primordial nucleosynthesis and recent topics in particle ... · primordial nucleosynthesis and...

Post on 17-Oct-2019

9 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Primordial nucleosynthesis and recent topics in

particle cosmology

Physics Department, Tohoku University Physics Department, Tohoku University

(郡 和範)Kazunori KohriKazunori Kohri

Thank you very much for inviting me to give a talk

Interdisciplinary Cooperationin GCOE, Tohoku Univ.

Physics

Philosophy Mathemataics

Fundamental Physics

etc.

Interdisciplinary Subjects inFundamental Physics

Particle physics

Astronomy

Astrophysics

Relativity

Nuclear physics

Hadron physics

Physics in the early Universe

(Cosmology)

Mathematics in Cosmology

• Pseudo Riemannian manifold (Geometry)

• Non-linear 2nd -order partial differential equation of elliptic or parabolic type (Analysis)

2 2 2 2 2 2( )( )ds g dX dX dt a t dx dy dzμ νμν= = − + +

12

R Rg T gμν μν μν μνκ− = + Λ22

2 and ~ or g gR R O OX Xμν

⎛ ⎞⎛ ⎞ ⎡ ⎤∂ ∂⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠ ⎣ ⎦⎝ ⎠

Philosophy and Cosmology

• Anthropic Principle (人間原理) (“I think, therefore I am” by Descartes )

• What exists outside the Universe?

Initial condition of the Universe and very small cosmological constant (fine tuning in Phyiscs or divine act in Theology)

Quantum fluctuation exists beyond the horizon!

Anthropic Principle (人間原理)

• Strong Anthropic principleBecause the current universe is like this, the mankind, who questions, necessarily exists.(宇宙がこうなっているからこそ、この問いを発する人間が必然として生まれたという原理)

• Weak Anthropic principleBecause the current universe is like this, the mankind , who questions, can possibly exist.(宇宙がこうなっているからこそ、この問いを発する人間が生まれる可能性があったという原理 )

I think, therefore I am (cogito ergo sum) René Descartes

To the question, “Why is the physical law, which is appropriate for the mankind, like this?”

NASA WMAP Science Team

Big-bang Nucleosynthesis• Light element production in the early Universe (The

first three minutes of the Universe)

• One of the three evidences to support the Big-bang cosmology ( others are the Cosmic expansion and the Cosmic-Microwave Background)

• Earliest phenomenon which we can detect

• Unification of nuclear physics, astronomy and particle physics

4 7D, He and Li

18

1

44

38 6

2

- 4

11

12

time 10 sec 10 sec 10 sec

1 sec

10 GeV10 GeV10 GeV

1 Me

10 sec

V

0.1 eV

10 eV

"t

~2.7

emp

13.

eratu

7 Gyr

re"

K

−−−

Thermal history of the UniverseThermal history of the Universe

Planck scale

GUT phase transition?

Electroweak phase transition

Neutron decoupling

Photon decoupling (CMB)

Big bang

Present≈

Inflation and Reheating

Baryogenesis?

Big-Bang Nucleosynthesis (BBN)

17(~10 sec)

cf) 1 GeV ~ 1013K

1 eV ~ 104K

Radiation

Matter

Scenario of BBN1) 1 MeV ( 1sec)T t> <

, ,γ ν±e,n p

Weak interaction is in equilibrium

ν++ ↔ + en e p

n

p

n QExpn T

⎡ ⎤= −⎢ ⎥⎣ ⎦(Q 1.29 MeV)n pm m≡ − ∼

cf) 1 MeV ~ 1010K

2) ~ 1 MeV ( ~ 1 sec)T tFeezeout of weak interaction

•Weak interaction rate

•Hubble expansion rate

2 5~ ~n p n p e Fn G Tσ↔ ↔Γ

2( ) ~ /( )

= pla tH T Ma t

3

0.8 MeVΓ ⎛ ⎞≈ ⎜ ⎟

⎝ ⎠T

H

( 0.8 MeV )Γ < < ≡ fH T T ( )/ is fixedn pn n

freezeout

n

p f

n QExpn T

⎛ ⎞ ⎡ ⎤≈ −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

cf) 1 MeV ~ 1010K

QExpT

⎡ ⎤−⎢ ⎥⎣ ⎦

freezeout

17

n

p

nn

⎛ ⎞≈⎜ ⎟⎜ ⎟

⎝ ⎠

3) ~ 0.1 MeV ( ~ 100 sec)T t

γ+ → +p n D 2.2 MeVDT B =

3/ 2/ 16.3( / ) exp[ / ] 0.01η >∼D H N Dn n T m B T

4) 0.1 MeV ( 100 sec)T t< >

3

3

44

, +n( He ) +n ( He+

He p)

eH

+ → +

+ + →

D D T pT D D

3A little and He are left as cold ashes D

There is no stable nuclei for A=5,8. Mass 7 nuclei are produced a little.4

4

7

73

He +He He

L+

iBeγ

γ

+ →

+ →

T

7e

7e +LiB ν−+ →e

cf) 0.1 MeV ~ 109K

64 LHe i+γ+ →D

4 He4ρ

ρ×

≡ ≈ Np

B

mY

4 He×

N

nm

freezeout

freezeout

2( / )0.25

( / ) +1( )≈ ≈

× +n p

n pn p

n nn nn n

He4 mass fraction

4 Hen

npp

4He /2nn n=

Time evolution of light elementsTime evolution of light elements

He4

D

Li7

Li6

He3

Observational Light Element Observational Light Element AbundancesAbundances

pY 0.2516 0.004= ±Peimbert,Lridiana, Peimbert(2007)

Izotov,Thuan, Stasinska (2007)

5D/H (2.82 0.26) 10−= ± ×

Melendez,Ramirez(2004)( )7sy10 st.log Li/H 9.90 0 ( 0.35.09 ) += − ±

O’Meara et al. (2006)

sy6

s7Li/ Li 0.046 0. ( 0.106022 )+< ± Asplund et al(2006)

3He/D 0.83 0.27< + Geiss and Gloeckler (2003)

Fukugita, Kawasaki (2006)

SBBN

( / )Bn nγ≡

Fermion Boson

Introduction toIntroduction to SUSYSUSYSupersymmetry (SUSY)

Solving “Hierarchy Problem”

Realizing “Coupling constant unification in GUT”

quark squark

lepton slepton

gravitino graviton

photino photonneutralino

Lightest SUSY particle (LSP) is a good candidate for dark matter

http://map.gsfc.nasa.gov/media/060916

Dark Matter

Unknown SUSY particles?

Supergravity • Local theory of Supersymmetry and a good candidate for

quantum gravity

• Predicting a massive super partner of graviton, gravititno

• Predicting a long-lived particle, e.g., decaying NLSP gravitino into LSP neutralino, or decaying NLSP neutralino or stau into gravitino LSP

• Typically the lifetime can be longer than one second! This is dangerous for cosmology.

τ ∼ ∼2 3 6 2 -3

3/2 3/2/ 10 sec( /10 GeV)

plm m m

Radiative decay mode

x

D + p + n

He3/D >~ O(1)

Hadronic decay modeHadronic decay mode

=jet

One hadron jet with/2XE m

=jet

Two hadron jets with/3XE m

3/ 4 10hB α π −≈ ≈

1hB =

Reno, Seckel (1988)

S. Dimopoulos et al.(1989)

x

x

↔ ↔↔Γ = Γ + Γstrongweakn p n pn p

Extraordinary interExtraordinary inter--conversion reactions between n and pconversion reactions between n and p

Hadron induced exchange

↔Γ ↑ ⇒ ↑ /n p n pEven after freeze-out of n/p in SBBN

More He4, D, Li7 …

cf) 0n pπ π++ → + 0p nπ π−+ → +

((I) Early stage of BBN I) Early stage of BBN (T > 0.1MeV)Reno and Seckel (1988) Kohri (2001)

(II) Late stage of BBN (T < 0.1MeV)Hadronic showers and “Hadro-dissociation” S. Dimopoulos et al. (1988)

fE E=n (p)

Kawasaki, Kohri, Moroi (2004)

Non-thermal Li, Be Production by energetic nucleons or photons Dimopoulos et al (1989)

34 +X

N (or ) + HHeT

e + X

γ⎧

→ ⎨⎩

4 6T + He + [8.4 Li MeV]n→

3 4 6 He + He + [7.0 L V]i Mep→

4 4 *N (or ) + He He +Xγ →

→4 4 6 7 7He + He Li, Li, Be + ...

3T, He4He

4He Energy loss

① T(He3) – He4 collision

② He4 – He4 collision

Jedamzik (2000)

Massive particle XMassive particle X

/x xY n s≡

x xUpper bounds on m Y in both photodissociation and "hadrodissociation" scenario Kawasaki, Kohri, Moroi (04)

Mild observational upper bound

Mild observational upper bound

Neutralino (bino) LSP and gravitino “NLSP”

( )−≈ 9 123/210 GeV /10RT Y

Upper bound on reheating temperature Upper bound on reheating temperature in case of gravitino NLSP and neutralino in case of gravitino NLSP and neutralino LSP scenarioLSP scenario Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

/x xY n s≡

τ ∼ 6 2 -3

3/210 sec( /10 GeV)m

Neutralino (bino) NLSP and gravitino LSP

Gravitino LSP and thermally Gravitino LSP and thermally porducedporducedneutralino (Bino) neutralino (Bino) ““NLSPNLSP”” scenarioscenario

No allowed region for DM density

Feng, Su, and Takayama (03)

Steffen (06)

Kawasaki, Kohri, Moroi, Yotsuyanagi (08)τ ∼ 2 2 5

3/2/

pl NLSPm m m

Relic abundance

Lifetime

100GeVBm =

Stau NLSP and gravitino LSP scenario

Stable stau with weak-scale mass ( <100TeV) was excluded by the experiments of ocean water

NLSP stau should be unstable

Bound-state effect is induced(see next)

CHArged Massive Particle (CHAMP)

Candidates of long-lived CHAMP in modern cosmologystau, stop …

“CHAMP recombination” with light elemctsTc~ E bin/40 ~ 10keV (Ebin ~ α2 mi ~ 100keV )

CHAMP captured-nuclei, e.g., (C,4He) changes the nuclear reaction rates dramatically in BBN

Kohri and Takayama, hep-ph/0605243

N+

CHAMP-

See also the standard recombination between electron and

proton, (Tc~ Ebin/40 ~ 0.1eV, Ebin ~ α2 me ~ 13.6eV ) )

Pospelov’s effect

• CHAMP bound state with 4He enhances the rate

• Enhancement of cross section

4 6D ( He,C ) Li C− −+ → +

Pospelov (2006),hep-ph/0605215

5 5 7 8Bohr~ ( / ) ~ (30) ~ 10aγλ

Confirmed by Hamaguchi etal (07), hep-ph/0702274

Stau NLSP and gravitino LSP Scenario

Kawasaki, Kohri, Moroi PLB 649 (07) 436

Kohri and Takahashi (09)

τ>103secτ>103sec

Lifetime Lifetime

Relic abundance

100GeVmτ =

Summary• By using BBN, we can get upper bounds on the reheating

temperature after inflation in gravitino NLSP and neutralino LSP scenario

• (The gravitino LSP with thermally produced NLSP scenarios are also severely constrained)

• This has a strong impact on cosmological models in supergravity

• Developments in science should affect our HEALTHY philosophical idea! For example, it should be important to know that the temperature of the Universe started from 1011

Kelvin and t = 10-14 second

=

9

3/2

11

(for 10 Kelvin 10

100 GKelv

eV V)in

1TeR

mT

top related