analisa struktur metode slope deflection
Embed Size (px)
TRANSCRIPT

KELOMPOK 2
ANALISA STRUKTURSLOPE DEFLECTION
KELOMPOK 2
MUCHAMAD LUQMAN RAHMAWAN (1561122003)
WAHYU PURNOMO ADI (1561122004)
MADE BAGUS GITA DARMA (1561122005)
UNIVERSITAS WARMADEWA
FAKULTAS TEKNIK
JURUSAN TEKNIK SIPIL
1

KELOMPOK 2
METODE SLOPE DEFLECTION
ContohSoal Portal BidangTidakBergoyang (Non-Sway Plane Frame)
Diketahuistruktur portal denganpembebanansepertigambarberikut :
Penyelesaian :
1. Derajat kebebasan dalam pergoyangan struktur statis tak tentu :n = 2j – (m + 2f + 2h + r)
dengan :n = jumlah derajat kebebasan (degree of fredom)j = jumlah titik simpul, termasuk perletakan (joint)m = jumlah batang yang dibatasi oleh dua joint (member)f = jumlah perletakan jepit (fixed)h = jumlah perletakan sendi (hinged)r = jumlah perletakan rol (roll)
Cek: n = 2x4 – (3 + 2x2 + 2x0 + 1)= 8 – 8 = 0 ≤0 →tidak ada pergoyangan
2

KELOMPOK 2
2. MENENTUKAN JUMLAH VARIABEL YANG ADA :
- A = rol, θA bukan variabel- B = titik simpul, ada variable θB- C = jepit, θC= 0- D = jepit, θD=0- Jadi variabelnya hanya satu, θB
3. PERHITUNGAN MOMEN PRIMER DAN KEKAKUAN BATANG
Momen primer
MFBA = + 3/16 PL = + 3/16 (3) 6 = + 9 tm
MFBC = - 1/8 PL = - 1/8 (2) 4 = - 1 tm
MFCB = + 1/8 PL = + 1/8 (2) 4 = + 2 tm
Kekakuan batang
KBA = 3EI/L = 3(2EI)/6 = 1 EIKBC = KCB = 4EI/L = 4(EI)/4 = 1 EIKBD = KDB = 4EI/L = 4(EI)/6 = 0,66 EI
4. PERSAMAAN SLOPE DEFLECTION MAB = M°AB + 1 EI (2θA + θB) = 0 + 2 EIθA + 1 EIθB (1) MBA = M°BA + 1 EI (2θB + θA) = +9 + 2 EIθB + 1 EIθA (2) MBC = M°BC + 1 EI (2θB + θC) = -1 + 2 EIθB + 1 EIθC (3) MCB = M°CB + 1 EI (2θC + θB) = 1 + 2 EIθC + 1 EIθB (4) MBD = M°BD + 0,66 EI (2θB + θD) = 0 + 1,33 EIθB + 0,66 EIθD (5)
MDB = M°DB + 0,66 EI (2θD + θB) = + 0 + 1,33 EIθD + 0,66 EIθB (6)
Syaratbatas (boundary condition) :- C = jepit, θC=0- D = jepit, θD=0- A = rol, MAB =0
3

KELOMPOK 2
PERSMAAN SLOPE DEFLECTION MENJADI
0 =2 EIθA + 1 EIθB (1a) MBA =9 + 2 EIθB + 1 EIθA (2a) MBC = -1 + 2 EIθB (3a) MCB = 1 + 1 EIθB (4a) MBD = 1,33 EIθB (5a) MDB = 0,66 EIθB (6a)
5. MENCARI NILAI θ B
Σ Mb = 0 (2a) + (3a) + (5a) = 0(9 + 2 EIθB + 1 EIθA) +(-1 + 2 EIθB ) + (1,33 EIθB ) = 0(+8+ 5,33 EI θB + 1EI θA) = 0 1EI θA + 5,33 EI θB = -8 (7)
Eliminasi – substitusi persamaan 1a dengan persamaan 71EI θA + 5,33 EI θB = -8 x 2 2EI θA + 10,66EI θB = 16 2EIθA + 1 EIθB = 0 x 1 2 EIθA + 1 EIθB = 0 -
9,66 EIθB = 16 EI θ B = 1,553
Substitusi EIθB ke persamaan 1a2 EIθA + 1 EIθB = 02 EIθA + 1( 1,553 )= 02 EIθA + 1,553 = 0 EI θ A = -0,776
6. MOMEN UJUNG
4

KELOMPOK 2
MAB = 2(-0,776) + 1( 1,553 )= -1,553 + 1,553 = 0 tm (1b) MBA = +9 + 2 (1,553) + 1 (-0,776) = 9+ 3,106 -0,776 = 11 ,33 tm (2b) MBC = -1 + 2 (1,553) = 2,106 tm (3b) MCB = 1 + 1 (1,553) = 2,553 tm (4b) MBD = 1,33 (1,553) =2,065 tm (5b) MDB = 0,66 (1,553) =1,024 tm (6b)
7. URAIAN FREEBODY
Batang AB
ΣMB = 0 RA.6 – P1.3 + MBA = 0RA.6 – 3.3 + 11 ,33 = 0 6RA – 9 + 11 ,33 = 0 6RA + 2,33 = 0 RA = - 0 ,388
ΣV= 0 RA - P1 + RB = 0-0,388 - 3 + RB = 0 -3,388 + RB= 0 RB = 3,388
Batang BC
5

KELOMPOK 2
ΣMB = 0 RC.4 + P2.2 – MCB - MBC = 0RC.4 + 2 .2 – 2,553 – 2,106 = 04 RC + 4 – 4,639= 04 RC - 0,639 = 0 RC = 0 ,159
ΣV= 0
RB1 – P2 + RC = 0
RB1 – 2 + 0,159 = 0
0,159- 2+ RB1= 0
RB1 = 1,841
Batang BD
ΣMB = 0 RD.6– MDB - MBD = 0RD.6– 1,024 - 2,065 = 06RD – 1,024 - 2,065 = 06RD – 3,089= 0 RD= 3,089/6 RD=0,514
6
ΣV= 0 RB3 + RD = 0RB3 + 0,514 = 0RB3 =0 ,514
DV =RB + RB1
DV =3,388+ 1,841
DV =5,229

KELOMPOK 2
FreebodySuperposisi
8. KONTROL STRUKTUR
ΣMA = 0 (P1 x 2) – (VD x 4) + (HD x 4) + (P2 x 5) – (VC x 6) + MCB + MDB = 0(3 X 2 ) – (5,229 X 4 ) + (0,514 x 4) +(2 X 5 )– (0,159 X 6 ) + 2,553 + 1,024 = 06 – 20,916 + 2,056 + 10 -0,954 + 2,553 + 1,024 = 00 = 0
ΣV = 0VA – P1 + VD – P2 + VC = 0-0,388 – 3 + 5,229 – 2 + 0,159 = 00 = 0
ΣH = 0 HC – HD = 0 0,514 – 0,514 = 0 0 = 0
9. MENGHITUNG BIDANG M & D
7

KELOMPOK 2
Bidang M
- Batang AB
- Batang BC
Bidang D
8
Diagram momen (M)
Momen di x = 3
0 + Ra . x
0 + (-0,388) . 3
-1,164 tm
Diagram momen (M)
Momen di x = 2
2,106 + Rb . x
2,106 + 1,841 . 2
5,788 tm

KELOMPOK 2
- Batang AB Gaya lintangdari x = 0 sd x= 6Dx = 0 , Ra = - 0 ,388 tonDx = 3 , Ra – P1 = - 0 ,388 - 6 = -6,388 tonDx = 6 , Ra – P1+Rb =- 0 ,388 – 6 +6,388 = 0
- Batang BCGaya lintangdari x = 0 sd x= 4Dx = 0 ,Rb= 1,841 tonDx = 2 ,Rb – P2 = 1,841 – 4 = -2,159 tonDx = 4 ,Rb – P2+Rc = 1,841 – 4 + 2,159 = 0
- Batang BD
10. MenghitungBidang N
9
BIDANG M BIDANG D

KELOMPOK 2
Batang BDN BD = Rb + Rb1
= 3,388 + 1,841= 5,229
A B C
D
5,229(+)
11. Diagram Superposisi BidangM , D , N
10

KELOMPOK 2
- Bidang M
A B C
D
(-)
1,164 11,33
2,106
(-)
5,788
(+)
2,553
1,024
2,065
(-)
- Bidang D
A B C
D
(-)(-)
0,388
6,388
(+)
1,841
(-)
2,159
(-)0,514
- Bidang N
11

KELOMPOK 2
A B C
D
5,229(+)
12