transform analysis of lti systems 主講人:虞台文. content the frequency response of lti...

Post on 20-Jan-2016

248 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Transform Analysis ofLTI systems

主講人:虞台文

Content The Frequency Response of LTI systems Systems Characterized by Constant-Coefficien

t Difference Equations Frequency Response for Rational System Fun

ctions Relationship btw Magnitude and Phase Allpass Systems Minimum-Phase Systems Generalized Linear-Phase Systems

Transform Analysis ofLTI systems

Frequency Response of LTI systems

Time-Invariant System

h(n)h(n)

x(n) y(n)=x(n)*h(n)

X(z) Y(z)=X(z)H(z)H(z)

Frequency Response

)()()( zXzHzY

)()()( jjj eXeHeY

|)(||)(||)(| jjj eXeHeY

( ) ( ) ( )j j jY e H e X e

MagnitudeMagnitude

PhasePhase

Ideal Frequency-Selective Filters

cc

)( jlp eH

c

cjlp eH

0

||1)(

n

nnh c

lp

sin

)(

Ideal Lowpass Filter

ComputationallyUnrealizable

ComputationallyUnrealizable

Ideal Frequency-Selective Filters

c

cjhp eH

1

||0)(

n

nn

nhnnh

c

hphp

sin)(

)()()(

Ideal Highpass Filter

ComputationallyUnrealizable

ComputationallyUnrealizable

cc

)( jhp eH

Such filters are– Noncausal– Zero phase– Not Computationally realizable

Causal approximation of ideal frequency-selective filters must have nonzero phase response.

Ideal Frequency-Selective Filters

Phase Distortion and Delay ---Ideal Delay

)()( did nnnh )()( did nnnh ( ) dj njidH e e ( ) dj njidH e e

1|)(| jid eH

|| )( dj

id neH

Delay DistortionLinear Phase

Delay Distortion would be considered a rather mild form of phase distortion.

Delay Distortion would be considered a rather mild form of phase distortion.

Phase Distortion and Delay ---A Linear Phase Ideal Filter

Still a noncausal one.Not computationally realizable.

Still a noncausal one.Not computationally realizable.

c

cnj

jlp

deeH

0

||)(

n

nn

nnnh

d

dclp ,

)(

)(sin)(

A convenient measure of the linearity of phase. Definition:

Phase Distortion and Delay ---Group Delay

)]}({arg[)]([)(

jj eH

d

deHgrd )]}({arg[)]([)(

jj eH

d

deHgrd

Linear Phase ()=constant The deviation of () away from a constant

indicates the degree of nonlinearity of the phase.

Transform Analysis ofLTI systems

Systems Characterized by

Constant-Coefficient Difference Equations

Nth-Order Difference Equation

M

rr

N

kk rnxbknya

00

)()(

M

rr

N

kk rnxbknya

00

)()(

M

r

rr

N

k

kk zbzXzazY

00

)()(

N

k

kk

M

r

rr

za

zb

zX

zYzH

0

0

)(

)()(

N

k

kk

M

r

rr

za

zb

zX

zYzH

0

0

)(

)()(

Representation in Factored Form

N

kr

M

rr

zd

zc

a

bzH

1

1

1

1

0

0

)1(

)1()(

N

kr

M

rr

zd

zc

a

bzH

1

1

1

1

0

0

)1(

)1()(

Contributes poles at 0 and zeros at crContributes poles at 0 and zeros at cr

Contributes zeros at 0 and poles at drContributes zeros at 0 and poles at dr

Example

)1)(1(

)1()(

1431

21

21

zz

zzH

)1)(1(

)1()(

1431

21

21

zz

zzH

)(

)(

1

21)(

2831

41

21

zX

zY

zz

zzzH

)()21()()1( 212831

41 zXzzzYzz

)2()1(2)()2()1()( 83

41 nxnxnxnynyny )2()1(2)()2()1()( 8

341 nxnxnxnynyny

Two zeros at z = 1Two zeros at z = 1

poles at z =1/2 and z = 3/4

poles at z =1/2 and z = 3/4

For a given ration of polynomials, different choice of ROC will lead to different impulse response.

We want to find the proper one to build a causal and stable system.

How?

Stability and Causality

For Causality:– ROC of H(z) must be outside the outermost pole

For Stability:– ROC includes the unit circle

For both– All poles are inside the unit circle

Stability and Causality

Example:

Stability and Causality

)21)(1(

1

1

1)(

1121

2125

zz

zzzH

)21)(1(

1

1

1)(

1121

2125

zz

zzzH

)()2()1()( 25 nxnynyny )()2()1()( 2

5 nxnynyny

Re

Im

1

Discuss its stability and causalityDiscuss its stability and causality

Inverse Systems

H(z)X(z) Y(z)

Hi(z)X(z)

G(z)= H(z)H i(z)=1

g(n) = h(n)* hi(n) = (n)

)(

1)(

zHzH i

)(

1)(

zHzH i

Inverse Systems

H(z)X(z) Y(z)

Hi(z)X(z)

G(z)= H(z)H i(z)=1

g(n) = h(n)* hi(n) = (n)

)(

1)(

zHzH i

)(

1)(

zHzH i

Does every system have an inverse system?

Does every system have an inverse system?

Give an example.Give an example.

Inverse Systems

N

kr

M

rr

zd

zc

a

bzH

1

1

1

1

0

0

)1(

)1()(

N

kr

M

rr

zd

zc

a

bzH

1

1

1

1

0

0

)1(

)1()(

M

kr

N

rr

i

zc

zd

b

azH

1

1

1

1

0

0

)1(

)1()(

M

kr

N

rr

i

zc

zd

b

azH

1

1

1

1

0

0

)1(

)1()(

Zeros

Poles

Zeros

Poles

Minimum-Phase Systems

A LTI system is stable and causal and also has a stable and causal inverse iff both poles and zeros of H(z) are inside the unit circle.

Such systems are referred to as

minimum-phase systems.

Impulse Response for Rational System Functions

By partial fraction expansion:

N

k

kk

M

r

rr

za

zbzH

0

0)(

N

k

kk

M

r

rr

za

zbzH

0

0)(

N

k k

kNM

r

rr zd

AzBzH

11

0 1)(

N

k k

kNM

r

rr zd

AzBzH

11

0 1)(

N

k

nkk

NM

rr nudArnBnh

10

)()()(

N

k

nkk

NM

rr nudArnBnh

10

)()()(

FIR and IIR

N

k k

kNM

r

rr zd

AzBzH

11

0 1)(

N

k k

kNM

r

rr zd

AzBzH

11

0 1)(

N

k

nkk

NM

rr nudArnBnh

10

)()()(

N

k

nkk

NM

rr nudArnBnh

10

)()()(

Zero polesZero poles

nonzero poles

nonzero poles

FIR and IIR

N

k k

kNM

r

rr zd

AzBzH

11

0 1)(

N

k k

kNM

r

rr zd

AzBzH

11

0 1)(

N

k

nkk

NM

rr nudArnBnh

10

)()()(

N

k

nkk

NM

rr nudArnBnh

10

)()()(

Zero polesZero poles

nonzero poles

nonzero poles

FIR: The system contains only zero poles.

FIR: The system contains only zero poles.

FIR and IIR

N

k k

kNM

r

rr zd

AzBzH

11

0 1)(

N

k k

kNM

r

rr zd

AzBzH

11

0 1)(

N

k

nkk

NM

rr nudArnBnh

10

)()()(

N

k

nkk

NM

rr nudArnBnh

10

)()()(

Zero polesZero poles

nonzero poles

nonzero poles

IIR: The system contains nonzero poles (not canceled by zeros).

IIR: The system contains nonzero poles (not canceled by zeros).

FIR

M

k

kk zbzH

0

)(

M

k

kk zbzH

0

)(

M

k

nk otherwise

Mnbknbnh

0 0

0)()(

M

k

nk otherwise

Mnbknbnh

0 0

0)()(

M

kk knxbny

0

)()(

M

kk knxbny

0

)()(

Example:FIR

otherwise

Mnanh

n

0

0)(

otherwise

Mnanh

n

0

0)(

1

11

1

11

0 1

1

1

)(1)(

az

za

az

azzazH

MMMM

n

nn1

11

1

11

0 1

1

1

)(1)(

az

za

az

azzazH

MMMM

n

nn

Does this system have nonzero pole?

7th-orderpole M=7

One pole is canceled by zero here.

One pole is canceled by zero here.

Example:FIR

otherwise

Mnanh

n

0

0)(

otherwise

Mnanh

n

0

0)(

Write its system function.

7th-orderpole M=7

)()(0

knxanyM

k

k

)1()()1()( 1 Mnxanxnayny M

Example:IIR

)()1()( nxnayny )()1()( nxnayny

11

1)(

azzH 11

1)(

azzH

)()( nuanh n

Transform Analysis ofLTI systems

Frequency Response of For Rational

System Functions

Rational Systems

0

0

( )

Mk

kkN

kk

k

b zH z

a z

0

0

( )

Mk

kkN

kk

k

b zH z

a z

N

k

kjk

M

k

kjk

j

ea

ebeH

0

0)(

N

k

kjk

M

k

kjk

j

ea

ebeH

0

0)(

N

k

jk

M

k

jk

j

ed

ec

a

beH

1

1

0

0

)1(

)1()(

N

k

jk

M

k

jk

j

ed

ec

a

beH

1

1

0

0

)1(

)1()(

Log Magnitude of H(ej) ---Decibels (dBs)

N

k

jk

M

k

jk

j

ed

ec

a

beH

1

1

0

0

1

1|)(|

N

k

jk

M

k

jk

j

ed

ec

a

beH

1

1

0

0

1

1|)(|

Gain in dB = 20log10|H(ej)|

N

k

jk

M

k

jk

j edeca

beH

110

110

0

01010 1log201log20log20|)(|log20

N

k

jk

M

k

jk

j edeca

beH

110

110

0

01010 1log201log20log20|)(|log20

Scaling Contributed by zeros Contributed by poles

Advantages of Representing the magnitude in dB

)()()( jjj eXeHeY

|)(||)(||)(| jjj eXeHeY

|)(|log20|)(|log20|)(|log20 101010 jjj eXeHeY

The magnitude ofOutput FT

The MagnitudeOf Impulse Response

The magnitude ofInput FT

Phase for Rational Systems

N

k

jk

M

k

jk

j edeca

beH

110

0 )1()1()(

N

k

jk

M

k

jk

j edeca

beH

110

0 )1()1()(

M

k

jk

N

k

jk

j ecd

ded

d

deHgrd

11

)1arg()1arg()]([

M

k

jk

N

k

jk

j ecd

ded

d

deHgrd

11

)1arg()1arg()]([

M

kj

kk

jkk

N

kj

kk

jkkj

ecc

ecc

edd

eddeHgrd

12

2

12

2

}{2||1

}{||

}{2||1

}{||)]([

ReRe

ReRe

M

kj

kk

jkk

N

kj

kk

jkkj

ecc

ecc

edd

eddeHgrd

12

2

12

2

}{2||1

}{||

}{2||1

}{||)]([

ReRe

ReRe

Systems with a Single Zero or Pole

11 zre j

11

1 zre j

r

r

Frequency Response of a Single Zero or Pole

11 zre j

11

1 zre j

jjj ereeH 1)(

jjj

ereeH

1

1)(

Frequency Response of a Single Zero

11 zre j jjj ereeH 1)(

)1)(1(|)(| 2 jjjjj ereereeH

)cos(21 2 rr

)]cos(21[log10|)(|log20 21010 rreH j )]cos(21[log10|)(|log20 2

1010 rreH j

Frequency Response of a Single Zero

11 zre j jjj ereeH 1)(

)1)(1(|)(| 2 jjjjj ereereeH

)cos(21 2 rr

)]cos(21[log10|)(|log20 21010 rreH j )]cos(21[log10|)(|log20 2

1010 rreH j

|H(ej)|2: Its maximum is at =.

max |H(ej)|2 =(1+r)2

Its minimum is at =0.min |H(ej)|2 =(1r)2

|H(ej)|2: Its maximum is at =.

max |H(ej)|2 =(1+r)2

Its minimum is at =0.min |H(ej)|2 =(1r)2

Frequency Response of a Single Zero

11 zre j jjj ereeH 1)(

)cos(1

)sin(tan)( 1

r

reH j

2

2

2

2

|)(|

)cos(

)cos(21

)cos()]([

j

j

eH

rr

rr

rreHgrd 2

2

2

2

|)(|

)cos(

)cos(21

)cos()]([

j

j

eH

rr

rr

rreHgrd

Frequency Response of a Single Zero

r = 0.9 = 0

r = 0.9 = /2

r = 0.9 =

-2 0 2-20

-10

0

10

dB

-2 0 2-2

0

2

Ra

dia

ns

-2 0 2-10

-5

0

5

Sa

mp

les

-2 0 2-20

-10

0

10

-2 0 2-2

0

2

-2 0 2-10

-5

0

5

-2 0 2-20

-10

0

10

-2 0 2-2

0

2

-2 0 2-10

-5

0

5

r = 0.9 = 0

r = 0.9 = /2

r = 0.9 =

-2 0 2-20

-10

0

10

dB

-2 0 2-2

0

2

Ra

dia

ns

-2 0 2-10

-5

0

5

Sa

mp

les

-2 0 2-20

-10

0

10

-2 0 2-2

0

2

-2 0 2-10

-5

0

5

-2 0 2-20

-10

0

10

-2 0 2-2

0

2

-2 0 2-10

-5

0

5

Frequency Response of a Single Zero

於處有最大凹陷 (1r)2於處有最大凹陷 (1r)2

r = 0.9 = 0

r = 0.9 = /2

r = 0.9 =

-2 0 2-20

-10

0

10

dB

-2 0 2-2

0

2

Ra

dia

ns

-2 0 2-10

-5

0

5

Sa

mp

les

-2 0 2-20

-10

0

10

-2 0 2-2

0

2

-2 0 2-10

-5

0

5

-2 0 2-20

-10

0

10

-2 0 2-2

0

2

-2 0 2-10

-5

0

5

Frequency Response of a Single Zero

於 ||處最高 (1+r)2於 ||處最高 (1+r)2

r = 0.9 = 0

r = 0.9 = /2

r = 0.9 =

-2 0 2-20

-10

0

10

dB

-2 0 2-2

0

2

Ra

dia

ns

-2 0 2-10

-5

0

5

Sa

mp

les

-2 0 2-20

-10

0

10

-2 0 2-2

0

2

-2 0 2-10

-5

0

5

-2 0 2-20

-10

0

10

-2 0 2-2

0

2

-2 0 2-10

-5

0

5

Frequency Response of a Single Zero

於處 phase直轉急上於處 phase直轉急上

Frequency Response of a Single Zero

-2 0 2-20

-10

0

10

-2 0 2-4

-2

0

2

4

-2 0 20

5

10

-2 0 2-20

-10

0

10

dB

-2 0 2-4

-2

0

2

4

Rad

ians

-2 0 20

5

10

Sam

ples

r=1/0.9r=1.25r=1.5r=2

= 0 =

Zero outsidethe unit circle

Note that the group delay is always positive when r>1

Note that the group delay is always positive when r>1

Frequency Response of a Single Zero

-2 0 2-40

-20

0

20

dB

-2 0 2-4

-2

0

2

4

Ra

dian

s

-2 0 2-100

-50

0

50

Sa

mpl

es

-2 0 2-40

-20

0

20

-2 0 2-4

-2

0

2

4

-2 0 2-100

-50

0

50

Some zeros insidethe unit circle

And some outside

Frequency Response of a Single Pole

The converse of the single-zero case.Why? A stable system: r < 1

Exercise: Use matlab to plot the frequency responses for various cases.

Frequency Response of Multiple Zeros and Poles

Using additive method to compute– Magnitude– Phase– Group Delay

Example Multiple Zeros and Poles

)7957.04461.11)(683.01(

)0166.11)(1(05634.0)(

211

211

zzz

zzzzH

)7957.04461.11)(683.01(

)0166.11)(1(05634.0)(

211

211

zzz

zzzzH

zerosRadius Angle

1 1 1.0376 (59.45)

polesRadius Angle

0.683 00.892 0.6257 (35.85)

Example Multiple Zeros and Poles

-3 -2 -1 0 1 2 3-100

-50

0

dB

-3 -2 -1 0 1 2 3-4

-2

0

2

4

Rad

ians

-3 -2 -1 0 1 2 30

5

10

Sam

ples

zerosRadius Angle

1 1 1.0376 (59.45)

polesRadius Angle

0.683 00.892 0.6257 (35.85)

Transform Analysis ofLTI systems

Relationship btw

Magnitude and Phase

Magnitude and Phase

Know magnitude Know Phase?

Know Phase Know Magnitude?

In general, knowledge about the magnitude provides no information about the phase, and vice versa. Except when …

In general, knowledge about the magnitude provides no information about the phase, and vice versa. Except when …

Magnitude

)(*)(|)(| 2 jjj eHeHeH

jez

zHzH *)/1(*)(

N

kk

M

kk

zda

zcbzH

1

10

1

10

)1(

)1()(

N

kk

M

kk

zda

zcbzH

1

10

1

10

)1(

)1()(

*

*0 0

1 1

*0 0

1 1

(1 *) (1 )*(1/ *)

(1 *) (1 )

M M

k kk kN N

k kk k

b c z b c zH z

a d z a d z

*

*0 0

1 1

*0 0

1 1

(1 *) (1 )*(1/ *)

(1 *) (1 )

M M

k kk kN N

k kk k

b c z b c zH z

a d z a d z

Magnitude)(*)()( zHzHzC

N

kkk

M

kkk

zdzd

zczc

a

b

1

*1

1

*12

0

0

)1)(1(

)1)(1(

N

kk

M

kk

zda

zcbzH

1

10

1

10

)1(

)1()(

N

kk

M

kk

zda

zcbzH

1

10

1

10

)1(

)1()(

*

*0 0

1 1

*0 0

1 1

(1 *) (1 )*(1/ *)

(1 *) (1 )

M M

k kk kN N

k kk k

b c z b c zH z

a d z a d z

*

*0 0

1 1

*0 0

1 1

(1 *) (1 )*(1/ *)

(1 *) (1 )

M M

k kk kN N

k kk k

b c z b c zH z

a d z a d z

Magnitude

N

kkk

M

kkk

zdzd

zczc

a

bzC

1

*1

1

*12

0

0

)1)(1(

)1)(1()(

Zeros of H(z):

Poles of H(z):

kc

kd

Zeros of C(z):

Poles of C(z):

*/1 and kk cc

*/1 and kk dd

Conjugate reciprocal pairsConjugate reciprocal pairs

Magnitude

N

kkk

M

kkk

zdzd

zczc

a

bzC

1

*1

1

*12

0

0

)1)(1(

)1)(1()(

Given C(z), H(z)=?

How many choices if the numbers of zeros and poles are fixed?

How many choices if the numbers of zeros and poles are fixed?

Allpass Factors

1

1

1

*)(

az

azzH ap 1

1

1

*)(

az

azzH ap

a

1/a*

Pole at a

Zero at 1/a*

Allpass Factors

1

1

1

*)(

az

azzH ap 1

1

1

*)(

az

azzH ap

j

jj

ap ae

aeeH

1

*)(

j

jj

ae

eae

1

*1

1|)(| jap eH

Allpass Factors

H1(z)H1(z)

H1(z)H1(z) Hap(z)Hap(z)

)()()( 1 zHzHzH ap

|)(||)(| 1 zHzH

There are infinite many systems to have the same frequency-response magnitude?

There are infinite many systems to have the same frequency-response magnitude?

Transform Analysis ofLTI systems

Allpass Systems

General Form

cr M

k kk

kkM

k k

kap zeze

ezez

zd

dzzH

11*1

1*1

11

1

)1)(1(

))((

1)(

cr M

k kk

kkM

k k

kap zeze

ezez

zd

dzzH

11*1

1*1

11

1

)1)(1(

))((

1)(

Real Poles Complex Poles

kdkd/1ke

*ke

ke/1

*/1 ke |Hap(ej)|=1

|Hap(ej)|=?

grd[Hap(ej)]=?

AllPass Factor

1

1

1

*)(

az

azzH af 1

1

1

*)(

az

azzH af

Consider a=rej

jj

jjj

af ere

reeeH

1)(

jj

jjj

af ere

reeeH

1)(

)cos(1

)sin(tan2)( 1

r

reH j

af

2

2

2

2

|1|

1

)cos(21

1)]([

jjj

af ere

r

r

reHgrd

Always positive for a stable and causal system.

Always positive for a stable and causal system.

Example: AllPass FactorReal Poles

-2 0 2-1

0

1

dB

-2 0 2-5

0

5

Ra

dian

s

-2 0 20

10

20

Sam

ple

s

-2 0 2-1

0

1

dB

-2 0 2-5

0

5

Ra

dian

s

-2 0 20

10

20

Sa

mp

les

0.9 0.9

Example: AllPass FactorReal Poles

-2 0 2-1

0

1

dB

-2 0 2-5

0

5

Ra

dian

s

-2 0 20

10

20

Sam

ple

s

-2 0 2-1

0

1

dB

-2 0 2-5

0

5

Ra

dian

s

-2 0 20

10

20

Sa

mp

les

Phase is nonpositivefor 0<<.

Group delay is positive

0.9 0.9

Example: AllPass FactorComplex Poles

-2 0 2-1

0

1

dB

-2 0 2-5

0

5

Rad

ians

-2 0 20

10

20

Sam

ples

/40.9

Continuous phaseis nonpositive

for 0<<.

Group delay is positive

-2 0 2-1

0

1

dB

-2 0 2-5

0

5

Rad

ians

-2 0 20

5

10

15

Sam

ples

Example: AllPass FactorComplex Poles

/40.8

1/23/44/3

Continuous phaseis nonpositive

for 0<<.

Group delay is positive

Transform Analysis ofLTI systems

Minimum-Phase Systems

Properties of Minimum-Phase Systems

To have a stable and causal inverse systems Minimum phase delay Minimum group delay Minimum energy delay

Rational Systems vs. Minimum-Phase Systems

H(z)H(z)

Hmin(z)Hmin(z) Hap(z)Hap(z)

)()()( zHzHzH apminHow?

Rational Systems vs. Minimum-Phase Systems

H(z)

Hmin(z)

Hap(z)

Rational Systems vs. Minimum-Phase Systems

H(z)

Hmin(z)

Hap(z)

Pole/zeroCanceled

Frequency-Response Compensation

s(n) DistortingSystem

Hd(z)

DistortingSystem

Hd(z)

sd(n) CompensatiingSystem

Hc(z)

CompensatiingSystem

Hc(z)

s(n)

The system of Hd(z) is invertible iff it is a minimum-phase system.

The system of Hd(z) is invertible iff it is a minimum-phase system.

Frequency-Response Compensation

s(n) DistortingSystem

Hd(z)

DistortingSystem

Hd(z)

sd(n) CompensatiingSystem

Hc(z)

CompensatiingSystem

Hc(z)

s(n)

DistortingSystem

Hdmin(z)

DistortingSystem

Hdmin(z)

AllpassSystem

Hap(z)

AllpassSystem

Hap(z)

s(n) sd(n) CompensatiingSystem

1Hdmin(z)

CompensatiingSystem

1Hdmin(z)

)(ˆ ns

Frequency-Response Compensation

DistortingSystem

Hdmin(z)

DistortingSystem

Hdmin(z)

AllpassSystem

Hap(z)

AllpassSystem

Hap(z)

s(n) sd(n) CompensatiingSystem

1Hdmin(z)

CompensatiingSystem

1Hdmin(z)

)(ˆ ns

H d(z) H c(z)

)()(

1)()( zH

zHzHzH ap

dminapdmin

)()()( zHzHzG cd

Example:Frequency-Response Compensation

)25.11)(25.11(

)9.01)(9.01()(18.018.0

16.016.0

zeze

zezezHjj

jj

4th orderpole

Example:Frequency-Response Compensation

4th orderpole

-2 0 2-20

0

20

40

dB

-2 0 2-5

0

5

Ra

dian

s

-2 0 2-10

0

10S

am

ple

s

Example:Frequency-Response Compensation

)8.01)(8.01(

)9.01)(9.01()25.1()(18.018.0

16.016.02

zeze

zezezHjj

jj

4th orderpole

Example:Frequency-Response Compensation

4th orderpole

-2 0 2-20

0

20

40

dB

-2 0 2-5

0

5

Ra

dian

s

-2 0 2-10

-5

0

5S

am

ple

s

Example:Frequency-Response Compensation

-2 0 2-20

0

20

40

dB

-2 0 2-5

0

5

Ra

dian

s

-2 0 2-10

-5

0

5S

am

ple

s

-2 0 2-20

0

20

40

dB

-2 0 2-5

0

5

Ra

dian

s

-2 0 2-10

0

10

Sa

mp

les

Minimum PhaseNonminimum Phase

Minimum Phase-Lag

)()()( jap

jmin

j eHeHeH

)()()( jap

jmin

j eHeHeH

NonpositiveFor 0 more

negative than

Minimum Group-Delay

)()()( jap

jmin

j eHeHeH

)]([)]([)]([ jap

jmin

j eHgrdeHgrdeHgrd

NonnegativeFor 0 more

positive than

Minimum-Energy Delay

)()()( zHzHzH apmin

|)0(||)0(| minhh

Apply initial value theoremApply initial value theorem

Transform Analysis ofLTI systems

Generalized

Linear-Phase Systems

Linear Phase

Linear phase with integer (negative slope) simple delay

Generalization: constant group delay

Example: Ideal Delay

|| ,)( jjid eeH || ,)( jjid eeH

1|)(| jid eH )( j

id eH

)]([ jid eHgrd

n

n

nnh ,

)(

)(sin)(

Example: Ideal Delay

|| ,)( jjid eeH || ,)( jjid eeH

1|)(| jid eH )( j

id eH

)]([ jid eHgrd

n

n

nnh ,

)(

)(sin)(

1

|H(ej)|

H(ej)

slope =

Example: Ideal Delay

-5 0 5 10 15-0.5

0

0.5

1

n

n

nnh ,

)(

)(sin)(

If =nd (e.g., =5) is an integer, h(n)=(nnd).

Impulse response is symmetric about n = nd , i.e., h(2nd n)=h(n).

Impulse response is symmetric about n = nd , i.e., h(2nd n)=h(n).

Example: Ideal Delay

n

n

nnh ,

)(

)(sin)(

The case for 2 (e.g., =4.5) is an integer.

-5 0 5 10 15-0.5

0

0.5

1

h(2n)=h(n).h(2n)=h(n).

Example: Ideal Delay

n

n

nnh ,

)(

)(sin)(

as an arbitrary number (e.g., =4.3).

-5 0 5 10-0.5

0

0.5

1

AsymmetryAsymmetry

More General Frequency Response with Linear Phase

|| ,|)(|)( jjj eeHeH || ,|)(|)( jjj eeHeH

|H(ej)||H(ej)| ejej

Zero-phasefilter

Ideal delay

1

|H(ej)|

H(ej)

slope =

cc

Example: Ideal Lowpass Filter

c

cj

jlp

eeH

||0

||)(

c

cj

jlp

eeH

||0

||)(

n

n

nnh c

lp ,)(

)(sin)(

Example: Ideal Lowpass Filter

n

n

nnh c

lp ,)(

)(sin)(

Show that

If 2 is an interger, h(2 n)=h(n).

It has the same symmetric property as an ideal delay.

It has the same symmetric property as an ideal delay.

Generalized Linear Phase Systems

jjjj eeAeH )()(Real function.

Possibly bipolar. and

are constants

)( jeH

)]([ jeHgrdconstant group delay

constant group delay

h(n) vs. and jjjj eeAeH )()(

)sin()()cos()( jj ejAeA

nj

n

j enheH

)()(

nnhjnnhnn

sin)(cos)(

h(n) vs. and )sin()()cos()()( jjj ejAeAeH

nnhjnnheHnn

j

sin)(cos)()(

)cos(

)sin()tan(

nnh

nnh

n

n

cos)(

sin)(

h(n) vs. and

)cos(

)sin()tan(

nnh

nnh

n

n

cos)(

sin)(

0)cos(sin)()sin(cos)(

nnhnnhnn

0))(sin()(

nnhn

0))(sin()(

nnhn

sin( ) sin cos cos sin sin( ) sin cos cos sin

Necessary Condition for Generalized Linear Phase Systems

jjjj eeAeH )()(

Let’s consider special cases.Let’s consider special cases.

0))(sin()(

nnhn

0))(sin()(

nnhn

Necessary Condition for Generalized Linear Phase Systems

0))(sin()(

nnhn

0))(sin()(

nnhn

=0 or 2 = M = an integer

0)(sin)(

nnhn

=0 or =0 or

0)(sin)2(

nnhn

0)(sin)2(

nnhn

Such a condition must hold for all and

)()2( nhnh )()2( nhnh

Necessary Condition for Generalized Linear Phase Systems

0))(sin()(

nnhn

0))(sin()(

nnhn

=0 or 2 = M = an integer

)()2( nhnh )()2( nhnh

is an integer

2 is an integer

Necessary Condition for Generalized Linear Phase Systems

0))(sin()(

nnhn

0))(sin()(

nnhn

=/2 or 3/2

2 = M = an integer

0)(cos)(

nnhn

=/2 or 3/2=/2 or 3/2

0)(cos)2(

nnhn

0)(cos)2(

nnhn

Such a condition must hold for all and

)()2( nhnh )()2( nhnh

Necessary Condition for Generalized Linear Phase Systems

0))(sin()(

nnhn

0))(sin()(

nnhn

=/2 or 3/2

2 = M = an integer

)()2( nhnh )()2( nhnh

is an integer

2 is an integer

CausalGeneralized Linear Phase Systems

0))(sin()(

nnhn

0))(sin()(

nnhn

Generalized Linear Phase System

Causal Generalized Linear Phase System 0))(sin()(

0

nnhn

0))(sin()(0

nnhn

Mnnnh and 0 ,0)( Mnnnh and 0 ,0)(

CausalGeneralized Linear Phase Systems

0 1 2 3 … M

0 1 2 3 … M

otherwise

MnnMhnh

0

0)()(

otherwise

MnnMhnh

0

0)()( 2/)()( Mjj

ej eeAeH

2/)()( Mjje

j eeAeH

Type I FIR linear phase system

M is even

Type II FIR linear phase system

M is odd

CausalGeneralized Linear Phase Systems

otherwise

MnnMhnh

0

0)()(

otherwise

MnnMhnh

0

0)()(

2/2/

2/

)(

)()(

jMjj

o

Mjjo

j

eeA

eejAeH2/2/

2/

)(

)()(

jMjj

o

Mjjo

j

eeA

eejAeH

Type III FIR linear phase system

M is even

Type IV FIR linear phase system

M is odd

0 1 2 …

… M

0 1 2 …

… M

Type I FIR Linear Phase Systems

0 1 2 3 … M

otherwise

MnnMhnh

0

0)()(

otherwise

MnnMhnh

0

0)()( 2/)()( Mjj

ej eeAeH

2/)()( Mjje

j eeAeH

Type I FIR linear phase system

M is even

M

n

njj enheH0

)()(

2/

0

2/ cos)(M

k

Mj kkae

2/,,2,1)2/(2

0)2/()(

MkkMh

kMhka

Example:Type I FIR Linear Phase Systems

1

54

0 1

1)(

z

zzzH

n

n

j

jj

e

eeH

1

1)(

5

2/2/

2/52/5

2/

2/5

jj

jj

j

j

ee

ee

e

e

)2/sin(

)2/5sin(2

je

-2 0 20

2

4

6

|H(e

j)|

-2 0 2-4

-2

0

2

4

Rad

ian

s

0 1 2 3 4

1

Example:Type II FIR Linear Phase Systems

1

65

0 1

1)(

z

zzzH

n

n

j

jj

e

eeH

1

1)(

6

2/2/

33

2/

3

jj

jj

j

j

ee

ee

e

e

)2/sin(

)3sin(2/5

je

0 1 2 3 4 5

1

-2 0 20

2

4

6

|H(e

j)|

-2 0 2-4

-2

0

2

4

Ra

dian

s

Example:Type III FIR Linear Phase Systems

21)( zzH

21)( jj eeH)( jjj eee

jej )sin(2

0 1

1

2

1

2/)sin(2 jje

-2 0 20

0.5

1

1.5

2

|H(e

j)|

-2 0 2-2

-1

0

1

2

Rad

ians

Example:Type IV FIR Linear Phase Systems

11)( zzH

jj eeH 1)()( 2/2/2/ jjj eee

2/)2/sin(2 jej

0

1

1

1

2/2/)2/sin(2 jje

-2 0 20

0.5

1

1.5

2

|H(e

j)|

-2 0 2-2

-1

0

1

2

Rad

ians

Zeros Locations for FIR Linear Phase Systems (Type I and II)

M

n

nznhzH0

)()(

M

n

nznMh0

)(

M

n

nMznh0

)()(

M

n

nM znhz0

)(

)( 1 zHz M

)()( 1 zHzzH M )()( 1 zHzzH M

Let z0 be a zero of H(z)

0)()/1( 000 zHzzH M

1/z0 is a zero

If h(n) is realz0* and 1/ z0* are zeros

Zeros Locations for FIR Linear Phase Systems (Type I and II)

)()( 1 zHzzH M )()( 1 zHzzH M

Let z0 be a zero of H(z)

0)()/1( 000 zHzzH M

1/z0 is a zero

If h(n) is realz0* and 1/ z0* are zeros

0z

10z

*0z

1*0 )( z

1z

11z

2z12z

3z4z

Zeros Locations for FIR Linear Phase Systems (Type I and II)

)()( 1 zHzzH M )()( 1 zHzzH M

Consider z = 10z

10z

*0z

1*0 )( z

1z

11z

2z12z

3z4z)1()1()1( HH M

if M is odd,z = 1 must be a

zero.

if M is odd,z = 1 must be a

zero.

Zeros Locations for FIR Linear Phase Systems (Type III and IV)

)()( 1 zHzzH M )()( 1 zHzzH M

Let z0 be a zero of H(z)

0)()/1( 000 zHzzH M

1/z0 is a zero

If h(n) is realz0* and 1/ z0* are zeros

0z

10z

*0z

1*0 )( z

1z

11z

2z12z

3z4z

Zeros Locations for FIR Linear Phase Systems (Type III and IV)

)()( 1 zHzzH M )()( 1 zHzzH M

0z

10z

*0z

1*0 )( z

1z

11z

2z12z

3z4z

Consider z = 1 )1()1( HH

z = 1 must be a zero.z = 1 must be a zero.

Consider z = 1)1()1()1( )1( HH M

if M is even,z = 1 must be a

zero.

if M is even,z = 1 must be a

zero.

top related