amplificador simple

9
Menú Tiempo 1-3 Horas Dificultad Avanzada ¡Neurociencia para Todos! +56 9 9868-6679 [email protected] productos () Experimento: Diseño del Circuito del Transistor Ahora vas a poder explicar con propiedad qué es el dopaje tipo P y tipo N, y qué es una zona de depleción. Ahora pondremos tu conocimiento en acción. Tienes el transistor n tus manos. Lo miras fijamente, sabiendo el poder que tiene, y todo lo que ha hecho por el mundo. Aquí lo vas a usar para amplificar unas spikes. ¿Qué vas a aprender? En la clase sobre Transistores anterior , aprendiste la teoría. Ahora vas a aplicar la teoría y vas a construir un circuito amplificador sencillo desde cero, usando dos transistores y unas cuantas resistencias y condensadores. Prácticos Requeridos Teoría de Transistores - Descubre como funciona un transistor antes de seguir SpikerBox - Ojalá estés bien familiarizado con el mundo de las spikes, esto hará que esta actividad sea más especial Equipo Cable de Estimulación Cucarachas Electrodo Procedimiento Para construir un amplificador, todo lo que necesitas es un transistor, una fuente de alimentación, unas pocas resistencias, y algunos condensadores. Hay muchas maneras de mezclar todos estos componentes, lo que es todo un arte; ( Steve Jobs lo llamaba "arte digital"), pero aquí te daremos algunas condiciones y supuestos básicos para trabajar y luego guiarte a través del diseño de tu propio bio-amplificador! Hay varias configuraciones que utilizan transistores NPN, pero vamos a utilizar la "configuración de emisor común", ya que es, por lejos, la más popular. Esta configuración nos permite disponer de alto voltaje y alta ganancia de corriente. "¿Y por qué se llama "amplificador en emisor común?" - porque la base es la señal de entrada, el colector es la señal de salida, y el "común" o tierra es el emisor. converted by Web2PDFConvert.com

Upload: eduardo-herrera-lavado

Post on 09-Jul-2016

72 views

Category:

Documents


1 download

DESCRIPTION

Amplificador simple

TRANSCRIPT

Page 1: Amplificador simple

Menú

Tiempo 1-3 Horas

Dificultad Avanzada

¡Neurociencia para Todos!

+56 9 9868-6679

[email protected]

productos ()

Experimento: Diseño del Circuito del TransistorAhora vas a poder explicar con propiedad qué es el dopaje tipo P y tipo N, y qué es una zona de depleción. Ahora pondremos tu conocimiento en acción. Tienes el

transistor n tus manos. Lo miras fijamente, sabiendo el poder que tiene, y todo lo que ha hecho por el mundo. Aquí lo vas a usar para amplificar unas spikes.

¿Qué vas a aprender?En la clase sobre Transistores anterior, aprendiste la teoría. Ahora vas a aplicar la teoría y vas a construir un circuito amplificador sencillo desde cero, usando dos

transistores y unas cuantas resistencias y condensadores.

Prácticos Requeridos

Teoría de Transistores - Descubre como funciona un transistor antes de seguir

SpikerBox - Ojalá estés bien familiarizado con el mundo de las spikes, esto hará que esta actividad sea más especial

Equipo

Cable de Estimulación

Cucarachas

Electrodo

ProcedimientoPara construir un amplificador, todo lo que necesitas es un transistor, una fuente de alimentación, unas pocas resistencias, y algunos condensadores. Hay

muchas maneras de mezclar todos estos componentes, lo que es todo un arte; (Steve Jobs lo llamaba "arte digital"), pero aquí te daremos algunas condiciones y

supuestos básicos para trabajar y luego guiarte a través del diseño de tu propio bio-amplificador!

Hay varias configuraciones que utilizan transistores NPN, pero vamos a utilizar la "configuración de emisor común", ya que es, por lejos, la más popular. Esta

configuración nos permite disponer de alto voltaje y alta ganancia de corriente. "¿Y por qué se llama "amplificador en emisor común?" - porque la base es la señal

de entrada, el colector es la señal de salida, y el "común" o tierra es el emisor.

converted by Web2PDFConvert.com

Page 2: Amplificador simple

Como todo buen ingeniero, vamos a empezar con los "requisitos", que es una forma aburrida de decir "lo que queremos esta máquina haga de verdad". En el caso

de nuestro bio-amplificador, queremos "amplificar" las pequeñas señales eléctricas en los nervios de la cucaracha. Vamos a buscar una ganancia de 150 o, en

otras palabras, aumentar en 150 veces la amplitud de la señal. También queremos limitar lo que amplificaremos, para garantizar que sólo estemos escuchando

spikes (potenciales de acción) y no otras señales eléctricas, como los latidos del corazón, actividad muscular, o el ruido eléctrico de tu casa. Así que, como con

el SpikerBox real, sólo queremos medir señales con componentes por encima de 300 Hz (ciclos por segundo). Esto también se conoce como filtro paso alto de la

señal.

Por lo tanto, tenemos dos requisitos:

1. Ganancia de 150.2. Ajuste de filtro: frecuencia de corte bajo de 300 Hz.

Ahora volvamos al arte del diseño electrónico. Nuestro amplificador está fuertemente basado en el gran libro "Practical Electronics for Inventors" de Paul Scherz.

Parts

Además de las cucarachas, el cable, y el electrodo, cas a tener que ir a Casa Royal a buscar lo siguiente:1. Dos Transistores NPN (2N4401) -from transistor sample pack2. Cuatro Resistencias de 4.7 kΩ -from resistor sample pack3. Cuatro Resistenias de 1 kΩ4. Una Resistencia de 50 Ω5. Dos Condensadores de 1 µF6. Cuatro Condensadores de 10 µF7. Cables conectores para protoboard8. Una protoboard sin soldadura9. Un conector de batería de 9V

10. Un batería de 9V11. Un conector RCA hembra12. Un parlante

También vas a necesitar un pedazo de corcho o de plumavit donde colocar la pata de la cucaracha.

Diseñando el CircuitoResistencias del Emisor y el Colector

Como vamos a usar una batería de 9V, y nuestras spikes tienen un componente negativo y uno positivo:

Queremos que la señal neuronal viaje sobre +4.5 V, para tener suficiente "espacio" de voltaje para poder amplificar la parte positiva y negativa de la señal. Por lo

converted by Web2PDFConvert.com

Page 3: Amplificador simple

tanto, necesitamos que V , o el voltaje en el colector, sea 1/2 V (es enredado, pero Vcc significa "corriente común", básicamente nuestra fuente de poder de

9V). Por lo tanto tenemos que ponder una resistencia en V para dejar V = 1/2 V , y usando la ley de Ohm's, V=IR, tenemos que:

I es la corriente que pasa a través del colector y función del transistor (se usa la hoja de datos del transistor para calcularla). Vamos a usar un valor de 1 mA para

I .

4.7 kΩ es un valor típico para un pack de resistencias, así que vamos a usar 4.7 kΩ para R

Hasta el momento, la ganancia del circuito es de ΔV /ΔV que es equivalente a la proporción de R /R .

Ya dejamos R = 4.7 kΩ, y R ya está integrada al transistor. Su R se conoce como transresistencia, que se calcula así:

I es aproximadamente igual a I , por lo que la transresistencia es de 26 Ω.

Podemos calcular la ganancia así:

Sin embargo, la transresistencia puede ser inestable en el transistor, así que necesitamos añadir una R además de la transresistencia. Scherz recomienda que V

sea igual a 1 V para estabilizar la transresistencia, y según la Ley de Ohm:

c cc

c c cc

c

c

c

c e c e

c e e

e c

e

converted by Web2PDFConvert.com

Page 4: Amplificador simple

Pero fíjate que agregando este R al circuito:

Así tenemos un cambio en la ganancia. La nueva ganancia es:

¡Oh no! ¡Nuestra ganania original de 180 se perdió, y ahora es mucho más pequeña que lo que necesitamos! No te asuste, podemos agregar un condensador en

paralelo a la resistencia de 1 kΩ que hará que ese 1 kΩ desaparezca de la señal de nuestra spike. Igual teníamos que agregar el condensador, ya que tenemos

que hacer un:

Filtro Paso Alto

En paralelo, una resistencia y un condensador actúan como un filtro paso alto y, como dijimos, queremos dejarlo en 300 Hz. ¿El cálculo? Muy fácil.

Ya sabemos que R = 1 kΩ, y f debiera ser 300 Hz, por lo que el condensador tiene que ser de 20 μF

Lo único que falta es el condensador de entrada para limpiar cualquier compensación DC en la señal de entrada, y mantener el circuito estable. Vamos a dejarla

en 1 uF.

converted by Web2PDFConvert.com

Page 5: Amplificador simple

Ajustando los Voltajes de Polarización

Recuerda que en la sección de teoría de transistores vimos que el transistor no se enciende sin un empuje de voltaje en el límite inferior, aproximadamente 0.6 V

para circuitos de silicio. Tenemos que agregar resistencias de polarización.

Queremos que V , el voltaje de la base, sea 0.6 V más grande que el voltaje de V , así que

Sabemos que V es de 1V por la caída de voltaje que calculamos, así que V debiera ser 1.6V. ¡Vamos a hacer un divisor de voltaje!

b e

e b

converted by Web2PDFConvert.com

Page 6: Amplificador simple

Nuestro V es, por supuesto, 9V, y nuestro V es 1.6 V, y ahora usamos la clásica ecuación de división de voltaje:

Podemos ordenar la ecuación y calcular...

Por lo tanto, R1 tiene que ser ~4.6 veces más grande que R2. Suena simple pero, el sentido común para este diseño de transistor dice:

Así que mejor seleccionemos valores para R2 = 1 kΩ, y R1 = 4.7kΩ, ya que son resistencias que hemos usado y tenemos a mano.

¡Y eso sería! Ahora nos toca...

Construir el CircuitoYa hiciste todo el cálculo matemátco, y ahora tienes que construir el circuito. Coloca la batería, transistor, resistencias y condensadores en la placa, como se

muestra:

in out

converted by Web2PDFConvert.com

Page 7: Amplificador simple

Una mirada más de cerca a la placa:

Inserta los electrodos en la pata de una cucaracha como en los otros experimentos y conecta el parlante al circuito. Coloca el parlante al máximo, y toca la pata

de la cucaracha suavemente con un mondadientes. Quizás puedas escuchar una respuesta muy leve, pero muy oculta entre todo el ruido. Amplifiquemos las

spikes un poco más. Puedes crear una "segunda etapa" de amplificación, sililar a lo que hacemos con nuestro SpikerBox normal, donde haces que la señal de

salida del circuito entre a una segunda copia del circuito, como puedes ver:

converted by Web2PDFConvert.com

Page 8: Amplificador simple

Sin embargo, te vas a dar cuenta que esta "duplicación" hace que el circuito se torne un poco inestable, así que tenemo que disminuri un poco la ganancia de la

seguna etapa. Añadimos una resistencia de 50 Ω en paralelo a R para bajar la ganancia de esta etapa un poco, pero igual nos permitirá tener spikes fuertes

cuando conectes la pata de la cucaracha al circuito. Ve el video a continuación.e

converted by Web2PDFConvert.com

Page 9: Amplificador simple

¡Felicitaciones, acabas de construir tu propio amplificador con transistores!Cuéntanos si descubres una forma para hacer que el circuito sea más simple, limpio, y

con mayor amplificación.

DiscusiónHas creado tu propio camino para descubrir muchísimas cosas. La historia de la ciencia ha sido definida por la invención de nuevos dispositivos en manos de

mentes imaginativas. El telescopio te permite ver cosas muy lejanas. El microscopio te permite ver las cosas más pequeñas. La máquina de PCR permite medir

moléculas de ADN, y el transistor permite observar pequeñas señales eléctricas. Con estas herramientas podemos ver y tratar de comprender el mundo más allá

de la capacidad de nuestros sentidos básicos. Ahora, comienza a descubrir.

Preguntas de Discusión1. ¿Por qué, en nuestro amplificador con transistores, las spikes son más "ruidosas" que las del SpikerBox? ¿Qué hace el SpikerBox? Una pista: el SpikerBox

tiene muchos más transistores y los usa para construir amplificadores operacionales, los que luego se unen en un amplificador de instrumentación.¡Bienvenido al Arte de la Electrónica!

Twitter

loading tweets...

Posteos Recientes

¡Hemos lanzado "El Completo"! El Kit de Electrofisiología que cabe en una caja de herramientas.

Versión Beta del Software para PC de Backyard Brains ya está disponible

Backyard Brains lanza "Society", un invento para controlar el comportamiento y el pensamiento humano

Información de BYB

Contador de Spikes

Contacto

Preguntas Frecuentes

Finanzas

Prensa

Copyright © 2014 cBackyard Brains | Protected under the Creative Common License c b a

converted by Web2PDFConvert.com