sensitive detection for food safety based on micro-nano ... · sensitive detection for food safety...

Post on 03-Apr-2018

217 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

中国农业科学院农业质量标准与检测技术研究所

Sensitive Detection for Food Safety based

on Micro-Nano Sensors

Peilong Wang

13 Sept 2016

Introduction of Our Team

Research Progress

Background

Contents

Conclusions四

3

Department of Dioxin Contamination

Department of Feed Safety

▲安装调试后的仪器▲安装调试后的仪器

Staff 21 Staff 9

Advanced instrument include HRGC-HRMS, LC-MS/MS, LC-Q-TOF, GC-

MS/MS and so on. The team focuses on analysis and toxicology of hazardous

substances in feed and animal products, such as beta-agonists, mycotoxins and

POPs etc.

CNFQC

Innovation Team of Feed Safety

4

Team Members

Dr. Peilong Wang

Dr. W. Zhang Dr. Z.Q. Zhang Dr. R. Wang

MS Rong SongDr. Xia Fan Prof. G. Zhao Prof. D. Suo

Dr. X. Li Dr. J. Cheng Dr. Y. Li

Prof. Xiaoou Su

Innovation Team of Feed Safety

Methods

Food Chain

Targets

con

firm

atio

nIllegal compounds

POPs

Mycotoxins

Heavy metal

Founctional components

Environment

Feed

Animal

Animal

Products R

ap

id scree

nin

g

Un

-targ

et an

aly

sis

Cell

Exp

erim

en

tal a

nim

al

Targ

et a

naim

al

Innovation Team of Feed Safety

Feed safety = Food Safety

Narrowly

Feed

Animal Food Human

Broadly

Transfer into human food

Background

Background

Sensors sensing!

How to realize the monitor of

food safety based on Internet +

Background

Questions

For the sensors

Low sensitivity

Single or multiplex assay?

Difficult to quantitative detection.

Selectivity

Background

Our solutions

Nano Tech

Enhancem

ent, label,

recognition

Sensitive

and robust

assay

Materials

Novel Tech

Basic R&D Application

Food Safety

Label Recognition Enhancement

Progress

Florescent and UCP label materials

Florescent Nano materials UCP nano materials

1.Fluoresenct lateral FLICA for detection of 3 kinds of beta-

agonists

Wang et al. Biosensors and Bioelectronics, 2015

High sensitivity ,0.1ng/g;Multiplex assay;Quantification。

Progress

Sample

CLEN (ng/mL or ng/g) RAC (ng/mL or ng/g) SAL (ng/mL or ng/g)

Added FoundRecovery

(%)Added Found

Recovery

(%)Added Found

Recovery

(%)

Urine

0.5 0.41 80.24.32 0.5 0.38 76.06.77 0.5 0.35 70.04.26

1.0 0.82 82.09.27 1.0 0.79 79.05.52 1.0 0.86 86.06.37

4.0 3.16 79.04.55 4.0 4.02 100.54.28 4.0 3.81 95.38.21

Tissue

1.0 0.91 91.010.2 1.0 0.83 83.05.73 1.0 0.75 75.04.93

2.0 1.71 85.55.42 2.0 1.64 82.06.47 2.0 1.62 81.06.51

4.0 3.56 89.07.61 4.0 3.41 85.35.17 4.0 3.26 82.35.36

Feed

1.0 0.84 84.08.53 1.0 0.79 79.06.25 1.0 0.71 71.06.30

2.0 1.83 91.56.74 2.0 1.74 87.03.69 2.0 1.79 89.56.28

4.0 4.35 87.05.29 4.0 3.19 79.84.74 4.0 3.51 87.87.46

Wang et al. Biosensors and Bioelectronics, 2015

1. Fluoresenct lateral FLICA for detection of 3 kinds of beta-

agonists

Progress

2.UCP label LICA for detection of CLEN

High sensitivity,0.01ng/g;Quantification,Low background;UCP-LICA for small molecules, firstly。Wang et al. Biosensors and Bioelectronics, 2016

Progress

SampleUCP-ICA LC-MS/MS

C (ng/mL or ng/g) RSD (%) C (ng/mL or ng/g) RSD (%)

Urine 1 2.26 6.9 2.49 3.1

Urine 2 0.31 9.4 0.42 4.2

Pork tissue 1 0.54 10.4 0.51 5.6

Pork tissue 2 3.59 5.2 3.96 4.7

Wang et al. Biosensors and Bioelectronics, 2016

2.UCP label LICA for detection of CLEN

Progress

The instruments and detection regents have been developed。

▲ Fluorescent instrument▲ UCP instrument

Progress

3. Electrochemical aptasensor for RAC

Yang, Wang and Su et al. Biosensors and Bioelectronics, 2016

The composite membrane of AuNPs and

Graphe was applied in the EC aptasensor。

Progress

Sample Added(moL/L) Found(moL/L) Recovery(%) RSD(%)

1

2

1.0×10-8

1.0×10-9

1.03×10-8

9.72×10-8

103.0

97.2

3.7

4.3

3 1.0×10-10 9.57×10-9 95.7 5.5

4 1.0×10-11 9.26×10-10 92.6 5.1

3. EC-aptasensor for RAC

Progress

-0.27 -0.30 -0.33 -0.36 -0.39 -0.42-60

-90

-120

-150

-180

-210

Cu

rren

t (n

A)

Potential (V)

Control

1 ng mL-1 OTA

a

b(A)

520 540 560 580 6000

200

400

600

800

1000

b

c

a

(B)

Flu

ore

scen

ce i

nte

nsi

ty /

a.u

.

Wavelength / nm

Control

1 ng mL-1 OTA

1 ng mL-1 OTA+RecJf Exo

4. ITO sensor for OTA

Tan and Wang et al. Analytical Chemistry, 2015

Signal amplification based on

Un-modified ITO electrode 。

Progress

-0.25 -0.30 -0.35 -0.40

-60

-90

-120

-150

-180

-210(A)

Cu

rre

nt

(nA

)

Potential (V)

a

b

c

d

e

f

g

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-20

-40

-60

-80

-100

-120

△Ⅰ

(n

A)

Concentration of OTA (ng mL-1)

(B)

Sample Detected

(ng mL−1)

Reference

(ng mL−1)

Spiked

(ng mL−1)

Total

found (ng

mL−1)

Recovery

(%)

RSD

(%)

1 47.9 54.2 10.0 57.4 95.0 4.9

2 48.6 54.2 20.0 67.9 96.5 5.1

3 49.1 54.2 40.0 88.2 97.8 5.6

4. ITO sensor for OTA

Progress

5.Visual nano probe for detection of aflatoxins

Du, Wang and Su et al. Microchimica Acta 2016

Zhou, Wang and Su et al. Talanta. 2013

Easy operation;Without instrument;Visual。

Progress

sampleConcentration of AFB1 (nM)

recovery (%) RSD (%)spike level amount found

1 10 8.57±0.46 85.7 5.4

2 50 51.35±1.69 102.7 3.3

3 100 109.76±4.14 109.8 3.8

5.Visual nano probe for detection of aflatoxins

Progress

6. Visual chemical probe for detection of aflatoxins

Du, Su and Wang et al. Analytical Chemistry 2016

Progress

6. Visual chemical probe for detection of aflatoxins

Progress

传统ELISA

1

2 3 4

5Adding antigen

Adding enzyme

labelled antibodyTMB substrates

HCl or H2SO4

Highly SensitiveHighly SpecificA broad range of targets

Advantage:

7.Visual ELISA based on AuNRs

Limitation of current commercially available ELISA

Microplate reader

(~10,000$)

Costly & Poor Portability

Naked eye:

qualitative detection

Microplate reader:

quantitative detection

Limitation:

How to detect a broad range of targets with portable devices?

Multicolor

ELISA ELISA: Thousands of targets

A broad range of

targets

Multicolor: Visual detection with naked eye

Portable devices

Toxic standard substances

7.1 Detection of AFB1

7. Visual ELISA based on AuNRs

Unpublished data

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

TMB2+

450nm

Ab

so

rban

ce

Aflatoxin M1(ppb)

400 500 600 700 800 9000.0

0.1

0.2

0.3

0.4

0.5

0.6

Ab

so

rban

ce

wavelength(nm)

0.72ppb

0.36ppb

0.18ppb

0.12ppb

0.09ppb

0.06ppb

0.03ppb

0.00ppb

0.00ppb 0.03ppb 0.06ppb 0.09ppb 0.12ppb 0.18ppb 0.36ppb 0.72ppb

7.1 Detection of AFB1

Mechanism of multi-color

7.1 Detection of AFB1

Application in Real Samples

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

log

it(A

450)

lg(CAF M1

)

Comparison of ELISA and MELISA

0.00ppb 0.03ppb 0.06ppb 0.09ppb 0.12ppb 0.18ppb 0.36ppb 0.72ppb

样品 吸光度值( (

伊利纯牛奶

蒙牛纯牛奶

酸奶

奶粉

营养快线

450nm) C ppb)

1.188702 0.097871

1.420214 0.062452

0.96818 0.145891

1.081538 0.11893

0.928056 0.156905

AFM1/2

1 2 3 4 5与传统相比可产生比较多的颜色实现可视化,且测量结果与传统相近,说明准确度较好

Calibration line

Application in Real Sample

Visual ELISA for detection of freshness of Fish-Hypoxanthine

Application in Real Sample

Visual ELISA for detection of freshness of Fish-Hypoxanthine

Progress

分子印迹微观材料 分子印迹表面结构

分子印迹产品填料 分子印迹净化柱

Wang and Su et al. Analyst 2016

1. MIP materials for sample preparation

A0.02

Time3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20

%

0

100

3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20%

0

100

20110301-35 Sm (Mn, 2x4) MRM of 4 Channels ES+ 277.2 > 202.9 (CLEN)

3.83e3

S/N:PtP=45.51

3.74

5.20

5.07

4.56

4.39

4.88

4.72

20110301-178 Sm (Mn, 1x2) MRM of 4 Channels ES+ 277.2 > 202.9 (CLEN)

6.35e3

S/N:PtP=84.46

4.985.18

5.08

Common,S/N=15.5

MIP,S/N=84.1Wang and Su et al. J. Sep. Sci. 2013

Wang and Su et al. Food Chem. 2015

Wang and Su et al. Anal. Lett. 2012

Wang and Su et al. Chin. J. Anal. Chem. 2007 and 2012

2.Host-guest recognition materials

▲ Chromatogram of organic arsenic with LC-MS/MS

▲ TEM of magnetic beads

Alpha-cyclodextrin was used as recognition elements, the Alpha-

cyclodextrin was modified on the magnetic beads.

▲Schematic of magnetic beads

Jia and Wang et al.PLOS one 2014

Progress

▲ Schematic of MFIA

▲ Clean-up results of MFIA

For the purpose of multi-class detection of target analytes, the MFIA clean-up

method has been developed with C18, PAX and carbon nano tube. The method has

been applied into detection of beta-agonists, mycotoxin, sadetives and sulfa-drugs.

Wang and Su. Journal of Chromatography B, 2014,947-948,192。

3.Multi-functional impurity adsorption (MFIA)

Progress

4.M-MOFs@MIP sample preparation

Well defined structure;Large specific area;Clean-up effects;Convenient operation。

Progress

Conclusions

Some novel sensor based on nano materials for food safety has

been developed.

The developed sensing methods possess some advantages such as

high sensitivity, robust and achieved quantification results and so

on.

Novel recognition materials present great promising application

in food safety.

Acknowledgement

Professor Su, the leader of innovation team;

Financial support by Special project of agriculture;

Prof. Zhiyong Tang, Prof. Zhenyu Lin and Prof.

Yujian He;

Students:Feiyang, Rinan Wang, Bibai Du and Yue

Tan and so on.

中国农业科学院农业质量标准与检测技术研究所

谢谢敬请批评指正!

top related