physics laboratory

Post on 01-Jan-2016

34 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

Physics Laboratory. School of Science and Technology. Hellenic Open University. Απόστολος Τσιριγώτης. Αξιολόγηση Αρχιτεκτονικών και Υποθαλάσσιων Περιοχών Εγκατάστασης για ένα Μεγάλο Μεσογειακό Τηλεσκόπιο Νετρίνων. Α. Τσιριγώτης - PowerPoint PPT Presentation

TRANSCRIPT

Απόστολος Απόστολος ΤσιριγώτηςΤσιριγώτης

Αξιολόγηση Αρχιτεκτονικών και Αξιολόγηση Αρχιτεκτονικών και Υποθαλάσσιων Περιοχών Υποθαλάσσιων Περιοχών

Εγκατάστασης για ένα Μεγάλο Εγκατάστασης για ένα Μεγάλο Μεσογειακό Τηλεσκόπιο Μεσογειακό Τηλεσκόπιο

ΝετρίνωνΝετρίνωνΑ. ΤσιριγώτηςΑ. Τσιριγώτης

Β. Βεργανελάκης, Α. Λέισος, Γ. Μπουρλής,, Α. Σκόδρας , Σ. Τζαμαρίας Β. Βεργανελάκης, Α. Λέισος, Γ. Μπουρλής,, Α. Σκόδρας , Σ. Τζαμαρίας

The HOU software chain

Underwater Detector

•Generation of atmospheric muons and neutrino events (done – Techn. Note)

•Detailed detector simulation (GEANT4) (done – Techn. Note)

•Optical noise and Photomultiplier (PMT) response simulation (done)

•Filtering Algorithms (done – Techn. Note) …

•Muon reconstruction (done – Techn. Note) …

Calibration (Sea top) Detector

•Atmospheric Shower Simulation (done – Techn. Note)

•Muon and Neutrino Transportation to the Underwater Detector (done)

•Reconstruction of the shower direction (done – Techn. Note) …

•Estimation of: resolution, offset, PMT position (done – 2 draft papers in NIM )

Code will be available at http://physicslab.eap.grDocumentation in progress

Event Generation – Flux Parameterization

•Neutrino Interaction Events

•Atmospheric Muon Generation (2 Parameterization Models)

μ

Atmospheric Neutrinosν

ν

Cosmic Neutrinos

Earth

Shadowing of neutrinos by Earth

Nadir Angle

Pro

bab

ilit

y o

f a

ν μ t

o c

ross

Ear

th

GEANT4 Simulation – Detector and Physics Description

• Any detector geometry can be described in a very effective way

• All the relevant physics processes are included in the simulation

GEANT4 Simulation – Primary Particles

•Any type of secondary particle and it’s interactions is simulated

•All the interactions and transportations of the secondary particles are simulated

•For the simulation of the neutrino nucleon interaction PYTHIA is used

GEANT4 Simulation – Fast Simulation techniques

•Electromagnetic Shower Parameterization

•Simulation of optical photons continues after emission only when there is a significant probability for the photon to hit a PMT

GEANT4 Simulation : Visualization

Particle tracks, detector components and hits are visualized using Virtual Reality Modeling Language (VRML)

GEANT4 Simulation – Example: Charge Current Atmospheric νe (20GeV) interaction

Detector Geometry Optical Module Geometry

1km3 Grid with 18522 PMTs

Particle Tracks

Hits

PMT Photocathod

PMT Collective Efficiency

PMT Single Photoelectron Spectrum

mV

PMT Quantum Efficiency

PMT Standard electrical pulse for a response to a single p.e.

PMT Arrival Pulse Time resolution

Optical noise and PMT response simulation

Radioactive decays in water

Simulation Example

1km3 Grid - 1 TeV Vertically incident muon

K40 Noise Hits

Signal Hits

(Hit amplitudes > 2 photoelectrons)

Electrical Pulse of a Noise Hit

Filtering & Reconstruction Algorithms

Local (storey) Coincidence filterApplicable only when there are more than one PMT looking towards the same hemisphere

Global clustering (causality) filter50% Background rejection while all signal hits survive (1km3 Grid & 1 TeV muon)

Local clustering (causality) filter75% Background rejection while 90% of signal hits survive (1km3 Grid & 1 TeV muon)

Prefit : Clustering of candidate tracks

Angular deviation (degrees)

1TeV muons

1km3 Grid Detector

Fit:Kalman Filter (novel application in this area)

Angular deviation (degrees)

1TeV muons

1km3 Grid Detector

PRELIMINARYPRELIMINARY

The HELYCON Detector Module:

CONSTRUCTION

SC-301 Protvino

BICRON BCF91A

12 fibers/column

TYVEC 4650B

PH: XP1912

10 x 12 cm tiles

2x80 tiles ~ 0.96 m2

Response to a MIP

DAQ S/W based on LabView

On-Line analysis - distributions

Charge (in units of mean p.e. charge)

At the Detector Center

Data

- Monte Carlo Prediction

Detailed Monte Carlo description

PRELIMINARY

Digitized Waveforms saved on hard disk

Response to ShowersData versus Monte Carlo Prediction

PRELIMINARY

deposited charge per counter [mip equivalent]

Data

___ M.C. Prediction

zenith angle (θ)

φ

Observed Rates: 2500 (± 30 ) per day

Predicted Rates: 2430 (± 100 M.C. stat.) per day

Response to Showers

Trigger Detectors >1 mip

Detectors A.and.B > 0.5 mip’s

~ coscos

8.5 0.4

dN

d

zenith angle [degrees] zenith angle [degrees]

~ coscos

9.4 0.6

dN

d

Trigger Detectors > 1 mip

Detectors A.and.B > 1.5 mip’s

α=9.4±0.2

PRELIMINARY PRELIMINARY

Measuring the angular resolution of a single station

Discriminator

(1.5 MIP)

Input C Trigger

Input B

Input A’

Input A

Input B’

Detector I: A, B,C

Detector II: A’, B’,C

~10m

between

detectors

θΙ-θΙΙ

M.C. Prediction

10m lever arm

6.8o·(2)1/2=9.6o

HELYCONHELLENIC LYCEUM COSMIC OBSERVATORIES NETWORK

1019 eV

1017 eV

1015 eV

2 km

The General Idea…

•Angular offset

•Efficiency

•Resolution

•Position

but also Physics …

C.R. composition

UHE ν - Horizontal Showers

Veto atmospheric background – Study background

We propose a minimum of 3 stations with at least 4 m2 scintillator

detectors each

Floating stations

(Sea Technology?)

Monte Carlo Studies

Reconstruction efficiency Resolution (degrees)

Three Stations Working Independently for 10 days

Single Station: 4 detectors (1m2 plastic scintillator), 20 m distance between the detectors, three out of four selection trigger

PRELIMINARY

Minimum of total collected charge [mip equivalent]zen

ith

an

gle

re

so

luti

on

[d

eg

ree

s]

•KM3NeT Kick-off Meeting, 11-13 April 2006, University of Erlangen-Nuremberg, Germany (1. Simulation and Reconstruction Algorithms, 2. Event Selection Criteria and Filters and 3. Calibrating the KM3 Telescope with EAS )•HEP2006: Recent Developments in High Energy Physics and Cosmology, April 13-16 2006, Ioannina, Greece (1. Neutrino Telescopy and EAS, 2. Data Analysis Techniques for the KM3NeT and 3. Using HELYCON as a calibrating system)

•20th European Cosmic Ray Symposium, September 5th-8th 2006, Lisbon, Portugal (HELYCON Detector: A status report)

•6th International Workshop on the Identification of Dark Matter (IDM 2006), 11-16 September 2006, Rhodes Greece (Towards a SeaTop Infrastructure)

•KM3NET Physics and Simulation Meeting (WP2), 24-25 October 2006, CPPM Marseilles France (H.O.U. Analysis and Simulation Tools)

•KM3NET WP3 Meeting, 8-10 November 2006, Paris (KM3NeT: calibration with atmospheric showers)

Contributions to International Workshops and Conferences

•2nd Workshop on Cosmic Rays in Schools Projects, September 9th 2006 Lisbon Portugal (HELYCON: as an Outreach and Educational program )

Publications

•A. Tsirigotis, “HELYCON: A Status Report”, Proceedings of the 20th European Cosmic Ray Symposium

•S.E.Tzamarias, “HELYCON: towards a sea top infrastructure”, Proceedings of the 6th International Workshop on the Identification of Dark Matter

•D. Loukas et al, “HELYCON Readout Electronics”, to be published .

•A.Leisos et al, “KM3NeT: Calibration with Atmospheric Showers”, to be published (NIM)

•A.Tsirigotis et al, “The HELYCON Detector”, to be published in Astr. Phys.

top related