architecture and equilibria 结构和平衡

40
Architecture and Eq uilibria 结结结结结 Chapter 6 结结结结结结结结结结 结 结 结结 结结结

Upload: virgil

Post on 05-Feb-2016

168 views

Category:

Documents


0 download

DESCRIPTION

神经网络与模糊系统. Architecture and Equilibria 结构和平衡. Chapter 6. 学生: 李 琦 导师:高新波. 6.1 Neutral Network As Stochastic Gradient system. Classify Neutral network model By their synaptic connection topologies and by how learning modifies their connection topologies. synaptic connection topologies. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Architecture and Equilibria 结构和平衡

Architecture and Equilibria结构和平衡

Chapter 6

神经网络与模糊系统

学生: 李 琦导师:高新波

Page 2: Architecture and Equilibria 结构和平衡

22003.11.19

6.1 Neutral Network As Stochastic Gradient system

Classify Neutral network model By their synaptic connection topologies and by how learning modifies their connection topologies

1. :

2. :

feedforward if no closed synaptic loops

feedback if closed synaptic loops or feedback pathways

1. :

2. :

Supervised learning use class membership information of

training samples

Unsupervised learning use unlabelled training samplings

synaptic connection topologies

how learning modifies their connection topologies

Page 3: Architecture and Equilibria 结构和平衡

32003.11.19

6.1 Neutral Network As Stochastic Gradient system

Gradi ent descent

LMS BackPropagati on Rei nforcement Leari ng

Recurrent BackPropagati on

Vetor Quanti zati on

Sel f -Organi zati on Maps Competi tve l earni ng Counter-propagati on

RABAM Browni an anneal i ng Bol tzmann l earni ng ABAM ART-2 BAM-Cohen-Grossberg Model Hopfi el d ci rcui t Brai n-State- I n-A-Box Maski ng fi el dAdapti ve-Resonance ART-1 ART-2

Feedforward FeedbackDecode

Supervised

Unsupervised

Encode

Neural NetWork Taxonomy

Page 4: Architecture and Equilibria 结构和平衡

42003.11.19

6.2 Global Equilibria: convergence and stability

Three dynamical systems in neural network:

synaptic dynamical system

neuronal dynamical system

joint neuronal-synaptic dynamical system

Historically,Neural engineers study the first or second neural network.They usually study learning in feedforward neural networks and neural stability in nonadaptive feedback neural networks. RABAM and ART network depend on joint equilibration of the synaptic and neuronal dynamical systems.

M

x

( , )x M

Page 5: Architecture and Equilibria 结构和平衡

52003.11.19

6.2 Global Equilibria: convergence and stability

Equilibrium is steady state (for fixed-point attractors)Convergence is synaptic equilibrium.Stability is neuronal equilibrium.

More generally neural signals reach steady state even though the activations still change. We denote steady state in the neuronal field :

Global stability:

Stability - Equilibrium dilemma :Neurons fluctuate faster than synapses fluctuate.Convergence undermines stability.

Μ = 0x = 0

xF xF 0

0,0 Mx

Page 6: Architecture and Equilibria 结构和平衡

62003.11.19

6.3 Synaptic convergence to centroids: AVQ Algorithms

We shall prove that competitive AVQ synaptic vector converge exponentially quickly to pattern-class centroids and, more generally, at equilibrium they vibrate about the centroids in a Browmian motion.

jm

Competitive learning adaptively quantizes the input pattern space . Probability density function characterizes the continuous distributions of patterns in .

nR )(xpnR

Page 7: Architecture and Equilibria 结构和平衡

72003.11.19

6.3 Synaptic convergence to centroids: AVQ Algorithms

1 2 3....

,

knR D D D D

D D if i ji j

The Random Indicator function

Supervised learning algorithms depend explicitly on the indicator functions.Unsupervised learning algorithms don’t require this pattern-class information.

Centriod of :

1( )

0j

j

Dj

if x DI x

if x D

( )

( )j

j

D

jD

xp x dxx

p x dx

Competitive AVQ Stochastic Differential Equations:

jD

Page 8: Architecture and Equilibria 结构和平衡

82003.11.19

6.3 Synaptic convergence to centroids: AVQ Algorithms

The Stochastic unsupervised competitive learning law:

( )[ ]j j j j jm S y x m n

We want to show that at equilibrium or E( )j j j jm x m x ( )

jj DS I xAs discussed in Chapter 4:

The linear stochastic competitive learning law: ( )[ ]

jj D j jI x x m nm The linear supervised competitive learning law:

( )[ ]

( ) ( )

( )

( )

j

j i

j j D j j

j D Di j

r I x x m n

r I x I x

m x

x

Page 9: Architecture and Equilibria 结构和平衡

92003.11.19

6.3 Synaptic convergence to centroids: AVQ Algorithms

The linear differential competitive learning law:

In practice:

[ ]j j j jm S x m n

sgn[ ][ ]

1 0

sgn[ ] 0 0

1 0

j j j jm y x m n

if z

z if z

if z

Page 10: Architecture and Equilibria 结构和平衡

102003.11.19

6.3 Synaptic convergence to centroids: AVQ Algorithms

Competitive AVQ Algorithms

miixmi ,,......1,)()0( 1. Initialize synaptic vectors:

2.For random sample , find the closest (“winning”) synaptic

vector :

)(tx

)(tm j ( ) ( ) min ( ) ( )j ii

m t x t m t x t

3.Update the wining synaptic vectors by the UCL ,SCL,or DCL learning algorithm.

)(tm j

2 2 21 ....... nwhere x x x gives the squared Euclidean norm of x

Page 11: Architecture and Equilibria 结构和平衡

112003.11.19

6.3 Synaptic convergence to centroids: AVQ Algorithms

Unsupervised Competitive Learning (UCL)

( 1) ( ) [ ( ) ( )]

( 1) ( )

jj j t

i i

m t m t c x t m t

m t m t if i j

{ }tc defines a slowly decreasing sequence of learning coefficient

For instance , 0.1 1 for 10,000 samples ( )10,000t

tc x t

Supervised Competitive Learning (SCL)

( 1) ( ) ( ( )) ( ) ( )

( ) [ ( ) ( )]

( ) [ ( ) ( )]

j j t j j

j t j j

j t j j

m t m t c r x t x t m t

m t c x t m t if x D

m t c x t m t if x D

Page 12: Architecture and Equilibria 结构和平衡

122003.11.19

6.3 Synaptic convergence to centroids: AVQ Algorithms

( )j jS y

]sgn[ jy

Differential Competitive Learning (DCL)

( 1) ( ) ( ( ))[ ( ) ( )]

( 1) ( )

j j t j j j

i i

m t m t c S y t x t m t

m t m t if i j

( ( ))j jS y t denotes the time change of the jth neuron’s competitive signal

( ( )) ( ( 1)) ( ( ))j j j j j jS y t S y t S y t

In practice we often use only the sign of the signal difference or , the sign of the activation difference.

Page 13: Architecture and Equilibria 结构和平衡

132003.11.19

总迭代次数 样本数

样本数决定计算时间及精度

总迭代次数可以人为设定?

终止迭代的条件是否不需要?

计算时间及精度可以人为设定?

T

0 1

( 1) ( ) [ ( ) ( )]

( ) ( 1)

t

j j t j

j j

kc c

T

m t m t c x t m t

m t m t

影响迭代步长

终止迭代条件: -

Page 14: Architecture and Equilibria 结构和平衡

142003.11.19

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T=10 T=20

T=30 T=40 T=100

基于 UCL 的 AVQ 算法

Page 15: Architecture and Equilibria 结构和平衡

152003.11.19

6.3 Synaptic convergence to centroids: AVQ Algorithms

Stochastic Equilibrium and Convergence

jm

)(xp

Competitive synaptic vector converge to decision-class centroids. The centroids may correspond to local maxima of the sampled but unknown probability density function

Page 16: Architecture and Equilibria 结构和平衡

162003.11.19

AVQ centroid theorem:

If a competitive AVQ system converges, it converges to the centroid of the sampled decision class.

( ) 1j jProb m x at equilibrium

Proof. Suppose the jth neuron in wins the competition.

Suppose the jth synaptic vector codes for decision class jm jD

0jm

So

Suppose the synaptic vector has reached equilibrium:

6.3 Synaptic convergence to centroids: AVQ Algorithms

YF

( ) 1 1 ( )( )j jD j j j DI x iff S by S I xy

Page 17: Architecture and Equilibria 结构和平衡

172003.11.19

6.3 Synaptic convergence to centroids: AVQ Algorithms:

( )( ) ( )

( ) ( )

( ) ( )

( )

( )

( )[ ]n j j

j

j j

j

j

j

D j j j D j jR

jD

jD D

D

j j

D

Take Expectation

o E m

I x x m p x dx E n m

x m p x dx

xp x dx m p x dx

xp x dxm x

p x dx

I x x m n

In general the AVQ centroid theorem concludes that at equilibrium:

jj xmE ][

Page 18: Architecture and Equilibria 结构和平衡

182003.11.19

6.3 Synaptic convergence to centroids: AVQ Algorithms

Arguments:

•The AVQ centriod theorem applies to the stochastic SCL and DCL law.

• The spatial and temporal integrals are approximate equal.

•The AVQ centriod theorem assumes that stochastic convergence occurs.

Page 19: Architecture and Equilibria 结构和平衡

192003.11.19

6.4 AVQ Convergence Theorem

AVQ Convergence Theorem:

Competitive synaptic vectors converge exponentially quickly to pattern-class centroids.

Proof.Consider the random quadratic form L:

2

0 0

1

2

n m

i iji j

L (x m )

Note:

The pattern vectors x do not change in time.

0L

Page 20: Architecture and Equilibria 结构和平衡

202003.11.19

6.4 AVQ Convergence Theorem

L equals a random variable at every time t. E[L] equals a deterministic number at every t. So we use the average E[L] as Lyapunov function for the stochastic competitive dynamical system.

2

( )

( )( ) ( )

( )[ ]j

j

i iji i ji ij

iji j ij

i ij ij j D j ji j

D i ij i ij iji j i j

L LL x m

x m

Lm

m

x m m m

I x x m x m n

I x x m n

Page 21: Architecture and Equilibria 结构和平衡

212003.11.19

6.4 AVQ Convergence Theorem

2[ ] ( ) ( ) 0j

i ijDj i

E L E L x m p x dx

So, the competitive AVQ system is asymptotically stable, and in general converges exponentially quickly to a locally equilibrium.Suppose .Then every synaptic vector has reached equilibrium and is constant (with probability one) if holds.

0jm

Assume: sufficient smoothness to interchange the time derivative and the probabilistic integral—to bring the time derivative “inside” the integral.

( ) 0E L

Page 22: Architecture and Equilibria 结构和平衡

222003.11.19

6.4 AVQ Convergence Theorem

Since p(x) is a nonnegative weight function, the weighted integral of the learning differences must equal zero : i ijx m

( ) ( ) 0j

jDx m p x dx

So, with probability one, equilibrium synaptic vector equal centroids. More generally, average equilibrium synaptic vector are centroids: jj xmE ][

Page 23: Architecture and Equilibria 结构和平衡

232003.11.19

6.4 AVQ Convergence Theorem

( ) ( ) 0j

jDx m p x dx ][LE

jm

Arguments:

The vector integral in equals the gradient of

with respect to .

So the AVQ convergence theorem implies that the class centroids-and, asymptotically ,competitive synaptic vector-minimize the mean-squared error of vector quantization.

Page 24: Architecture and Equilibria 结构和平衡

242003.11.19

6.5 Global stability of feedback neural networks

Global stability is jointly neuronal-synaptic steady state.

Global stability theorems are powerful but limited.

Their power:

•their dimension independence

•nonlinear generality

•their exponentially fast convergence to fixed points.

Their limitation:

• not tell us where the equilibria occur in the state space.

Page 25: Architecture and Equilibria 结构和平衡

252003.11.19

6.5 Global stability of feedback neural networks

Stability-Convergence Dilemma

Stability-Convergence Dilemma arises from the asymmetry in neuronal and synaptic fluctuation rates.

Neurons change faster than synapses change.

Neurons fluctuate at the millisecond level.

Synapses fluctuate at the second or even minute level.

The fast-changing neurons must balance the slow-changing synapses.

Page 26: Architecture and Equilibria 结构和平衡

262003.11.19

6.5 Global stability of feedback neural networks

Stability-Convergence Dilemma

1.Asymmetry:Neurons in and fluctuate faster than the synapses in M.

2.stability: (pattern formation).

3.Learning:

4.Undoing:

The ABAM theorem offers a general solution to stability-convergence dilemma.

0 0X YF and F

0 0 0.X YF and F M

0 0 0.X YM F and F

XF YF

Page 27: Architecture and Equilibria 结构和平衡

272003.11.19

6.6 The ABAM Theorem

ij ij i j i jm m S S S S

1

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

p

i i i i i j j ijj

n

j j j j j i i iji

ij ij i i j j

x a x b x S y m

y a y b y S x m

m m S x S y

Hebbian ABAM model:

Competitive ABAM model (CABAM):( ) ( )ij j j i i ijm S y S x m

Differential Hebbian ABAM model:

Differential competitive ABAM model:

ij j i ijm S S m

Page 28: Architecture and Equilibria 结构和平衡

282003.11.19

6.6 The ABAM Theorem

The ABAM Theorem: The Hebbian ABAM and competitive ABAM models are globally stable.

We define the dynamical systems as above.

If the positivity assumptions hold, then the models are asymptotically stable, and the squared activation and synaptic velocities decrease exponentially quickly to their equilibrium values:

0,0,0,0 jiji SSaa

0,0,0 222 ijji myx

Page 29: Architecture and Equilibria 结构和平衡

292003.11.19

6.6 The ABAM Theorem

Proof. The proof uses the bounded lyapunov function L:

: ( ( )) ii

i

dxd dFthe chain rule of differentiation gives F x t

dt dx dt

' ' 2

0 0

1( ) ( ) ( ) ( )

2

i jx yi ji j ij i i i i j j j j ij

i j i j i j

L S S m S b d S b d m

' '

' '

' '

' 2 ' 2 2

( ) ( ) ( )

( ) ( ) ( )

i j i

i i j ij j j i ij i j iji j j i i j

i j ij iji i j jj

i i i j ij j j j i ij ij i j iji j j i i j

i i i j ij j j j i ij ij i ji j j i j

L S x S m S y S m S S m

S b x S b y m m

S x b S m S y b S m m S S m

S a b S m S a b S m m S S

0, 0, 0, 0, 0, .

i

i j i jbecause of a a S S So L along system trajectories

This proves global stability for signal Hebbian ABAMs.

Page 30: Architecture and Equilibria 结构和平衡

302003.11.19

6.6 The ABAM Theorem

ij j i ijm S S m for the competitive learning law:

' 2 ' 2( ) ( ) ( )( )i i i j ij j j j i ij j i ij i j iji j j i i j

L S a b S m S a b S m S S m S S m

2

0 0( ) ( )( )

( ) 1

0 .

j

ij i j ij j i ij i j ij

i ij j

if Sm S S m S S m S S m

S m if S

L along trajectories

We assume that behaves approximately as a zero-one threshold.

jS

This proves global stability for the competitive ABAM system.

Page 31: Architecture and Equilibria 结构和平衡

312003.11.19

' '

''2 2 2

( ) ( ) ( )

0

i i i j ij j j j i ij ij i j iji j j i i j

jii j ij

i j i ji j

L S x b S m S y b S m m S S m

SSx y m

a b

2 2 20 0

0

i j ij

i j ij

L iff x y m

iff x y m

along trajectories for any nonzero change in any neuronal activation or any synapse.

This proves asymptotic global stability.

6.6 The ABAM Theorem

Also for signal Hebbian learning:

(Higher-Order ABAMs, Adaptive Resonance ABAMs, Differential Hebbian ABAMs)

Page 32: Architecture and Equilibria 结构和平衡

322003.11.19

6.7 structural stability of unsupervised learning and RABAM

•Structural stability is insensitivity to small perturbations.

•Structural stability allows us to perturb globally stable feedback systems without changing their qualitative equilibrium behavior.

•Structural stability differs from the global stability, or convergence to fixed points.

•Structural stability ignores many small perturbations. Such perturbations preserve qualitative properties.

Page 33: Architecture and Equilibria 结构和平衡

332003.11.19

6.7 structural stability of unsupervised learning and RABAM

The signal Hebbian diffusion RABAM model:

Random Adaptive Bidirectional Associative Memories RABAM

ijji BandBB ,,

XF YF ijm

Brownian diffusions perturb RABAM models.

Suppose denote Brownian-motion (independent Gaussian increment) processes that perturb state changes in the ith neuron in ,the jth neuron in ,and the synapse ,respectively.

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i i i i i j j ij ij

j j j j j i i ij ji

ij ij i i j j ij

dx a x b x S y m dt dB

dy a y b y S x m dt dB

dm m dt S x S y dt dB

Page 34: Architecture and Equilibria 结构和平衡

342003.11.19

6.7 structural stability of unsupervised learning and RABAM

( )[ ( ) ]ij j j i i ij ijdm S y S x m dt dB

With the stochastic competitives law:

(Differential Hebbian, differential competitive diffusion laws)

The signal-Hebbian noise RABAM model:

2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

, ,

i i i i i j j ij ij

j j j j j i i ij ji

ij ij i i j j ij

i j ij

i i j ij

x a x b x S y m n

y a y b y S x m n

m m S x S y n

E n E n E n

V n

Page 35: Architecture and Equilibria 结构和平衡

352003.11.19

6.7 structural stability of unsupervised learning and RABAM

The RABAM theorem ensures stochastic stability.

In effect, RABAM equilibria are ABAM equilibria that randomly vibrate. The noise variances control the range of vibration. Average RABAM behavior equals ABAM behavior.

RABAM Theorem.

The RABAM model above is global stable. If signal functions are strictly increasing and amplification functions and are strictly positive, the RABAM model is asymptotically stable.

ia jb

Page 36: Architecture and Equilibria 结构和平衡

362003.11.19

6.7 structural stability of unsupervised learning and RABAM

Proof. The ABAM lyapunov function L :

defines a random process. At each time t, L(t) is a random variable.

The expected ABAM lyapunov function E(L) is a lyapunov function for the RABAM system.

( ) .... ( , , )RABAML E L L p x y M dxdydM

' ' 2

0 0

1( ) ( ) ( ) ( )

2

i jx yi ji j ij i i i i j j j j ij

i j i j i j

L S S m S b d S b d m

Page 37: Architecture and Equilibria 结构和平衡

372003.11.19

6.7 structural stability of unsupervised learning and RABAM

' '

' 2 ' 2 2

' '

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i i i j ij j j j i ij ij i j iji j j i i j

i i i j ij j j j i ij ij i ji j j i i j

i i i j ij j j j i ij ii j j i

E L E L

E S x b S m S y b S m m S S m

E S a b S m S a b S m m S S

E n S b S m E n S b S m E n

'

'

( )

( )

( ) ( )

0 0 0 0

j ij i ji j

ABAM i i i j iji j

j j j i ij ij ij i jj i i j

ABAM

ABAM ABAM

m S S

E L E n E S b S m

E n E S b S m E n E m S S

E L

So E L or E L along trajectories according as L or L

Page 38: Architecture and Equilibria 结构和平衡

382003.11.19

6.7 structural stability of unsupervised learning and RABAM

ix

ix

Noise-Saturation Dilemma:How neurons can have an effective infinite dynamical range whenthey operate between upper and lower bounds and yet not treat small input signals as noise: If the are sensitive to large inputs,then why do not small inputs get lost in internal system noise? If the are sensitive to small inputs, then why do they not all saturateat their maximum values in response to large inputs?

Page 39: Architecture and Equilibria 结构和平衡

392003.11.19

6.7 structural stability of unsupervised learning and RABAM

RABAM Noise Suppression Theorem:

As the above RABAM dynamical systems converge exponentially quickly, the mean-squared velocities of neuronal activations and synapses decrease to their lower bounds exponentially quickly:

Guarantee: no noise processes can destabilize a RABAM if the noise processes have finite instantaneous variances (and zero mean).

(Unbiasedness Corollary, RABAM Annealing Theorem)

2 2 2 2 2 2, ,i i j j ij ijE x E y E m

Page 40: Architecture and Equilibria 结构和平衡

402003.11.19

Thank you!