and mappings in spaces nonlinear banach problemskyodo/kokyuroku/contents/pdf/...strong and weak...

15
Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces (Wataru Takahashi) Department of Mathematical and Computing Sciences Tokyo Institute of Technology Abstract. In this article, we prove strong and weak convergence theorems for finding a common element of the set of solutions for an equilibrium problen $td$ the set of fixed points of arelatively nonexpansive mapping in aBanach space. Next, we prove two strong convergence theorems for finding aconmon element of the zero point set of amaximal monotone operator and the fixed point set of arelatively nonexpaoive mapping in aBanai spaoe by using the normal hybrid method and anew hybrid method called the $shr\dot{i}ingproj\infty tion$ method. $E\backslash lrther$ , we obtain a $n\infty essary$ and sufficient conition for the existence of $8olutions$ of the euquihbrium problem by using the metric resolvents. Finally, we prove a $\epsilon trong$ convergence thmrem for findin $g$ asolution of an equihbrium problem in aBanach space by using the $shr\dot{i}$ king projection method. 1 lntroduction Let $E$ be a real Banach space and let $E$ be a dual space of $E$ . Let $C$ be a closed convex subset of $E$ and let $f$ be a bifunction from $CxC$ to $R$ , where $R$ is the set of real numbers. The equilibrium problem is formulated as follows: Find $\hat{x}\in C$ such that $f(\hat{x},y)\geq 0$ for all $y\in C$ . $\ln$ this case, such apoint $\hat{x}\in C$ is called asolution of the problem. The set of $su\bm{i}$ solutions $\hat{x}$ is denoted by $EP(f)$ . Many problems in physics, optinization, and $economic8$ rduce to find asolution of the equihbrium problen. Blum and Oettli [5] widely discussed the nistence of solutioo of such an equilibrium problem. Combettes-Hirstoaga [9], Tada and Tahhaei [46], and Talaehashi and $TaRha\epsilon hi[48]$ proposed some metho&for approximtion of solutions of the equihbrium problem in aHilbert space. However, the problem of apprRating $solution\epsilon$ of the equihbrium problem in a $Bana\iota h$ space is difficult. We ako know the problem of finding apoint $u\in Esatis\theta ing$ $0\in Au$ , where $A$ is a maximal monotone operator from $E$ to $E^{*}$ . Such a problem contains numerous problems in physics, optimization and economics. A well-known method to solve this problem is called the proximal point algorithm: $x_{1}\in E$ and $x_{n+1}=J_{r_{n}}x_{\mathfrak{n}},$ $n=1,2,$ $\ldots$ , 1585 2008 91-105 91

Upload: others

Post on 11-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

Strong and Weak Convergence Theorems for EquilibriumProblems and Nonlinear Mappings in Banach Spaces

高橋 渉 (Wataru Takahashi)Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

Abstract. In this article, we prove strong and weak convergence theorems for finding acommon element of the set of solutions for an equilibrium problen $td$ the set of fixed points ofarelatively nonexpansive mapping in aBanach space. Next, we prove two strong convergencetheorems for finding aconmon element of the zero point set of amaximal monotone operatorand the fixed point set of arelatively nonexpaoive mapping in aBanai spaoe by usingthe normal hybrid method and anew hybrid method called the $shr\dot{i}ingproj\infty tion$ method.$E\backslash lrther$ , we obtain a $n\infty essary$ and sufficient conition for the existence of $8olutions$ of theeuquihbrium problem by using the metric resolvents. Finally, we prove a $\epsilon trong$ convergencethmrem for findin$g$ asolution of an equihbrium problem in aBanach space by using the$shr\dot{i}$king projection method.

1 lntroductionLet $E$ be a real Banach space and let $E$“ be a dual space of $E$. Let $C$ be a closed convex

subset of $E$ and let $f$ be a bifunction from $CxC$ to $R$ , where $R$ is the set of real numbers.The equilibrium problem is formulated as follows: Find $\hat{x}\in C$ such that

$f(\hat{x},y)\geq 0$ for all $y\in C$ .$\ln$ this case, such apoint $\hat{x}\in C$ is called asolution of the problem. The set of $su\bm{i}$ solutions $\hat{x}$

is denoted by $EP(f)$ . Many problems in physics, optinization, and $economic8$ rduce to findasolution of the equihbrium problen. Blum and Oettli [5] widely discussed the nistence ofsolutioo of such an equilibrium problem. Combettes-Hirstoaga [9], Tada and Tahhaei [46],and Talaehashi and $TaRha\epsilon hi[48]$ proposed some metho&for approximtion of solutions ofthe equihbrium problem in aHilbert space. However, the problem of apprRating $solution\epsilon$

of the equihbrium problem in a $Bana\iota h$ space is difficult. We ako know the problem of findingapoint $u\in Esatis\theta ing$

$0\in Au$ ,

where $A$ is a maximal monotone operator from $E$ to $E^{*}$ . Such a problem contains numerousproblems in physics, optimization and economics. A well-known method to solve this problemis called the proximal point algorithm: $x_{1}\in E$ and

$x_{n+1}=J_{r_{n}}x_{\mathfrak{n}},$ $n=1,2,$ $\ldots$ ,

数理解析研究所講究録第 1585巻 2008年 91-105 91

Page 2: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

where $\{r_{n}\}\subset(0, \infty)$ and $J_{r_{n}}$ are the resolvents of $A$ . Many researchers have studied thisalgorithm in a Hilbert space, see, for instance, [11, 18, 27, 42, 45] and in a Banach space, see,for instance, [17, 19, 20, 33]. A mapping $S$ of $C$ into $E$ is $can_{ed}$ nonexpansive if

$\Vert Sx-Sy\Vert\leq\Vert x-y\Vert$

for all $x,y\in C$. We denote by $F(S)$ the set of fixed points of $S$ . There are some methods forapproximation of fixed points of a nonexpansive mapping; see, for instance, [12, 26, 36, 43, 64].In particular, in 2003 Nakajo-Takahashi [32] proved the following strong convergence theoremby using the hybrid method:

Theorem 1.1 (Nakajo and Imhas$h1[32]$ ). Let $C$ be a nonempty dosed convex subset ofa Hilbert space $H$ and let $T$ be a nonexpansive mapping of $C$ into itsdf such that $F(T)\neq\emptyset$ .Suppose $x_{1}=x\in C$ and $\{x_{n}\}$ is given by

$\{\begin{array}{ll}y_{n}=\alpha_{n}x_{n}+(1- )Tx_{n},C_{n}=\{z\in C : \Vert y_{n} z\Vert\leq\Vert x_{n}-z\Vert\},Q_{n}=\{z\in C : (x_{n} z, x-x_{n}\rangle\geq 0\},u_{n+1}=P_{G_{n}\cap Q_{n}}x, n\in N,\end{array}$

where $P_{C_{n}\cap Q_{n}}$ is the metnc projection ffom $C$ onto $C_{n}\cap Q_{n}$ and $\{\alpha_{n}\}$ is chosen so that$0\leq\alpha_{n}\leq a<1$ . Then, $\{x_{n}\}$ converges strongly to $P_{F(T)}x$ , where $P_{F(T)}$ is the metricprojection jfinom $C$ onto $F(T)$ .

Let us call the hybrid method in Theorem 1.1 the normal hybrid method. Very recently,Takahashi, Takeuchi and Kubota [61] proved the fofowin$g$ theorm by using another hybridmethod called the shrinking projection method.

Theorem 1.2 (rhi, Ibkeuii and Kubota $[61|$ ). Let $H$ be a Hilbert space and let$C$ be a nonempty dosed convex subset of H. Let $T$ be a nonezpansive mapping of $C$ into itsdfsuch that $F(T)\neq\emptyset$ and let $x_{0}\in H$ . For $C_{1}=C$ and $u_{1}=P_{C_{1}}x_{0}$ , define a $s$equence $\{u_{n}\}$ of$C$ as follows:

$\{\begin{array}{ll}y_{n}=\alpha_{n}u_{n}+(1- \alpha_{n})Tu_{n},C_{\mathfrak{n}+1}=\{z\in C_{n} : \Vert y_{n}-z\Vert\leq\Vert u_{n}-z\Vert\},u_{n+1}=P_{C_{n+1}}x_{0}, n\in N,\end{array}$

where $0\leq\alpha_{\mathfrak{n}}\leq a<1$ for all $n\in N$ . Then, $\{u_{n}\}$ converges strongly to $z_{0}=P_{F(T)}x_{0}$ .In this article, we prove strong and we&convergence theorems for finding acommon element

of the set of $solution\epsilon$ for an equihbrium problem and the set of fixed points of arelativelynonexptsive mapping in aBanach space. Next, using the normal hybrid method and anew hybrid method called the shrinking projection method, we study two $\epsilon trong$ convergencetheorems for finding acommon element of the zero point set of amnimal monotone operatorand the fixed point set of arelatively nonexpansive $mapp_{\dot{i}}g$ in aBanach $spa\iota e$ . Further, we$obta\dot{i}$ a $nec\infty s$ary and sufficient condition for the existence of solutions of the euquihbriumproblem by using the metric resolvents. Finally, we prove astrong convergence thmremfor finding asolution of $\bm{t}$ equilibrium problem in aBanach space by $u\epsilon ing$ the shrinkingprojection method.

92

Page 3: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

2 PreliminariesThroughout this paper, we denote by $N$ and $R$ the sets of positive integers and real numbers,

respectively. Let $E$ be a Banach space and let $E^{*}$ be the topological dual of $E$ . For all $x\in E$

and $x^{*}\in E$“, we denote the value of $x^{*}$ at $x$ by $\langle x, x^{*}\rangle$ . Then, the duality mapping $J$ on $E$ isdefined by

$J(x)=\{x^{*}\in E^{*} : (x, x^{*}\rangle=\Vert x||^{2}=||x^{*}\Vert^{2}\}$

for every $x\in E$ . By the Hahn-Banach theorem, $J(x)$ is nonempty; see [51] for more $\det\dot{\omega}k$ .We denote the strong convergence and the weak convergence of a sequence $\{x_{\mathfrak{n}}\}$ to $x$ in $E$

by $x_{n}arrow x$ and $x_{n}arrow x$ , respectively. We also denote the weak’ convergence of a sequence$\{x_{n}^{*}\}$ to $x^{*}$ in $E$“ by $x_{n}^{*}arrow*x^{*}$ . A Banach space $E$ is sai$d$ to be strictly convex if $\rfloor\llcorner x+Au2<1$

for $x,y\in E$ with $\Vert x\Vert=\Vert y\Vert=1$ and $x\neq y$ . It $is$ also said to be uniformly convex if for each$\epsilon\in(0,2]$ , there exists $\delta>0$ such that $\frac{||x+y||}{2}\leq 1-\delta$ for $x,$ $y\in E$ with $||x\Vert=\Vert y||=1$ and$\Vert x-y\Vert\geq\epsilon$ . The space $E$ is said to be smooth if the limit

$\lim_{tarrow 0}\frac{\Vert x+ty\Vert-\Vert x||}{t}$

exists for all $x,y\in S(E)=\{z\in E : \Vert z\Vert=1\}$ . It is ako said to be unifomly smooth ifthe limit exists uniformly in $x,y\in S(E)$ . We know that if $E$ is snooth, strictly convex andreflexive, then the duality mapping $J$ is singlevalued, onbto-one and onto; see $[51, 52]$ formore details.

Let $E$ be a smooth Banach space and define the real valued function $\phi$ by

$\phi(y,x)=\Vert y\Vert^{2}-2(y,$ $Jx\rangle$ $+\Vert x||^{2}$

for all $y,x\in E$ . Then, we have that

$\phi(x,y)=\phi(x, z)+\phi(z, y)-2\langle x-z, Jz-Jy\rangle$

for all $x,$ $y,$ $z\in E$ . Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$

be a nonempty closed convex subset of $E$ . Following Alber [1], the generahzed projection $\Pi_{C}$

from $E$ onto $C$ is defined by$\Pi_{C}(x)=\arg\dot{m}n\phi(y,x)y\in C$

for all $x\in E$ . If $E$ is a Hilbert space, then $\phi(y, x)=\Vert y-x\Vert^{2}$ and $\Pi_{C}$ is the metric projectionof $H$ onto $C$ . We know the following lemmas for generahized projections.

Lemma 2.1 (Alber [1], Kammura and Takahashi [20]). Let $C$ be a nonempty closedconvex subset of a smooth, strictly convex and reflenive Banach space E. Then

$\phi(x,\Pi_{C}y)+\phi(\Pi_{C}y,y)\leq\phi(x,y)$ for all $x\in C$ and $y\in E$ .

Lemma 2.2 (Alber [1], Kamimura and $\ovalbox{\tt\small REJECT} \bm{i}[20]$ ). Let $C$ be a nonempty dosedconvex subset of a smooth, strictly convex, and reflexive Banach space, let $x\in E$ and let $z\in C$ .Then

$z=\Pi_{C}x\Leftrightarrow(y-z,$ $Jx-Jz\rangle$ $\leq 0$ for all $y\in C$.

93

Page 4: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

Let $E$ be a smooth, strictly convex and reflexive Banach space, and let $A$ be a set-valuedmapping from $E$ to $E$‘ with graph $G(A)=\{(x, x^{*}) : x^{*}\in Ax\}$ , domain $D(A)=\{z\in E$ :$Az\neq\emptyset\}$ and range $R(A)=\cup\{Az:z\in D(A)\}$ . We denote a set-valued operator $A$ from $E$ to$E^{*}$ by $A\subset E\cross E^{*}.$ $A$ is said to be monotone if

\langle$x-y,x^{*}$ 一 $y^{*}\rangle$ $\geq 0$

for all $(x,x^{*}),$ $(y,y^{*})\in A$. A monotone operator $A\subset ExE^{*}$ is said to be maXimait monotoneif its graph is not properly contained in the graph of any other monotone operator. We knowthat if $A$ is a manCimal monotone operator, then $A^{-1}0=\{z\in D(A) : O\in Az\}$ is closed andconvex; see $[51, 52]$ for more details. The followig theorem is well-known.

Theorem 2.3 (RocLfellar [41]). Let $E$ be a smooth, strictly convex and reflexive Banachspace and let $A\subset ExE^{r}$ be a monotone operator. Then $A$ is maximal if and only if $R(J+$$rA)=E$“ for all $r>0$ .

Let $E$ be a smooth, strictly convex and refiexive Banach space, let $C$ be a nonempty closedconvex subset of $E$ and let $A\subset E\cross E^{*}$ be a monotone operator satisfying

$D(A) \subset C\subset J^{-1}(\bigcap_{r>0}R(J+rA))$ .Then we can defne the resolvent $J_{r}$ : $Carrow D(A)$ of $A$ by

$J_{r}x=\{z\in D(A):Jx\in Jz+rAz\}$

for all $x\in C$. We know that $J_{r}x$ consists of one point. For all $r>0$ , the Yoeida approximation$A$ : $Carrow E$“ is defined by $A.x= \frac{Jx-JJx}{r}$ for all $x\in C$ . We also know the foUowmg lemma;see, for instance, [24].

Lemma 2.4. Let $E$ be a smooth, strictly convex and reflexive Banach space, let $C$ be anonempty dosed convex subset of $E$ and let $A\subset ExE^{*}$ be a monotone operator satisfying

$D(A) \subset C\subset J^{-1}(\bigcap_{r>0}R(J+rA))$ .

Let $r>0$ and let $J_{r}$ and $A_{r}$ be the resolvent and the Yosida appr vimation of $A$, respectively.Then, the following hold:

(1) $\phi(u, J_{r}x)+\phi(J_{r}x,x)\leq\phi(u,x)$ for $aIlx\in C$ and $u\in A^{-1}0$;(2) $(J_{r}x,A_{r}x)\in A$ for all $x\in C$;$(S)F(J_{f})=A^{-1}0$ .Let $C$ be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach

space $E$ , let $T$ be a mapping &om $C$ into itself. We denoted by $F(T)$ the set of fixed points of$T$ . A point $p\in C$ is said to be an asymptotic fixed point of $T$ if there exists $\{x_{\mathfrak{n}}\}$ . in $C$ whichconverges weakly to $p$ and $\lim_{narrow\infty}\Vert x_{n}-Tx_{n}\Vert=0$ . We denote the set of all asymptotic fixedpoints of $T$ by $\hat{F}(T)$ . Following Matsushita and Takahashi [29], a mapping $T:Carrow C$ is saidto be relatively nonexpansive if the following conditions are satisfied:

(1) $F(T)$ is nonempty;(2) $\phi(u,Tx)\leq\phi(u, x)$ for all $u\in F(T)$ and $x\in C$ ;(3) $\hat{F}(T)=F(T)$ .

The following lemma $is$ due to Matsushita and Takahashi [28].

94

Page 5: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

Lemma 2.5 (Matsushita and Ibkahash\ddagger [28]). Let $C$ be a nonempty closed convex subsetof a smooth, strictly convex, and reflexive Banach space $E,$ and let $T$ be a relativdy nonex-pansive mapping fiom $C$ into itsdf. Then $F(T)$ is closed and convex.

We also know the following lemma.Lemma 2.6 (Kamimura and $\ovalbox{\tt\small REJECT} hi[20]$ ). Let $E$ be a smooth and unifomly convexBanach space and let $\{x_{n}\}$ and $\{y_{n}\}$ be sequences in $E$ such that either $\{x_{n}\}$ or $\{y_{n}\}\dot{u}$

bounded. If $hm_{n}\phi(x_{\mathfrak{n}},y_{n})=0_{f}$ then $hm_{n}||x_{n}-y_{n}\Vert=0$ .

3 Equilibrium Problems and Relatively Nonexpansive Mappin$gs$

In this section, we prove strong and weak convergence theorems for finding a commonelement of the set of solutions for an equilibrium problem and the set of fixed points of arelatively nonexpansive mapping in a Banach space.

Let $E$ be a Banach space and let $C$ be a nonempty closed convex $sub_{8}et$ of $E$ . A function$f$ : $CxCarrow R$ is said to be maximal monotone with respect to $C$ if, for every $x\in C$ and$x^{*}\in E^{*}$ ,

$f(x,y)+(y-x,x^{*}\rangle\geq 0$

for all $y\in C$ , whenever ($z-x,x^{*}\rangle$ $\geq f(z,x)$ for all $z\in C$ .In this article, we assume that a bifunction $f$ satisfies the $f_{0}u_{ow\dot{m}g}$ conditions:

(A1) $f(x,x)=0$ for 可 n $x\in C$ ;(A2) $f$ is monotone, i.e., $f(x,y)+f(y, x)\leq 0$ for all $x,y\in C\cdot$,(A3) for aJ1 $x\in C,$ $f(x, \cdot)$ is convex and lower semicontinuous;(A4) $hm\sup_{t\downarrow 0}f(tz+(1-t)x,y)\leq f(x,y)$ for all $x,y,z\in C$ .

Assume that $f$ satisfies $(A1)-(A4)$ . Then, $f$ is maximal monotone. In fact, for every $x\in C$

and $x^{*}\in E^{*}$ , suppose that$\langle z-x,x^{*}\rangle\geq f(z,x)$

for all $z\in C$. Putting $z_{t}=(1-t)x+ty$ with $y\in C$ and $t\in(O, 1)$ , we have

$0=f(z_{t}, z_{t})$

$\leq(1-t)f(z_{t}, x)+tf(z_{t)}y)$

$\leq(1-t)(z_{t}-x,x^{*}\rangle+tf(z_{t},y)$

$\leq t(1-t)(y-x,x’\rangle+tf(z_{t},y)$ .

Hence, we have $0\leq(1-t)\langle y-x, x^{*}\rangle+f(z_{t},y)$ . Since $f$ is upper hemicontinuous, we have$0\leq\langle y-x,x^{*}\rangle+f(x,y)$ .

Hence, $f$ is maximal monotone. The foUowing result is in Blum and Oettlli [5]. See [2] for theproof.

Lemma 3.1 (Blum and Oettli [5]). Let $C$ be a dosed convex subset of a smooth, $st|\backslash cuy$

convex, and reflexive Banach space $E$ , let $f$ be $a$ $b$珂可 nction ffom $CxC$ to $Rsat\dot{u}ffing(A1)-$

$(A4)$ , and let $r>0$ and $x\in E$ . Then, there exists $z\in C$ such that

$f(z,y)+ \frac{1}{r}\langle y-z, Jz-Jx\rangle\geq 0$ for all $y\in C$.

95

Page 6: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

Motivated by Combettes and Hirstoaga [9] in a Hilbert space, we obtain the foUowing lemma.

Lemma 3.2. Let $C$ be a closed convex subset of a unifomly smooth, strictly convex, andreflenive Bana$ch$ space $E$, and let $f$ be a bifunction from $C\cross C$ to $R$ satisfy ing $(Al)-(A4)$ .For $r>0$ and $x\in E$ , define a mapping $T_{r}$ : $Earrow C$ as follows:

$T_{r}(x)= \{z\in C:f(z,y)+\frac{1}{r}\langle y-z, Jz-Jx\rangle\geq 0$ for all $y\in c\}$

for all $x\in E.$ Then, the following hold:

(1) $T_{r}$ is single-valued;(2) $T_{r}$ is a fimly $none\eta ansive$-type mapping [$24J,$ $i.e.$ , for all $x,y\in E$,

$\langle T_{r}x-T_{r}y, JT_{r}x-JT_{r}y\rangle\leq(T_{r}x-T_{r}y,$ $Jx-Jy\rangle$ ;

(8) $F(T_{r})=EP(f)$ ;(4) $EP(f)$ is dosed and convex.We claim that $T_{r}$ is single-valued. Indeed, for $x\in C$ and $r>0$ , let $z_{1},$ $z_{2}\in T_{r}x$ . Then,

$f(z_{1}, z_{2})+ \frac{1}{r}\langle z_{2}-z_{1}, Jz_{1}-Jx\rangle\geq 0$

and$f(z_{2}, z_{1})+ \frac{1}{r}(z_{1}-z_{2},$ $Jz_{2}-Jx\rangle$ $\geq 0$ .

Adding two inequalities, we have

$f(z_{1}, z_{2})+f(z_{2}, z_{1})+ \frac{1}{r}\langle z_{2}-z_{1}, Jz_{1}-Jz_{2}\rangle\geq 0$ .$Rom$ (A2) and $r>0$ , we have

$\langle z_{2}-z_{1}, Jz_{1}-Jz_{2}\rangle\geq 0$ .Since $E$ is strictly convex, we have $z_{1}=z_{2}$ .

Next, we claim that $T_{r}$ is a firmly nonexpansive-type mapping. Indeed, for $x,y\in C$ , wehave

$f(T_{r}x,T_{r}y)+ \frac{1}{r}\langle T_{r}y-T_{r}x, JT_{r}x-Jx\rangle\geq 0$ ,

and$f(T_{r}y,T_{r}x)+ \frac{1}{r}(T_{r}x-T_{r}y,$ $JT_{r}y-Jy\rangle$ $\geq 0$ .

Adding two inequalities, we have

$f(T_{r}x,T_{r}y)+f(T_{r}y,T_{r}x)+ \frac{1}{r}\langle T_{r}y-T_{r}x, JT_{r}x-JT_{r}y-Jx+Jy\rangle\geq 0$ .Rom (A2) and $r>0$ , we have

$(T_{r}y-T_{r}x,$ $JT_{r}x-JT_{r}y-Jx+Jy\rangle$ $\geq 0$ .Therefore, we have

$(T_{r}x-T_{r}y,$ $JT_{r}x-JT_{r}y\rangle$ $\leq\langle T_{r}x-T_{r}y, Jx-Jy\rangle$ .

We call such $T_{r}$ the relative resolvent of $f$ for $r>0$ . Using Lemma 3.2, we have the $f_{0}uow\dot{i}g$

result.

96

Page 7: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

Lemma 3.3. Let $C$ be a closed convex subset of a smooth, stnctly convex, and reflexiveBanach space $E$ , let $f$ be a bifunction from $CxC$ to $R$ satisfy ing $(Al)-(A4)$, and let $r>0$ .Then, for $x\in E$ and $q\in F(T_{r})$ ,

$\phi(q, T_{r}x)+\phi(T_{r}x,x)\leq\phi(q, x)$ .

Proof. Rom Lemma 3.2 (2), we have, for all $x,y\in E$ ,

$\phi(T_{r}x,T_{r}y)+\phi(T_{r}y,T_{r}x)\leq\phi(T_{r}x,y)+\phi(T_{r}y,x)-\phi(T_{r}x,x)-\phi(T_{r}y,y)$ .Letting $y=q\in F(T_{r})$ , we have

$\phi(q,T_{r}x)+\phi(T_{r}x,x)\leq\phi(q,x)$ .

This completes the proof. 口

Now, we prove a strong convergence theorem for $find\dot{i}g$ a common element of the set ofsolutions for an equilibrium problem and the set of fixed points of a relatively nonexpansivemapping in a Banach space.

Theorem 3.4 ($Ih]fflhashi$ and Zembayashi [63]). Let $E$ be a uniformly smooth and uni-fomly convex Banach space, and let $C$ be a nonempty dosed convex subset of E. Let $f$ bea bihnction ffom $CxC$ to $R$ satisfying $(Al)-(A4)$ and let $S$ be a relativdy nonewnlivemapping ffom $C$ into itself such that $F(S)\cap EP(f)\neq\emptyset$ . Let $\{x_{n}\}$ be a sequence generated by

$\{\begin{array}{l}x_{0}=x\in Cy_{n}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{\mathfrak{n}})JSx_{n})u_{n}\in Cf(u_{n},y)+\frac{1}{r_{n}}\langle y-u_{n}, Ju_{n}-Jy_{\mathfrak{n}}\rangle\geq 0,\forall y\in CH_{n}=\{z\in C : \phi(z,u_{n})\leq\phi(z,x_{n})\}W_{n}=\{z\in C:\langle x_{n}-z, Jx-Jx_{n}\rangle\geq 0\}x_{n+1}=\Pi_{H_{n}\cap W_{n}^{X}}\end{array}$

for every $n\in N\cup\{0\}$ , where $J$ is the duality mapping on $E,$ $\{\alpha_{n}\}\subset[0,1]$ satisfieslin in$f_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0$ and $\{r_{n}\}\subset[a, \infty$) for some $a>0$ . Then, $\{x_{n}\}$ converges stronglyto $\Pi_{F(S)\cap EP(f)}x$ , where $\Pi_{F(S)\cap EP(f)}$ is the generalized projection of $E$ onto $F(S)\cap EP(f)$ .

Further, we prove a weak convergence theorem for finding a common element of the set ofsolutions for an equilibrium problem and the set of fixed points of a relatively $non\infty ansive$

mapping in a Banach space. Before proving the theorem, we need the following proposition.

Proposition 3.5. Let $E$ be a unifomly smooth and unifomly convex Banach space, and let$C$ be a nonempty closed convex subset of E. Let $f$ be a bifunction ffom $CxC$ to $Rsat\dot{u}\phi ng$

$(Al)-(A4)$ and let $S$ be a relatively $none\varphi ansive$ mapping ffom $C$ into itself such that $F(S)\cap$

$EP(f)\neq\emptyset$ . Let $\{x_{n}\}$ be a sequence generated by $u_{1}\in E$ ,

$\{\begin{array}{l}x_{n}\in Cf(x_{n},y)+\frac{1}{r_{n}}\langle y-x_{\mathfrak{n}}, Jx_{\mathfrak{n}}-Ju_{n}\rangle\geq 0,\forall y\in Cu_{n+1}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{\mathfrak{n}})JSx_{n})\end{array}$

for eve$\eta n\in N$ , where $J$ is the duality mapping on $E,$ $\{\alpha_{n}\}\subset[0,1]$ satisfies $\lim\inf_{narrow\infty}\alpha_{\mathfrak{n}}(1-$

$\alpha_{\mathfrak{n}})>0$ and $\{r_{n}\}\subset[0,\infty$). Then, $\{\Pi_{F(S)\cap EP(f)}x_{n}\}$ converges strongly to $z\in F(S)\cap EP(f)$ ,where $\Pi_{F(S)\cap EP(f)}$ is the generdized projection of $E$ onto $F(S)\cap EP(f)$ .

97

Page 8: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

Using Proposition 3.5, we can prove the following theorem.

Theorem 3.6 ($\ovalbox{\tt\small REJECT} hi$ and Zembayashi [63]). Let $E$ be a unifomly smooth and uni-fomly convex Banach space, and let $C$ be a nonempty closed convex subset of E. Let $f$ bea bifunction from $CxC$ to $R$ satisfying $(Al)-(A4)$ and let $S$ be a relativdy $none\varphi ansive$

mapping ffom $C$ into itself such that $F(S)\cap EP(f)\neq\emptyset$ . Let $\{x_{n}\}$ be a sequences generatedby $u_{1}\in E$ ,

$\{\begin{array}{l}x_{\mathfrak{n}}\in Cf(x_{\mathfrak{n}},y)+\frac{1}{r}\langle y-x_{n}, Jx_{n}-Ju_{n}\rangle\geq 0,\forall y\in Cu_{n+1}=J^{-1}(\alpha_{n}Jx_{\mathfrak{n}}+(1-\alpha_{n})JSx_{n})\end{array}$

for every $n\in N$, where $J$ is the dudity mapping on $E,$ $\{\alpha_{n}\}\subset[0,1]$ satisfies lini $\inf_{narrow\infty}\alpha_{n}(1-$

$\alpha_{n})>0$ and $\{r_{n}\}\subset[a, \infty$) for some $a>0$ . If $J$ is weakly sequentidly continuous, then $\{x_{n}\}$

converges weakly to $z\in F(S)\cap EP(f)$ , where $z= \lim_{narrow\infty}\Pi_{F(S)\cap BP(f)}x_{n}$ .

4 MaximaI Monotone Operators and ReIatively NonexpansiveMappings

In this section, we prove a strong convergence thmrem for finding a common element ofthe zero point set of a maximal monotone operator and the 丘に ed point set of a relativelynonexpansive maPping in a Banach space by using the normal hybrid method.

Theorem 4.1 (Inoue, $\ovalbox{\tt\small REJECT} hi$ and Zembayashi [25]). Let $E$ be a unifomly smoothand unifomly convex Banach space, and let $C$ be a nonempty dosed convex subset of E. Let$A\subset ExE^{n}$ be a maximal monotone operator satisfying

$D(A) \subset C\subset J^{-1}(\bigcap_{r>0}R(J+rA))$

and let $J_{r}=(J+rA)^{-1}J$ for all $r>0$ . Let $S$ be a relativdy nonezpansive mapping from $C$

into itself such that $F(S)\cap A^{-1}0\neq\emptyset$ . Let $\{x_{n}\}$ be a sequence generated by $x_{0}=x\in C$ and

$\{\begin{array}{l}u_{n}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JSJ_{r}.x_{\mathfrak{n}})H_{n}=\{z\in C : \phi(z,u_{n})\leq\phi(z,x_{n})\}W_{n}=\{z\in C:\langle x_{n}-z, Jx-Jx_{n}\}\geq 0\}x_{n+1}=\Pi_{H.\cap W_{n}^{X}}\end{array}$

for every $n\in NU\{0\}$ , where $J_{\backslash }is$ the dudity mapping on $E,$ $\{\alpha_{\mathfrak{n}}\}\subset[0,1$) satisfies$1\dot{\min}f_{narrow\infty}(1-\alpha_{n})>0$ and $\{r_{n}\}\subset[a, \infty$) for some $a>0$ . Then, $\{x_{n}\}conve\eta es t vngly$ to$\Pi_{F(S)\cap A^{-\iota}0^{X}}$ , where $\Pi_{F(S)\cap A^{-1}0}$ is the generalized prvjection of $E$ onto $F(S)\cap A^{-1}0$ .

As direct consequences of Theorem 4.1, we can obtain the following corollaries.

Corollary 4.2. Let $E$ be a uniforrnly smooth and unifomly convex Banach space, let $A\subset$

$ExE^{*}$ be a maximal monotone operator with $A^{-1}0\neq\emptyset$ and let $J_{f}=(J+rA)^{-1}J$ for all

98

Page 9: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

$r>0$ . Let $\{x_{n}\}$ be a sequence generated by $x_{0}=x\in C$ and

$\{\begin{array}{l}u_{n}=J_{r_{n}}x_{n}H_{n}=\{z\in E : \phi(z,u_{n})\leq\phi(z,x_{n})\}W_{n}=\{z\in E:\langle x_{n}-z, Jx-Jx_{n}\rangle\geq 0\}x_{n+1}=\Pi_{H_{n}\cap W_{n}^{X}}\end{array}$

for every $n\in N\cup\{0\}$ , where $J$ is the duality mapping on $E$ and $\{r_{\mathfrak{n}}\}\subset[a, \infty$) for some $a>0$ .Then, $\{x_{n}\}$ converges strongly to $\Pi_{A^{-1}0^{X}}$ , where $\Pi_{A^{-1}0}$ is the genemlized prvjection of $E$ onto$A^{-1}0$ .Proof. Putting $S=I,$ $C=E$ and $\alpha_{n}=0$ in Theorem 4.1, we obtain Corollary 4.2. $\square$

Corollary 4.3 (Matsushita and IhLhashi [29]). Let $E$ be a unifomly smooth and uni-fomly convex Banach space, let $C$ be a nonempty closed convex subset of $E$, and let $S$ be arelatively $none\varphi ansive$ mapping from $C$ into itself such that $F(S)\neq\emptyset$ . Let $\{x_{n}\}$ be a sequencegenerated by $x_{0}=x\in C$ and

$\{\begin{array}{l}u_{n}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JSx_{n})H_{n}=\{z\in C : \phi(z,u_{n})\leq\phi(z,x_{n})\}W_{\mathfrak{n}}=\{z\in C:\langle x_{n}-z, Jx-Jx_{\mathfrak{n}}\rangle\geq 0\}x_{n+1}=n_{H_{n}\cap W_{n}^{X}}\end{array}$

for every $n\in NU\{0\}$ , whe$reJ$ is the dudity mapping on $E,$ $\{\alpha_{n}\}\subset[0,1$) $sat\dot{u}fiu$

$\lim\inf_{\mathfrak{n}arrow\infty}(1-\alpha_{\mathfrak{n}})>0$. Then, $\{x_{n}\}$ converges strongly to $\Pi_{F(S)}x$ , where $\Pi_{F(S)}\dot{u}$ thegeneralized projection of $E$ onto $F(S)$ .Proof. Set $A=\partial i_{C}$ in Theorm 4.1, where $i_{G}$ is the indicator function of $C$ and &c isthe subdifferential of $i_{C}$ . Then, we have that $A$ is a maximal monotone operator and $J_{r}=$

$\Pi_{G}$ , where $J_{r}$ is the resolvent of $A=\partial i_{C}$ for $r>0$ . So, from Theorem 4.1, we obtainCoroUary 4.3. $\square$

Using an idea of [61], we prove astrong convergence theorem for finding acommon elementof the zero point $s$et of a maximal monotone operator and the fixed point set of a relativelynonexpansive mapping in a Banach space by using the shrinking projection method.

Theorem 4.4 (Inoue, $Ihkaha8hi$ and Zembayashi [25]). Let $E$ be a unifomly smoothand unifomly convex Banach space, and let $C$ be a nonempty closed convex subset of B. Let$A\subset ExE^{*}$ be a maximal monotone operntor satisMng

$D(A) \subset C\subset J^{-1}(\bigcap_{r>0}R(J+rA))$

and let $J_{r}=(J+rA)^{-1}J$ for all $r>0$ . Let $S$ be a relatively $none\varphi an\dot{n}ve$ mapping fivm$C$ into itself such that $F(S)\cap A^{-1}0\neq\emptyset$ . Let $\{x_{n}\}$ be a sequence generated by $x_{0}=x\in C$ ,$H_{0}=C$ and

$\{\begin{array}{l}u_{\mathfrak{n}}=J^{-1}(\alpha_{\mathfrak{n}}Jx_{n}+(1-\alpha_{n})JSJ_{r_{n}}x_{n})H_{n+1}=\{z\in H_{\mathfrak{n}} : \phi(z,u_{\mathfrak{n}})\leq\phi(z,x_{n})\}x_{n+1}=\Pi_{H_{n+1}}x\end{array}$

for eveiy $n\in N\cup\{0\}$ , where $J$ is the dudity mapping on $E,$ $\{\alpha_{n}\}\subset[0,1$) satisfies$1\dot{\min}f_{\mathfrak{n}arrow\infty}(1-\alpha_{n})>0$ and $\{r_{n}\}\subset[a,\infty$) for some $a>0$ . Then, $\{x_{n}\}conve\eta e\epsilon$ strongly to$\Pi_{F(S)\cap A^{-1}0^{X}}$, where $\Pi_{F(S)\cap A^{-1}0}$ is the generalized projection of $E$ onto $F(S)\cap A^{-1}0$ .

99

Page 10: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

As direct consequences of Theorem 4.4, we can obtain the following corollaries.

Corollary 4.5. Let $E$ be a unifomly smooth and unifomly convex Banach space. Let $A\subset$

$ExE^{*}$ be a maximal monotone operator with $A^{-1}0\neq\emptyset$ and let $J_{r}=(J+rA)^{-1}J$ for all$r>0$ . Let $\{x_{n}\}$ be a sequence generated by $x_{0}=x\in E,$ $H_{0}=E$ and

$\{\begin{array}{l}u_{n}=J_{r_{n}}x_{n}H_{n+1}=\{z\in H_{n} : \phi(z,u_{n})\leq\phi(z, x_{n})\}x_{\mathfrak{n}+1}=\Pi_{H_{n+\iota^{X}}}\end{array}$

for every $n\in N\cup\{0\}$ , where $J$ is the duality mapping on $E$ and $\{r_{n}\}\subset[a, \infty$) for $\epsilon omea>0$ .Then, $\{x_{n}\}co$nverges strongly to $\Pi_{A^{-1}0^{X}}$ .

Proof. Putting $S=I,$ $C=H_{0}=E$ and $\alpha_{n}=0$ in Theorem 4.4, we obtain Corollary 4.5. $\square$

Corollary 4.6. Let $E$ be a unifomly smooth and unifomly convex Banach space, let $C$ be $a$

nonempty closed convex subset of $E$, and let $S$ be a relatively $none\varphi ansive$ mapp\’ing ffom $C$

into itself such that $F(S)\neq\emptyset$ . Let $\{x_{n}\}$ be a sequence generated by $x_{0}=x\in C$ and

$\{\begin{array}{l}u_{n}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JSx_{\mathfrak{n}})H_{n+1}=\{z\in H_{n} : \phi(z,u_{n})\leq\phi(z, x_{n})\}x_{n+1}=\Pi_{H_{n+\iota^{X}}}\end{array}$

for every $n\in N\cup\{0\}$ , where $J$ is the duality mapping on $E,$ $\{\alpha_{n}\}\subset[0,1$) satisfieslin $\inf_{narrow\infty}(1-\alpha_{n})>0$ . Then, $\{x_{n}\}$ converges strongly to $\Pi_{F(S)^{X}}$ where $\Pi_{F(S)}$ is thegeneralized projection of $E$ onto $F(S)$ .

Proof. Putting $A=\partial i_{C}$ in Theorem 4.4, we obtain Corollary 4.6. $\square$

5 Equilibrium Problems and Metric ResolventsIn this section, we prove a strong convergence theorem for finding a solution of the equilib-

rium problem by using the metric resolvents. Using Lemma 3.1, we first obtain the $foUowing$

result.

Lemma 5.1. Let $C$ be a closed convex subset of a smooth, strictly convex and reflenive Banachspace $E$ , let $f$ be a bifunction ffom $C\cross C$ to $R$ satishing $(Al)-(A4)$, let $r>0$ and let $x\in E$ .Then, there exis$ts$ a unique $z_{r}\in C$ such that

$f(z_{r},y)+ \frac{1}{r}\{y-z_{r},$ $J(z_{r}-x)\rangle$ $\geq 0$ for all $y\in C$.

Proof. Fix $x\in C$ . Then, we d&e $g:(C-x)x(C-x)arrow R$ as follows:

$g(z,y)=f(z+x,y+x)+ \frac{1}{r}\langle y-z, Jx\rangle$ . (5.1)

From the properties of $f$ , it is easy to prove that $g$ satisfies the foUowing conditions;

(A1) $g(z, z)=0$ for all $z\in C-x$ ;

100

Page 11: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

(A2) $g$ is monotone with respect to $C-x$ ;(A3) for all $z\in C-x,$ $g(z, \cdot)$ is convex and lower semicontinuous;(A4) $g$ is upper hemicontinuous with respect to $C-x$ .

Hence, from Lemma 3.1 there exists a unique element $z_{r}$ such that

$f(z_{r}+x,y+x)+ \frac{1}{r}\langle y-z_{r}, Jx\rangle+\frac{1}{r}(y-z_{r},$$Jz,$ $-Jx\rangle$ $\geq 0$

for all $y\in C-x$ . This implies that

$f(z_{r}+x,y+x)+ \frac{1}{r}\langle y-z_{r}, Jz_{r}\rangle\geq 0$

for all $y\in C-x$ . Putting $u_{r}=z_{r}+x$ and $v=y+x$, we have

$f(u_{f},v)+ \frac{1}{r}\langle v-u_{r}, J(u_{r}-x)\rangle\geq 0$

for all $v\in C$ . This completes the proof. $\square$

Under the conditions in Theorem 5.1, for every $r>0$ we may define a singlevalued mapping$F_{r}$ : $Earrow C$ by

$F_{r}x= \{z\in C : 0\leq f(z,y)+\frac{1}{r}\langle y-z, J(z-x)\rangle, y\in C\}$ (5.2)

for $x\in E$ , which is called the metric resolvent of $f$ for $r>0$ . Also, we can define the Yosidaapproximation as follows:

$A_{r}x= \frac{1}{r}J(x-F_{r}x)$ . (5.3)

As in $Takahashi$ [$52$ , pp.163-165], we can prove the foUowing theorem for Yoeida approx-imations. Before proving it, we need the following lemma; see, for imstance, $Tahhas\bm{i}[52$ ,Problem 4.5.4].

Lemma 5.2. Let $E$ be a Banach space. Assume that $\prime u_{n^{-A}}v,$$v_{n^{\wedge}}^{s}v^{*}$ and

lin $(u_{n}-u_{m)}v_{n}-v_{m}\rangle$ $=0$ .$m,narrow\infty$

Then, $\lim_{narrow\infty}\langle u_{n},v_{n}\rangle=\langle u,v^{*}\rangle$ .Lemma 5.3. Assume $r>0$ . Then, $A_{r}$ : $Earrow E^{*}$ is monotone and demicontinuous. $fi\{\iota\hslash her$,

if $D\subset E$ is bounded, then $A_{r}D\subset E^{*}$ is $bo$unded.

To show a necessary and sufficient condition for the existence of solutions of the euquilibriumproblem, we need the following lemma [51, Theorem 7.1.8]; see also [4].

Lemma 5.4 ([51, 4]). Let $E$ be a reflestve Banach space and let $K$ be a bounded closedconvex subset of E. Suppose $A$ is a monotone and demicontinuous operator. Then there mists$u_{0}\in K$ such that

$\langle y-u_{0}, Au_{0}\rangle\geq 0$ for all $y\in K$.

Using Lemma 5.4, we obtain the fofowin$g$ lemma.

101

Page 12: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

Lemma 5.5. Let $E$ be a smooth and unifomly convex Banach space and let $C$ be a nonemptyclosed convex subset ofE. Let $f$ be a bifunction $CxC$ to $R$ satisfying $(Al)-(A4)$ . For $C_{1}=C$

and $x_{1}=x\in E$ , define the sequence $\{x_{n}\}$ as follows:

$\{\begin{array}{l}y_{n}=F_{r_{n}}x_{n}C_{n+1}=\{z\in C_{n} : \langle y_{n}-z,J(x_{n}-y_{n})\rangle\geq 0\}x_{n+1}=P_{C_{n+1}}(x_{1})\end{array}$

where $0<r_{n}<\infty$ and $P_{C}$. is the metric projection of $E$ onto $C_{n}$ . Then $\{x_{n}\}\dot{u}$ wdl-defined.We also have the following lemma.

Lemma 5.6. If $EP(f)\neq\emptyset$ , then $EP(f)\subset C_{n}$ for all $n\in N$ .Proof. It is ovbious that $EP(f)\subset C_{1}=C$ . Suppose $EP(f)\subset C_{n}$ for some $n\in N$ . Let$z\in EP(f)$ . From $y_{n}=F_{r}.x_{\mathfrak{n}}$ and the monotonicity of $f$ , we have

$(y_{n}-y, \frac{1}{r_{n}}J(x_{n}-y_{n})\rangle\geq f(y,y_{n})$

for all $y\in C$. Put $y=z$. Then we have

$\langle y_{n}-z, \frac{1}{r_{n}}J(x_{\mathfrak{n}}-y_{n})\rangle\geq f(z,y_{n})\geq 0$ .

Therefore, $z\in C_{n+1}$ . By the mathematical inducition, we obtain $z\in C_{n}$ for all $n\in N$ . $\square$

Now, we obtain a necessary and sufBcient condition for the existence of solutions of theeuquihbrium problem in a Banach space.

Theorem 5.7 ($\ovalbox{\tt\small REJECT} hi$ and $\ovalbox{\tt\small REJECT} hi[47]$ ). Let $E$ be a smooth and unifomly convexBanach space and let $f$ be a bifunction $CxC$ to $R$ satisfying $(AJ)-(A4)$. For $C_{1}=C$ and$x_{1}=x\in E$, define the sequence $\{x_{n}\}$ as follows:

$\{\begin{array}{l}y_{n}=F_{r_{n}}x_{n}C_{n+1}=\{z\in C_{n} : (y_{n}-z, J(x_{n}-y_{n})\rangle\geq 0\})x_{n+1}=P_{C_{n+1}}(x_{1})\end{array}$

where lim $infr_{n}>0$ and $P_{G_{n}}$ is the metric projection of $E$ onto $C_{n}$ . Then $\{x_{n}\}\dot{u}$ bounded if$narrow\infty$

and only if $EP(f)\neq\emptyset$ .Finally, we can prove a strong convergence theorem for finding a solution of the equilibrium

problem by using the shrinking projection method.

Theorem 5.8 ($\ovalbox{\tt\small REJECT} hi$ and $\ovalbox{\tt\small REJECT} hi[47]$ ). Let $E$ be a smooth and unifomly convexBanach space and let $C$ a nonempty closed convex subset of E. Let $f$ be a bifunction $CxC$to $R$ satisfying $(Al)-(A4)$ . For $C_{1}=C$ and $x_{1}=x\in E$ , define th$\epsilon$ sequence $\{x_{\mathfrak{n}}\}$ as follows:

$\{\begin{array}{l}y_{n}=F_{r_{n}}x_{\mathfrak{n}}C_{n+1}=\{z\in C_{n} : \langle y_{n}-z, J(x_{n}-y_{n})\rangle\geq 0\}x_{\mathfrak{n}+1}=P_{C_{n+1}}(x_{1})\end{array}$

where $\lim_{narrow\infty}infr_{n}>0$ and $P_{G_{n}}$ is the metric projection of $E$ onto $C_{n}$ . If $EP(f)\neq\emptyset$ , then $\{x_{n}\}$

converges strongly to the element $P_{BP(f)}(x_{1})$ , where $P_{BP(f)}$ is the metric projection of $Eo\mathfrak{n}to$

$EP(f)$ .

102

Page 13: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

References[1] Y. I. Alber, Metric and genemlized projections in Banach spaces: $Pmpe\hslash ies$ and appli-

cations, in Theory and Applications of Nonhnear Operators of Accretive and MonotoneType (A. G. Kartsatos, Ed.), Marcel Dekker, New York, 1996, pp. 15-20.

[2] K. Aoyama, Y. Kimura and W. $Ta\bm{L}ha\epsilon hi$ , Maximd $monot\sigma ne$ opemtors and masimdmonotone $fi\iota nctions$ for $equilibr\dot{v}um$ problems, J. Convex Anal., to appeax.

[3] K. Aoyama and W. Takahashi, Strong $\omega nvergence$ theorenw for afamily of oelatively$none\varphi ansive$ mappings in Banach spaces, Fixed Point Theory 8(2007), $14\succ 160$.

[4] V. Barbu and Th. Precupru, Convexity and optimization in Banach spaoes, EdituraAcademiei R.S.R., $Buchar\infty t$ , 1975.

[5] E. Blum $\bm{t}d$ W. Oettli, $fi$}$\cdot om$ optimization and variational inequalities to equilibriumproblems, Math. Student 63 (1994), 123-145.

[6] F.E. $Browder,None\varphi ansivenonlinear$ operators in a Banach space, $Proc.$ Nat.AcadSci.U$SA54(l965),1041-1044$.[7] F. E. Browder, Semicontmctive and semiaoeretive nonlinear mappings in Banach $\varphi a\alpha s$,

Bull. Amer. Math. Soc. 74 (1968), $66k665$ .[8] R. E. Bruck, On the convex $appro\dot{r}mationp$mperty and the asymptotic $beha\tau\dot{n}our$ of

nonlinear contmctions in Bnach spaces, Israel J. Math. 38 (1981), 304-314.[9] P. L. Combettes and S. A. Hirstoaga, Equilibrium $pro\varphi amming$ in Hilbert $spaoe\epsilon$, J.

Nonhnear Convex Anal. 8(2005), 117-136.[10] J. Diestel, $Geomet\eta$ of Banach spaoes, Selected Topics, Lecture $Not\infty$ in $Mathemati\infty$

485, Springer, Berlin, 1975.[11]

$0.G\ddot{u}le.r,Onthe$ conver.g$enceof^{theproximalpointalgo\dot{n}thmforconvex\min im\dot{m}tion}$

$SIAMJContro1$ Optim $29(1991),403-419$.[12] B. Halpem, Fixed points of $none\varphi anding$ maps, Bull. Amer. Math. Soc. 73 (1967), 957-

961.[13] T. kar&i and W. Tahhashi, Weak and strong $\omega nvergence$ theorems for $new\prime esolven\hslash$

of mnimd monotone opemtors in Banach spaces, Advances in Mathematical $E\infty nomioe$ ,10 (2007), 51-64.

[14] T. karaki $\bm{t}d$ W. $Tal[ahashi,$ A new projection and convergenoe $theooem\epsilon$ for me projec-tions in Banach spaoes, J. Approx. Theory 149 (2007), 1-14.

[15] T. Ibaraki $\bm{t}d$ W. Takahas$hi,$ Generalized $none\varphi ansive$ mappings and $a.$ pmxinid-Me$dgor\dot{\tau}thm$ in Banach spaoes, to appear.

[16] H. hduh and w. $Talfflhas\bm{i}$ , Strong convergenoe theofrms by a hybrid methd for nonex-$pan\epsilon ivemappin.gsandinversestrongly- monot.onemappings,inFixedPointTh\bm{m}ryandApp1ications(JG.Faket,E.L^{-}.FusterandBS\dot{m}s,Eds.),YokohamaPublishers,Y\ \infty$

hama, 2004, pp.81-94.[17] $amaximalmonotoneoperatorsinaBanachspace,Set- Va1uedAna1.12(2004),417-429$$[18]$ S. Kamimura and W. Taihash, Appronimating solutions of maximd monotone opemtors

in Hilben spaoes, J. Approx. Thmry 106 (2000), 226-240.[19] S. Kamimura and W. Takahoehi, Weak and strong convergenoe of solutions to $acm\hslash ve$

$op\epsilon mtor$ inclusions and applications, Set-Valued Anal. 8 (2000), 361-374.[20] S. Kamimura and W. Taihashi, Strong convergence ofa pronimd-Me $algo\dot{n}\theta\iota m$ in a

Banach apaoe, SIAM J. Optim. 13 (2002), 938-945.[21] M. Kikhwa and W. Taihashi, Strong convergenoe theorems by the viscosity appmxi-

103

Page 14: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

mation methods for $none\varphi ansive$ mappings \’in Banach spaces, in Convex ialysis tdNotinear Analysis (W. TaLhashi and T. Tanaka, Eds.), Yokohama Publishers, Yoko-hama, 2007, pp. 227-238.

[22] F. Kohsaka and W. Takahashi, Strong convergence of an itemtive sequenoe for maximdmonotone opemtors in aBanach space, Abstr. Appl. Anal. 2004 (2004), 239-249.

[23] F. $Kohsa_{\zeta}a$ td W. Taihashi, Weak and strong convergence theorems for minimaxproblems in Banach spaces, in $Non1_{\dot{i}}$ear Analysis and Convex Analysis (W. Taihashiand T. Tanai, Eds.), Yokohama Publishers, 2004, pp. 203-216.

[24] F. Kohsaka and W. $Ta\bm{L}hashi$ , Existence and appronimation of fixed points of fimly$none\varphi ansivetwemapp\acute{\iota}ngs$ in Banach spaces, to appear.

[25] G. Inoue, W. Ihihashi and K. Zembayashi, Weak and strong convergenoe $theooem\epsilon$ byhybrid metho&for maximd monotone operators and relatively $none\varphi ansivemapping\epsilon$ inBanach spaoes, to appear.

[26] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4(1953), 506-510.[27] B. Martinet, Regularisation, $d’in\grave{e}quations$ variationelles par approximations suoeesives,

Revue Rancaise d’tformatique et de Recherche OperationeUe, 1970, pp. 154-159.[28] S. Matsusita and W. Tahhashi, Weak and strong convergenoe $theooem\epsilon$ for relatively

$none\varphi ansive$ mappings in Banach spaces, Fixed Point Thmry Appl. 2004 (2004), 37-47.[29] S. Matsushita and W. Ihkahasi, A stmng convergenoe theorem for relatively $none\varphi an-$

sive mappings in aBanach spaoe, J. Approx. Theory $l34$ (2005), 257-266.[30] S. Matsushita and W. Takahashi, Appronimating fixed points of $none\varphi an\epsilon ive$ mappings

in aBanach spaoe by metric pmjections, Applied Math. Compution, in $pre\epsilon s$ .[31] J. J. Moreau, Pmximit\’e et dualit\’e dans un espace Hilberien, Bull. Soc. Math., Rtce 03

(1965), 273-299.[32] K. N&jo and W. $Takah\epsilon s$hi, Strong convergence theorems for $none\varphi ansive$ mappings

and $none\eta ansivesemigroup\epsilon$;J. Math. Anal. Appl. 279 (2003), 372-378.[33] S. Ohsawa and W. Takahashi, Strong convergenoe theorems for resolvento of mnimal

monotone opemtor, Axch. Math. 81 (2003), $43k445$ .[34] Z. Opial, Weak convergenoe of the sequenoe of sucoessive appronimations for $none\varphi ansive$

mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.[35] S. Plubtieng and K. Ungchittrakool, Stmng convergenoe theooems of block itemtive meth-

ods for afinite family of oelatively $none\varphi ansivemapp\dot{m}g_{8}$ in Banach spaoes, J. NonhnearConvex Anal. 8(2007), $431\triangleleft 50$ .

[36] S. Reich, Weak convergence theorems for $none\varphi ansive$ mappings in Banach spaoes, J.Math. Anal. Appl. 67 (1979), 274-276.

[37] S. Reich, Constructive techniques for accretive and monotone operators, Applied Nonhn-ear Analysis (V. $Laks\ovalbox{\tt\small REJECT} tam$ , Ed.), Academic Press, New York, 1979, pp. 335-345.

[38] S. Reich, Strong convergenoe theorems for resolvents of accretive opemtors in Banachspaoes, J. Math. Anal. Appl. 75 (1980), 287-292.

[39] S. Reich, A weak convergenoe theorem for the altemative method with $B_{W}mandi\epsilon tanoe$,in Theory and Applicatioo of Nonhnear Operators of Accretive and Monotone Type (A.G. Kartsatos, Ed.), Marcel Dekker, New York, 1996, pp. 313-318.

[40] R. T. Rockafellar Chamcterization of the subdifferentials of convex $hnction\epsilon,$ $Pa\iota ific$ J.Math. 17 (1966), 497-510.

[41] R. T. $R_{D}cifeUar$ On the maximality of sums of nonlinear monotone opemtors, $ban8$ .Amer. Math. Soc. 149 (1970), 75-88.

[42] R. T. $Roc\bm{L}feUar$ , Monotone opemtors and the proxt’md point algorithm, SIAM J. ControlOptim. 14 (1976), 877-898.

[43] N. Shioji and W. Tabhashi, Strong convergence of appmnimated $\epsilon equen\epsilon es$ for $none\varphi anarrow$

104

Page 15: and Mappings in Spaces Nonlinear Banach Problemskyodo/kokyuroku/contents/pdf/...Strong and Weak Convergence Theorems for Equilibrium Problems and Nonlinear Mappings in Banach Spaces

sive mappings in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 3641-3645.[44] M. V. Solodov and B. F. Svaiter, A hybrid projection –pronimal point algorithm, J.

Convex Anal. 6(1999), 59-70.[45]M. V. Solodov and B. F. Svaiter, Forcing strong convergenoe ofpronimal point itemtions

in a $Hilbe\hslash$ spaoe, Math. Program. 87(2000), 189-202.[46] A. Tada and W. $Ta\bm{L}has\bm{i}$ , Weak and Strong convergence theorems for a $none\varphi ansive$

mapping and an equilibrium problem, J. Optim. Thmry Appl. 133 (2007), 359-370.[47] H. Takahashi $\bm{t}d$ W. Tahhashi, Existenoe theorems and stmng convergenoe throem by

ahybrid method for equilibrium problems in Banach spaoes, to appear.[48] S. Tahhashi and W. Takahashi, Viscosity appmnimation metho&for equdibrium pmb-

lems and fixed point problems in Hilbert spaoes, J.Math. Anal. Appl., 331 (2007), 506-515.[49] W. Takahashi, Fan’s nistence theorem for inequalities conceming convex fimctions and

its applications, in Minimax Theory and Applications (S. Simons and B. Ricceri, $Eds.$),Kluwer Academic Publishers, 1998, pp. 241-260.

[50] W. T&ahashi, Iterative methods for appronimation offixed points and their $apph\infty\hslash on\epsilon$,J. Oper. Res. Soc. Japan 43 (2000), 87-108.

[51] W. Taihasi, Nonlinear Functiond Analysis, Yokohama Publishers, Yokohma, 2000.[52] W. $Taiha\epsilon hi$ , Convex Analysis and $Appro\dot{r}mation$ of Fixed Points, Yokohama Publish-

ers, Yokohama, 2000 (Japanese).[53] W. $Ta\bm{L}has$hi, Fixed point theorems and pronimal point algorithms, in $Nonhne\pi$ Analysis

and Convex Analysis (W. Takahashi and T. Tanaka, $Eds.$ ), Yokohama Publishers, 2003,$pp$ . $471-481$ .

[54] W. Taihashi, W.eak and strong convergence theooems for nonlinear opemtors of $a\alpha oe-$

tive and monotone $twe$ and applicatiom, in $Non1_{\dot{i}}$ear Analysis and Applications (R. P.Agaxwal and D. O’Regan, E&.), Kluwer Academic Publishers, 2003, pp. 891-912.

[55] W. TaLhashi, Convergenoe theorems for nonlinear projections in Banach $\varphi aoes$, in RIMSKokyuroku 1396 (M. Tsukada, Ed.), 2004, pp. 49-59. .

[56] W. Taihashi, Convergence theorems and nonlinear projections in Banach $s\mu ce\epsilon$, in Ba-nach $\bm{t}d$ Function Spaces (M. Kato and L. Maligranda, Eds.), Yokohama Publishers,Yokohama, 2004, pp. 145-174.

[57] W. Ihkahashi, Intmduction to Nonlinear and Convex Analysis, Yokohama $Publi_{8}hers$ ,Yokohama, 2005 (Japanese).

[58] W. $Ta\bm{L}hashi$ , Weak and strong convergence theooems for nonlinear operators and theirapphcations, in RIMS Kokyuroku 1443 (T. Maxuyama, Ed.), 2005, pp. 1-14.

[59] W. Takahashi, Viscosity appronimation methods for oesolvents of aoeoetive operntors inBanach spaoes, J. Fixed Point Theory Appl. 1(2007), 135-147.

[60] W. Takahashi $\bm{t}d$ G. E. Kim, Appmnimating fixed points of $none\varphi ansive$ mappings inBanach spaces, Math. Japon. 48 (1998), 1-9.

[61] W. Ibhhashi, Y. Takeuchi and R. Kubota, Strong convergence $theorem\epsilon$ by hybrid meth-ods for families of $none\varphi ansive$ mappings in Hilbert spaces, J. Math. Anal. Appl., toappear.

[62] W. $Ta$]$oeha\epsilon hi$ and Y. Ueda, On Reich’s strong convergenoe theooems for $oe\epsilon olvenb$ ofaccoetive operators, J. Math. Anal. Appl. 104 (1984), 546-553.

[63] W. Talaehashi and K. Zembayashi, Weak and stmng convergenoe theooems for $equil:b\dot{n}um$

problems and relatively $none\varphi ansive$ mappings in Banach spaoes, Nonlinear Anal., toappear.

[64] R. Wittmann, Appmnimation of fixed points of $none\varphi ansive$ mappings, Arch. Math. 58(1992), 486-491.

105