antennas

41
1 EMLAB Antennas

Upload: vasilis-julius

Post on 30-Dec-2015

26 views

Category:

Documents


3 download

DESCRIPTION

Antennas. Hertzian dipole antenna. Heinrich Hertz (1857-1894). Schematic diagram of Hertz’ experiment. Propagation of electromagnetic wave. Electric field : red Magnetic field : blue. Reception of EM wave. current. V. Transmitting antenna. Receiving antenna. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Antennas

1

EMLAB

Antennas

Page 2: Antennas

2

EMLAB

Hertzian dipole antenna

Heinrich Hertz (1857-1894)

Page 3: Antennas

3

EMLAB

Schematic diagram of Hertz’ experiment

Page 4: Antennas

4

EMLAB

Electric field : red

Magnetic field : blue

Propagation of electromagnetic wave

Page 5: Antennas

5

EMLAB

V

Reception of EM wave

current

Transmitting antenna Receiving an-

tenna

E

The charges on the receiving antenna move toward the antenna terminal, which causes voltage drop across them.

Page 6: Antennas

6

EMLAB

E

H

J

Example – Radiation from current filament

R

S

t

SR

ej

jkR

4

][

4)ˆ(ˆ)(

J

JRRJrE

)]/(ˆ[ˆ)/(][ crtcrt JRRJJ

Page 7: Antennas

7

EMLAB

Example – Radiation from a dipole antenna

Page 8: Antennas

8

EMLAB

Far field radiation from a dipole antenna

2/

Page 10: Antennas

10

EMLAB

Radiation from a tapered transmission line

Page 11: Antennas

11

EMLAB

Dipole antenna - resonance

Page 12: Antennas

12

EMLAB

Example of resonance

Page 13: Antennas

13

EMLAB

Advantage of a resonant circuit

CLjR

VI S

1

SCSLS

R VCRj

VVR

LjV

R

VI

1

,,

SVCRR

LQ

1

SC VQV SL VQV

At resonance

SSCL VVQVV

Generate higher voltage than input voltage.

Maximum current level depends on internal resistance.

Page 14: Antennas

14

EMLAB

How to generate time varying currents

Electronic circuit generate oscillating voltages

Output voltage

Alternating currents accel-erate electrons which emit electromagnetic waves propagating in perpendicu-lar direction

Page 15: Antennas

15

EMLAB

Antenna types

Page 16: Antennas

16

EMLAB

Radiation from an infinitesimally small current segment

V

jkR

dR

kRjkR

R

kRjkR

R

e

k

j

)()(33)(1

4),( 4

2

2

2

2 JRRJrE

Exact solution :

V

jkR deR

jkR

2

1ˆ4

1),( JRrH

22 f

k

Page 17: Antennas

17

EMLAB

V

jkR

dR

ej

4)ˆ(ˆ)( JRRJrE

V

jkR

dR

ejk

)ˆ(

4)( JRrH

Far field approximation

Electrostatic solution

V R

d2

ˆ

4

11),(

RJArH

Vd

R

24

ˆ)(),(

RrrE

Biot-Savart’s law

)0( k

Coulomb’s law

V dtR

)]ˆ(ˆ[4

1JRRJE

)1( kR

V

jkR

dR

e

j

)ˆ(ˆ

4

1),(

3JRRJrE

V

jkR

dR

e

2

ˆ4

1),( JRrH

Near field approximation )1( kR

ER

H

ˆ

Vt

jkR

dtdR

e

)]ˆ(ˆ[4

13

JRRJE

ERH ˆRj

Page 18: Antennas

18

EMLAB

Radiation pattern of an infinitesimally small current

R

ezIjd

R

ej

jkR

V

jkR

4sinˆ

4)]ˆ(ˆ[

JRRJE

sinˆ)cosˆˆ()ˆ(ˆ

ˆ

00

0

JzJ

Jz

rJrrJ

J

ˆ

ˆˆ

0sincos

cossincossinsin

sincoscoscossin

ˆ

ˆ

ˆ r

z

y

x

z

r

sinz

I

Page 19: Antennas

19

EMLAB

Isotropic pattern

Omnidirectional pattern

Directional pattern

Gain and directivity of an antenna

0

),(),(

U

UD

in

radrad P

P),(),( DG rad

: Gain takes into account losses and reflections of the antenna.

Directivity 정의 :

(Efficiency)

Page 20: Antennas

20

EMLAB

][W/m 4

22

T

r

PSaverage

][W/m 4

),(),(),( 2

2T

R

GPGSS average

TRT

eTT

eTr PR

GGA

R

GPASP

2

2

2 )4(

),(),(),(

4

),(),(),(

][T WGPEIRP T

Friis equation

transmitter receiver

Page 21: Antennas

21

EMLAB

Example – half wavelength dipole antenna

cos)ˆˆ()ˆˆ(222 zrrrrrrrR rrrrrr

z

o

C

zjkjkr

V

jkR

zdezJr

ej

dR

ej

cos)(4

sin

4)ˆ(ˆ)( JRRJrE2/l

2/l

02/)2/(sin

2/0)2/(sin)(

0

0

zlzlkI

lzzlkIzJ

2coscos

2cos

2sin 0 klkl

r

eIj

jkr

rr ˆr

rr ˆr

Page 22: Antennas

22

EMLAB

Array antenna

Page 23: Antennas

23

EMLAB

r

z

z

o

r

R

cosz

cos)ˆˆ()ˆˆ(222 zrrrrrrrR rrrrrr

zrr ˆr

Page 24: Antennas

24

EMLAB

C

zjkjkr

C

rjkjkr

zdezJr

ejdezJ

r

ej

cos)ˆˆ( )(

4sin)(

4sin)( rrrE

N

n

njn

N

n

dnjkn eIeIAF

11

cos Array factor :

Array factor

1I

2I

3I

1z

2z

3z

4z

x

y

z

4I

r

z-directed arrayrr ˆr

rr ˆr

d

),cos( jnnn eIIkd

Page 25: Antennas

25

EMLAB

N

n

xjkn

jkrN

nn

neIer

klj

0

cos

0total sin

θEE

d

z

x0I 2I

xl

1I

d

Array factor

0x 1x 2x

x-directed array

Top view

1R 2R

1 2

1r 2r

r

Ox

r

Page 26: Antennas

26

EMLAB

Typical array configurations

Page 29: Antennas

29

EMLAB

Equi-phase surface

Equi-phase surface

,1,1,1,1,1 44

33

2210

jjjj eIeIeIeII

Pattern synthesis

Page 30: Antennas

30

EMLAB

1R 2R

1 2

1r 2r

r

Ox

r

(1) Two element array

2,1,1 10

dII

10

20

30

40

50

30

210

60

240

90

270

120

300

150

330

180 0

10

20

30

40

50

30

210

60

240

90

270

120

300

150

330

180 0

,12

,1,1

10

10

II

dII

(2) Two element array

Examples

Page 31: Antennas

31

EMLAB

10

20

30

40

50

30

210

60

240

90

270

120

300

150

330

180 0

10

20

30

40

50

30

210

60

240

90

270

120

300

150

330

180 0

(3) Five element array

,2

.1,1,1,1,1 44

33

2210

d

eIeIeIeII jjjj

(4) Five element array

0,2

.1,1,1,1,1 44

33

2210

d

eIeIeIeII jjjj

(5) Five element array

0,8.0

.1,1,1,1,1 44

33

2210

d

eIeIeIeII jjjj

10

20

30

40

50

30

210

60

240

90

270

120

300

150

330

180 0

3dB Beamwidth

Beam direction

Page 32: Antennas

32

EMLAB

phi=0:0.01:2*pi; %0<phi<2*pik=2*pi;d=0.5;% 0.5 lambda spacing.shi=k*d*cos(phi); alpha = pi*0.0;beta = exp(i*alpha);%Currents=[1,2*beta, 3*beta^2,2*beta^3,1*beta^4]; %Current excitationsCurrents=[1, 1*beta, 1*beta^2, 1*beta^3,1*beta^4]; %Current excitations E=freqz(Currents,1,shi); %E for different shi values E = DB(E)+30; % 최대값에서 30dB 범위까지 그림 .E = (E>0.).*E; polar(phi,E); %Generating the radiation pattern

Sample MATLAB codes

Page 33: Antennas

33

EMLAB

N-element linear array antenna

Uniform Array : Magnitudes of all currents are equal. Phases increase monotonically.

cosd

z

d

d

d

1r

cosd

2r3r

4r

Nr

1

2

3

4

N

y

1 cos1cos2cos

1

cos1

kdNjkdjkdj

N

n

kdnj

eee

eAF

)cos (

1

1

kd

eAFN

n

nj

Page 34: Antennas

34

EMLAB

121 Njjj eeeAF

)2/sin(

)2/sin(2/)1(2/2/

2/2/2/

2/

Ne

ee

ee

e

eAF Nj

jj

jNjNjN

j

jNNjjjj eeeeAFe 12

Difference :

j

jNjNj

e

eAFeAFe

1

1 1)1(

)2/sin(

)2/sin(

N

NAF

• Universal Pattern is symmetric about y = .p

• Width of main lobe decrease with N

• Number of sidelobes = (N-2)

• Widths of sidelobes = (2π/N)

• Side lobe levels decrease with increasing N.

Page 35: Antennas

35

EMLAB

Visible and invisible regions

kdkd 0

Array Factor 의 특성

Array factor has a period of 2 p with re-

spect to ψ.

Of universal pattern, the range covered by

a circle with radius “kd” become visible

range.

The rest region become invisible range

)2()( AFAF

2

1

1

1coskd

kd

visible region

2nAF

Visible range of the lin-

ear array

Page 36: Antennas

36

EMLAB

Grating Lobes Phenomenon

2

122 dkd

If the visible range includes more than

one peak levels of universal pattern,

unwanted peaks are called grating

lobes.

To avoid grating lobes, the following

condition should be met. 2

1)(f

1

1coskd

kd2

visible region

grating lobes

major lobe

They have the same strength !

2

Example :2

1/22 and For dkd , no grating lobe occurs

1/2 and 0For dkd , no grating lobe occurs

Page 37: Antennas

37

EMLAB

77GHz 에서 array element 들이 모두 동위상을 갖도록 설계함 .

10mm

17mm

두께 0.127mm비유전율 2.2

표면 전류 분포

Example : array antenna (77GHz)

Page 38: Antennas

38

EMLAB

Radiation pattern (77GHz)

elementary pattern

Radiation pattern of 8-element array

Page 39: Antennas

39

EMLAB

Automotive radar antenna

Page 41: Antennas

41

EMLAB

LPF A/D

DigitalSignal

Processing(Amplitude

&Phase)

~

Desired signal

direction

LPF A/D

LPF A/D

LPF A/D

Interference or

multipath

signal direction

Beamforming Approaches : Digital Beamformer (DBF)