a 23 M star2-Dim

Black hole Neutron star

⊙ ⊙

?µ ?µ

9

Neutrinos from Core Collapse SNe• Neutrino comes out first from the core collapse (CC), at least a few

hours before the optical emission

• SN energy

99% comes as neutrinos

1% comes as kinetic energy

0.01% optical emission

• Neutrino telescope can give fast alert to optical and other observatories

• Sciences from SN early detection

- progenitors

- explosion mechanism

- fast decay optical transients

~

~

?

10

SN Explosion

Tarantula Nebula

d~49.97 kpc (Pietrzynski+ 13 Nature 495 76)

1987 Feb 23.316 (UT)

B3 I (supergiant)

Peak : +2.9 mag

(B-V) = +0.085

Teff = 16,000 K

L = 105 L

Minitial 20 M (N. Smith 2007 AJ 133 1034)

SN 1987A (IIP, LMC)

⊙à ~

11

SN 1987A – Bolometric Light Curve

Arnett et al. (1989, ARAA, 27, 629)

12

SN 1987A in the LMC

1987 Feb 23, 07:35:35 (UT), distance = 50 kpc

Irvine-Michigan-Brookhaven-3 (8kton)

Courtesy Soo-Bong Kim

13

小柴 昌俊

Neutrino Detector – Kamiokande II•

Upgrade operation since 1985Observed solar neutrinosObserved 11 neutrinos from Supernova (SN) 1987A – 50 kpc (163,000 ly) away in the Large Magellanic Cloud (LMC)

Masatoshi Koshiba ( ) – 2002 Nobel Prize in Physics (w/Raymond Davis Jr., Riccardo Giacconi)for his work directing the Kamoka experiments, and in particular for the first-ever detection of astrophysical neutrinos

http://www.nobelprize.org/nobel_prizes/physics/laureates/2002/

১

http://mulli2.kps.or.kr/~pht/11-11/021108.htm

1987년 2월 23일 07h 35m 35s (UT)

(1914-)(1926-)

(1931-))

14

1058 Neutrinos from SN 1987A• Kamiokande II – 11 events (12.44 seconds)• Irvine-Michigan-Brookhaven (IMB, Lake Erie, 5.58 sec) – 8 events

Kamiokande II

IMB data

K II : Hirata+ 87 Phys. Rev. Lett. 58, 1490

IMB : Bionta+ 87 Phys. Rev. Lett. 58, 1494

15

Neutrinos from Supernovae (SNe)

(1) Neutrinos from thermonuclear explosions in core collapse SNe

(2) Various SN survey projects

- Korean projects for the SN follow-up observations

(3) SN Rate Estimation for the Milky Way and the Local Group

- KNO observations of neutrinos from MW/LG SNe

16

SN survey projects• intermediate Palomar Transient Factory (iPTF)

Zwicky Transient Factory (ZTF)

• All Sky Automated Survey for SAS-SN)• Public ESO Spectroscopic Survey for Transient Objects (PESSTO)

• Pan-STARRS Survey for Transients (PSST)

• Aqueye+ (182 cm Copernico telescope in Asiago Cima Ekar)

• Asiago Transient Classification Program

• ATLAS survey (twin 0.5m telescope system on Haleakala and Mauna Loa, surveying up to 60,000 square degrees per night)

• Catalina Real-Time Transient Survey, CRTS (crts.caltech.edu) - SNHunt (nesssi.cacr.caltech.edu/catalina/current.html)

• High Cadence Transient Survey (HiTS)

• Katzman Automatic Imaging Telescope (KAIT)

• Kepler, La Silla-QUEST (LSQ)

• MASTER Global Robotic Net (master.sai.msu.ru/en/)

• Optical Gravitational Lensing Experiment (OGLE, ogle.astrouw.edu.pl)

• PMO-Tsinghua Supernova Survey (PTSS)

• Swift Optical/Ultraviolet Supernova Archive (SOUSA)

• transient survey with Subaru/Hyper Suprime-Cam (tpweb2.phys.konan-u.ac.jp/~tominaga/HSC-SN/)

• XAO (Xinjiang Astronomical Observatory) and THU (Tsinghua University) Supernova Survey (XTSS)

• Intensive Monitoring Survey of Nearby Galaxies (IMSNG, Seoul National University, Myungshin Im)

• KMTNet Supernova Program (KSP)

à

17

ZTF

• Palomar Transient Factory (PTF), intermediate PTF (iPTF)

(2017 ) Zwicky Transient Facility (ZTF, )• Palomar Observatory : 1.2m Samuel Oschin Telescope (47 deg2 field-of-view), 1.5m

telescope, 5m Hale Telescope

• Wide field and fast readout electronics an order of magnitude faster (than PTF) time-domain survey

• Young SNe, transients, variable stars, binary stars, active galactic nuclei (AGNs), tidal disruption events (TDEs), moving objects like asteroids or comets

• Scan = 3750 deg2/hour, up to 20.5 mag

• Northern hemisphere + Galactic plane

1.2m Samuel Oschin Telescope https://www.ztf.caltech.edu/page/science

à

à

~ https://www.ztf.caltech.edu/

18

ASAS-SN• All Sky Automated Survey for SuperNovae (ASAS-SN)• www.astronomy.ohio-state.edu/~assassin/index.shtml• Ohio State University• Automatic observations using 14cm robotic telescopes (7.8”/px) in N

(Haleakala, Texas) and S (CTIO, South Africa) hemispheres survey the entire sky once a day, 8 – 18 mag

• Search for SNe and transients e.g. superluminous SN ASASSN-15lh• Other objects were also discovered – TDEs, Galactic novae, cataclysmic

variables, stellar flares, asteroids, comets, etc.

https://twitter.com/SuperASASSN/status/928342328414220289/photo/1 Dong+16 Sci 351 257

MU

à

à

19

IMSNG• Intensive Monitoring Survey of Nearby Galaxies (IMSNG, Seoul

National University, Myungshin Im)• Using 9 telescopes with 0.43m – 2.1m in Korea, Australia, USA (LOAO, McDonald),

Uzbekistan

• Optical monitoring observations of 60 nearby (D < 50 Mpc, b>20 ) galaxies, brighter than MNUV=-18.4 AB mag

• Cadence a few hours

Im + 19 (JKAS 52, 11)

°

~

20

Korea Microlensing Telescope Network (KMTNet): Three new 1.6-m wide-field telescopes in the southern hemisphere, providing 24-h sky coverage.

“Star never sets on the KMTNet”

CTIO SAAO

SSO

Africa

Chile

Australia

Antarctica

21

Korea Microlensing Telescope Network (KMTNet): Three new 1.6-m wide-field telescopes in the southern hemisphere, providing 24-h sky coverage.

“Star never sets on the KMTNet”

22

Korea Microlensing Telescope Network

Chilean Site

23

××

Korea Microlensing Telescope Network

Wide Field CCD Imager: 2 2 Field of View ° ´ °

ØØØ

ØØØØ

Four e2v Mosaic CCD Chips340M pixels (18K 18K), each 10 µm0.40 arcsec/pixel, 2 degree 2 degree FOVMechanical cooling (-110 ? )32 readout channelsFilters : BVRI (3 sites), g’r’i’z’ Ha (Chile)Quantum effie : 85% in V, 80% in I∼ ∼

24

SN survey projects - Sciences

• Type classification – Ia, Ib, Ic, IIP, IIL, IIn, IIb, Ibn, Ic-BL, Iax, .Ia, SL SN, PI SN, Ia-IIn, SN imposter, kilonova, macronova, etc.

- Ia – SD, DD

- distance indicator

• Shock Breakout (SBO)

• Explosion mechanism

• Nucleosynthesis heavier than Fe

• Stellar evolution, mass loss

25

Supernova Sciences!

25 17

LSST Science Book (arXiv: 0912.0201)

26

Neutrinos from Supernovae (SNe)

(1) Neutrinos from thermonuclear explosions in core collapse SNe

(2) Various SN survey projects

- Korean projects for the SN follow-up observations

(3) SN Rate Estimation for the Milky Way and the Local Group

- KNO observations of neutrinos from MW/LG SNe

27

SN Rate Estimation for the Milky Way

+ SN Rate of the Local Group

1) Historical SNe in the Galaxy

2) SN statistics of galaxies

3) Star Formation Rate

4) Radioactive 26Al mass

This part (SN rate estimation) is from the presentation of Prof. Bon-Chul Koo (SNU) at the

Korean Astronomical Society meeting on 2017 Apr 13

28

SN Type : Ia vs CC

Li+11 (MN 412 1441)

Volume-limited sample Ideal magnitude-limited sample

76% 21%

29

×

±

(1) SN Rate from Historical SNel

à

l

Simple estimation

SN1006, Crab (1054), 3C58 (1181), Tycho (1572), Kepler (1604)

5 SN/1000 yrs (10/3)2 5 SN/100 yrs

Published results

5.7 1.7 SN/100 yrs (Strom 94 AA 288 L1)4.6 SN/100 yrs (Adams+ 13 ApJ 778 164)

• 3.4 CC SN/100 yrs

• 1.4 SN Ia/100 yrs

+7.4-2.7

+7.3-2.6+1.4

-0.8

~

30

± ×

±

(2) SN Rate from SN statisticsl

à

l

Simple estimation

Sbc, LB = (2.6 0.6) 1010 L3 SN/100 yrs

Published results

2.5 SN/100 yrs (Tammann+ 94 ApJS 92 487)

2.8 0.6 SN/100 yrs (W. Li+ 11 MN 412 1441)

+0.8

-0.4

(Cappellaro+99 A&A 351 459)

~

31

±

×

(3) SN Rate from Star Formation Rate (SFR)l

à

l

Simple estimation

M* 1.3 0.2 M /yr

M f(M > 8 M ) / M 1.4 CC SNe/100 yrs

Published results

1-2 CC SN/100 yrs (Reed 05 AJ 130 1652)

Physics of the IS and IG Medium(Draine 2011)

*

~

~

·· ⊙

⊙ 〈 〉

『 』

32

±

(4) SN Rate from 26Al ( 1 Myr)t life~l

à

l

Simple estimation

M(26Al) 2.8 M

M(26Al) / / 1.9 CC SN/100 yrs

Published results

1.9 1.1 CC SN/100 yrs (Diehl+ 06 Nature 439 45)

Diehl+ 2006 (Nature 439 45, Supplement 5)

life

~

~ ⊙

〈Y〉τ

33

Other Methodsl

l

à

Pulsar distribution

3.2-3.7 SN/100 yrs (Faucher-Gigu re & Kaspi 06 ApJ 643 332)

No neutrino burst

Large Volume Detector (LVD) operation during last 21 years (1992 June – 2013 Dec) (Agafonova+ 15 ApJ 802 47)

= 11.4 CC SN/100 yrs

~ e

34

Milky Way SN Rate - Summary

à Galactic CC SN rate 2-3 SN/100 yrs

26

+7.3-2.6

+1.4

-0.8+7.4-2.7

~

? ?

? ?

? ?

? ?

Method CC SN SN Ia All SNe Authors

Historical SN

3.4 1.4 4.6 Adams+13

SN statistics 2.30±0.48 0.54±0.12 2.84±0.60 W. Li+11

SFR 1-2 Reed 05

Al 1.9±1.1 Diehl+06

Pulsar 3.2-3.7 Faucher-Gigu re & Kaspi 06

No neutrinoburst

=11.4 Agafonova+15

e

35

SN Rate of the Local Groupl

l

l

l

Local Group

R = 1 Mpc

Milky Way, M31, M33 and 100 dwarf galaxies (McConnachie 12 AJ 144 4)

‘Historical’ SNe

1987A (LMC), SN 1885A (M31)

SN statistics

M31, M33 : 0.83, 0.62 CC SN/100 yrs (Tammann+94)

LMC, SMC : 0.45, 0.11 CC SN/100 yrs (Tammann+94)

SNR statistics

0.25-0.46 SN/100 yrs for the LMC+SMC (Maoz, Badenes 10 MN 407 1314)

0.31 SN/100 yrs for M33 (Sarbadhicary+17 MN 464 2326)

=

36

Probability to Observe Galactic SNe

Courtesy Bon-Chul Koo

e.g. in 30 years

37

SN burst observation by HK

Courtesy Soo-Bong KimBest scenarios for KNO!

38

CC SN Rate

Ando et al. (2005, PRL, 95, 171101)

SN burst – Position accuracy

※ Gadolinium trichloride (GdCl3) addition (0.2%) increases detection efficiency (J. F. Beacom & M.

R. Vagins 2004 Phys. Rev. Lett. 93, 171101)

1 degree at 10 kpc16

Courtesy Soo-Bong Kim

à

~

40±

Neutrino Observation TimescaleY. Suwa (2019 ApJ 881 139)

Observable timescale of neutrinos (s)

Dis

tanc

e to

the SN

(kpc

)

LMC : d = 51.2 3.1 kpc (Panagia et al. 1991 ApJL 380 L23)

(12.4 s)

41

Neutrinos from Supernovae (SNe)

• SN Relic Neutrino (SRN)Figure from Shin’ichiro Ando

Now

• Failed SNe

Kochanek+08 (ApJ 684 1336)

5

?

?

42

(Diffuse Supernova Neutrino Background)

Courtesy Soo-Bong Kim

(Supernova Relic Neutrino)SRN

43

Summary

• Core-collapse supernovae in the Milky Way and Nearby Galaxies (probably in the Local Group) within a few Mpc

• Detection of failed explosion to form BHs

• Supernova relic neutrinos (SRN) SRN energy spectrum measurement, history of SN bursts, cosmic SFR

Neutrino research – Supernovae Science

à

4444

Thank you.

45

Neutrino Sources

Katz & Spiering (2012, Progress in Particle and Nuclear Physics, 67, 651)

46

백색왜성 기원 초신성 핵붕괴 초신성

Supernova (SN) types

http://dujs.dartmouth.edu/2008/05/type-ia-supernovae-properties-models-and-theories-of-their-progenitor-systemshttp://wwwmpa.mpa-garching.mpg.de/mpa/research/current_research/hl2013-8/hl2013-8-en.htmlhttp://spiff.rit.edu/richmond/sdss/sn_survey/sn_survey.html

Supernovae : Brightest objects in galaxies (MV = -14 -22)∼

Typical typesNo H lines (pop II) Type I H lines (pop I) Type II

Core collapse

SNe Ia (thermonuclear stellar explosion) CC SNe

(WD originated SNe)

WD + Giant/MS/He *

(Single Degenerate, SD)WD + WD

(Double Degenerate, DD)

a Ib Icà à

47

백색왜성 기원 초신성 핵붕괴 초신성

Supernova (SN) types

http://dujs.dartmouth.edu/2008/05/type-ia-supernovae-properties-models-and-theories-of-their-progenitor-systemshttp://wwwmpa.mpa-garching.mpg.de/mpa/research/current_research/hl2013-8/hl2013-8-en.htmlhttp://spiff.rit.edu/richmond/sdss/sn_survey/sn_survey.html

Supernovae : Brightest objects in galaxies (MV = -14 -22)∼

Typical typesNo H lines (pop II) Type I H lines (pop I) Type II

Core collapse

SNe Ia (thermonuclear stellar explosion) CC SNe

(WD originated SNe)

WD + Giant/MS/He *

(Single Degenerate, SD)WD + WD

(Double Degenerate, DD)

a

Ib

Ic

à à

48

Supernova Taxonomy

Cappellaro & Turatto (astro-ph/0012455)

49

SuperNova Early Warning System (SNEWS)

• Similar to “Seismic waves in(on) the Earth”

Seismic wave Speed

5-8 km/s

파동 통과물질 피해

Primary wave , , Minor

Secondary wave 3-4 km/s Huge

종파 고 액 기체

횡파 고체

50

SuperNova Early Warning System (SNEWS)

• http://snews.bnl.gov/

• A network of 7 neutrino detectors

- Borexino, Daya Bay, KamLAND, HALO, IceCube, LVD, Super-Kamiokande

- began automatic operation in 2005

- reports gather + identify SNe at Brookhaven National Laboratory

need signals at = 2 detectors within 10 seconds

• To make early warning for CC SNe from the Milky Way, or nearby galaxies

(e.g. LMC, Canis Major dwarf)

• Neutrino pulses from SN 1987A – arrived 3 hours before the photons

à

top related