article major and trace element compositions of tertiary … · 2020-01-07 ·...

15
島根大学地球資源環境学研究報告 30, 3145 ページ(2011 12 月) Geoscience Rept. Shimane Univ., 30, p.31452011Major and trace element compositions of Tertiary sedimentary successions in the NW and SE Bengal basin, Bangladesh Dhiman Kumer Roy and Barry P. Roser Abstract The Bengal basin in Bangladesh occupies the vast peripheral Himalayan foreland basin, and is divided into three geological provinces: 1) NW shelf (NWS); 2) the Northeastern foredeep (Surma basin); and 3) the southeastern Chittagong-Tripura Folded Belt (CTFB). These geological provinces contain sediments derived from the Himalaya and Proto-Himalaya that record the exhumation history of the Himalayan orogen. This study reports whole-rock major and trace element analyses of Paleogene and Neogene sediments from the NWS (n = 66) and Neogene sediments from the CTFB (n = 219). Both the NWS and the CTFB sample suites show marked compositional contrasts between sandstones and mudrocks, and systematic stratigraphic changes in composition. These geochemical variations are the end product of processes which include hydrodynamic sorting, weathering, diagenesis, and heavy mineral concentration, coupled with contrasting depositional environments related to Himalayan tectonics and climate change. The role of these fac- tors in determining the geochemical variations will be evaluated further in future work, along with comparison with published data for geological province 2 (Surma basin), to explore the links between provenance, tectonism, and climate in the Himalaya-Bengal Basin depositional system. Key words: Geochemistry, sandstone, mudstone, Bengal Basin, Bangladesh Introduction Geological processes and the erosion and deposition of sediments from nearby sources or orogens play an important role in crustal evolution. Erosion of Himalayan sediments and their deposition in the peripheral foreland basin has contributed significantly to changes in global geodynamics, climate and ocean geochemistry, as estab- lished in the literature (Raymo and Ruddiman, 1992; Richter et al. 1992). The geochemical compositions of sediments respond to various tectonic, sedimentological, and climatic processes. Retention of the fingerprints of such processes is the basis of geochemical studies of sediments used to infer past geological environments. Geochemical compositions of sediments and their variations can be used to link provenance (Roser and Korsch, 1988; McLennan et al. 1993), tectonic setting (Roser and Korsch, 1986), climate (Nesbitt and Young, 1982), and other earth surface processes operating at geological time scales. However, it remains a challenge to differentiate tectonically- and climatically-driven sedimentation, and the influence of these two primary factors on sedimentary environments and depositional patterns. The Bengal basin fill is a record of Himalayan-derived sediments that can be used to infer the interaction of tectonism and climate. The Bengal basin began to receive sediments during the Oligocene period (38 Ma) (Najman et al. 2008). The Bengal basin encompasses the northeastern part of the Indian subcontinent, and is located between the Indian Shield and the Indo-Burman Ranges (Fig. 1). It is divided into three geological provinces: i) Province 1, or the Northwest shelf (NWS); ii) Province 2, or the Northeastern foredeep (Surma basin); and iii) Province 3, the Chittagong Tripura Folded Belt (CTFB); each province varies in their facies and potential provenance (Reimann, 1993; Alam et al. 2003; Najman, 2006). The Bengal basin thus occupies a vast region, and receives a large volume of sediments that may hold the key to resolving many basic problems, such as the geochemical variation of sediments in relation to Himalayan uplift and climate change. Understanding the effects of these processes helps in developing models of tectonic-climatic evolution in the regional context. The geochemical composition of sediments can also help iden- tify past depositional environments. Early work on the geochemical composition of sediments in the Bengal basin by Rahman and Faupl (2003) dealt with Neogene Surma Group sediments of the Surma basin (Province 2). Rahman and Suzuki (2007a, b) also inferred the provenance and tectonic setting of the Surma Group depositional basin. The Paleogene succession of the Bengal basin was studied by Najman et al. (2008) to identify the provenance of the sediments. They found that significant contribution of sediments from the Himalaya began at 38 Ma, some 17 Ma earlier than previously thought. Strati- graphic and lithologic limitations of earlier work in the Surma basin (Rahman and Faupl 2003; Rahman and Suzuki (2007a, b) were addressed by Hossain et al. (2010), who examined the geochemical compositions of both Paleogene and Neogene sandstones and mudrocks from the Surma Article Department of Geoscience, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan 31

Upload: others

Post on 25-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

島根大学地球資源環境学研究報告 30, 31~45 ページ(2011年 12月)Geoscience Rept. Shimane Univ., 30, p.31~45(2011)

Major and trace element compositions of Tertiary sedimentary successions in the NW and SE Bengal basin, Bangladesh

Dhiman Kumer Roy* and Barry P. Roser*

AbstractThe Bengal basin in Bangladesh occupies the vast peripheral Himalayan foreland basin, and is divided into three

geological provinces: 1) NW shelf (NWS); 2) the Northeastern foredeep (Surma basin); and 3) the southeastern Chittagong-Tripura Folded Belt (CTFB). These geological provinces contain sediments derived from the Himalaya and Proto-Himalaya that record the exhumation history of the Himalayan orogen. This study reports whole-rock major and trace element analyses of Paleogene and Neogene sediments from the NWS (n = 66) and Neogene sediments from the CTFB (n = 219). Both the NWS and the CTFB sample suites show marked compositional contrasts between sandstones and mudrocks, and systematic stratigraphic changes in composition. These geochemical variations are the end product of processes which include hydrodynamic sorting, weathering, diagenesis, and heavy mineral concentration, coupled with contrasting depositional environments related to Himalayan tectonics and climate change. The role of these fac-tors in determining the geochemical variations will be evaluated further in future work, along with comparison with published data for geological province 2 (Surma basin), to explore the links between provenance, tectonism, and climate in the Himalaya-Bengal Basin depositional system.

Key words: Geochemistry, sandstone, mudstone, Bengal Basin, Bangladesh

Introduction

Geological processes and the erosion and deposition of sediments from nearby sources or orogens play an important role in crustal evolution. Erosion of Himalayan sediments and their deposition in the peripheral foreland basin has contributed significantly to changes in global geodynamics, climate and ocean geochemistry, as estab-lished in the literature (Raymo and Ruddiman, 1992; Richter et al. 1992). The geochemical compositions of sediments respond to various tectonic, sedimentological, and climatic processes. Retention of the fingerprints of such processes is the basis of geochemical studies of sediments used to infer past geological environments. Geochemical compositions of sediments and their variations can be used to link provenance (Roser and Korsch, 1988; McLennan et al. 1993), tectonic setting (Roser and Korsch, 1986), climate (Nesbitt and Young, 1982), and other earth surface processes operating at geological time scales. However, it remains a challenge to differentiate tectonically- and climatically-driven sedimentation, and the influence of these two primary factors on sedimentary environments and depositional patterns.

The Bengal basin fill is a record of Himalayan-derived sediments that can be used to infer the interaction of tectonism and climate. The Bengal basin began to receive sediments during the Oligocene period (38 Ma) (Najman et al. 2008). The Bengal basin encompasses the northeastern

part of the Indian subcontinent, and is located between the Indian Shield and the Indo-Burman Ranges (Fig. 1). It is divided into three geological provinces: i) Province 1, or the Northwest shelf (NWS); ii) Province 2, or the Northeastern foredeep (Surma basin); and iii) Province 3, the Chittagong Tripura Folded Belt (CTFB); each province varies in their facies and potential provenance (Reimann, 1993; Alam et al. 2003; Najman, 2006). The Bengal basin thus occupies a vast region, and receives a large volume of sediments that may hold the key to resolving many basic problems, such as the geochemical variation of sediments in relation to Himalayan uplift and climate change. Understanding the effects of these processes helps in developing models of tectonic-climatic evolution in the regional context. The geochemical composition of sediments can also help iden-tify past depositional environments.

Early work on the geochemical composition of sediments in the Bengal basin by Rahman and Faupl (2003) dealt with Neogene Surma Group sediments of the Surma basin (Province 2). Rahman and Suzuki (2007a, b) also inferred the provenance and tectonic setting of the Surma Group depositional basin. The Paleogene succession of the Bengal basin was studied by Najman et al. (2008) to identify the provenance of the sediments. They found that significant contribution of sediments from the Himalaya began at 38 Ma, some 17 Ma earlier than previously thought. Strati-graphic and lithologic limitations of earlier work in the Surma basin (Rahman and Faupl 2003; Rahman and Suzuki (2007a, b) were addressed by Hossain et al. (2010), who examined the geochemical compositions of both Paleogene and Neogene sandstones and mudrocks from the Surma

Article

* Department of Geoscience, Shimane University, 1060 Nishikawatsu,

Matsue 690-8504, Japan

31

succession (Province 2) to identify geochemical variations in the sediments in relation to provenance and weather-ing. However, Najman (2006) noted that amalgamation of datasets from more than one geological province for provenance studies could obscure regional details. To date, no geochemical studies have been carried out in Province 1 (NWS) or 3 (CTFB). Therefore, it is essential to study the geochemical composition of the sediments from each province individually.

In this paper, we present a geochemical database of sandstones and mudstones from the Paleogene and Neogene succession of Province 1 (NWS) and the Neogene succes-sion of Province 3 (CTFB). This new geochemical data and previously published data from Province 2 (Hossain et al. 2010) will contribute to better understanding of the regional context of proto-Himalayan and Himalaya-derived sedimentation in the Bengal basin. This geochemical dataset will be interpreted and discussed in depth in future work to examine climatically and tectonically-induced sedimentation in relation to drifting of the Indian plate, and Himalayan uplift and climate change.

Geology of the Bengal Basin

Tectonic evolutionThe tectonic evolution of the Bengal basin is related to

the continent-continent collision of the Indian and Eurasian (Tibetan) plates, development of the Himalaya, and oblique subduction of oceanic crust beneath the Burmese plate, with associated development of an accretionary wedge (Alam et al. 2003; Mukherjee et al. 2009). India was part of Gondwana before collision of the Indian and Eurasian plates. The Gondwana supercontinent began to break up at ~126 Ma, and India started to move northward from the South Pole (Lindsay et al. 1991). The Bengal basin started to form during that time, with rifting of the Indian plate from Antarctica and Australia. However, collision of the Indian and Asian plates took place during Eocene time (55 Ma) (Molnar and Tapponier, 1975). Recent work by Aitchison et al. (2007) noted that soft collision started at the Eocene-Oligocene boundary (34 Ma ago). The Tethys Sea disappeared due to the collision between the Indian and Asian plates, and subsequent formation of the Himalaya fed sediments into the Bengal basin via gigantic river systems.Stratigraphy

The stratigraphic successions of the NWS and CTFB are summarized in Table 1 (a, b). The depositional patterns and sedimentation within them are controlled by rise and fall of sea level, and uplift and subsidence of the source region and depositional basin, respectively (Alam et al. 2003).

In the NWS the lowermost Jaintia Group (Paleocene-Late Eocene) is represented by the Tura Sandstone, Sylhet Limestone, and Kopili Shale, in ascending order. The Tura Sandstone Formation (Paleogene-E. Eocene) consists of poorly sorted sandstone, siltstone, mudstone, fossiliferous

marl, and thin coal seams (Reimann, 1993; Uddin and Lundberg, 1999; Alam et al. 2003). The overlying Sylhet Limestone Formation (E.-M. Eocene) is composed of massive and compact limestone containing abundant fora-minifera (Alam et al. 2003), and the Kopili Shale consists of thinly-bedded sandstone and shale (Uddin and Lundberg, 1999; Alam et al. 2003). The Barail Group of late Eocene to early Miocene age overlies the Jaintia Group, and is composed of interbedded sandstones and mudstones with high sand/mud ratio that were deposited in distal deltaic to marine environments (Alam et al. 2003; Najman et al. 2008). The Barail Group is succeeded by the Neogene Surma Group, which consists of sandstones, siltstones and mudstones deposited in a large deltaic system (Alam et al. 2003), followed by fluvial sandstones and mudstones of the Dupitila Group (Table 1).

The CTFB succession is all of Neogene age (Table 1b). The basal Surma Group is divided into the Bhuban and Bok-abil Formations, in ascending order. Both consist of deltaic sandstones and mudrocks. In the CTFB the Surma Group is succeeded by the Tipam Group, which is subdivided into the Tipam Sandstone Formation and the overlying Girujan Clay Formation. The Tipam Group sediments consist of coarse grained sandstones, siltstones and mudstones that represent bedload-dominated braided fluvial and fluvial overbank deposits (Reimann, 1993; Alam et al. 2003). Tipam Group sediment are absent from the NWS, but also occur in Prov-ince 2. In the CTFB the Tipam Group is succeeded by the Dupitila Group, which consists of sandstones, siltstones, and mudstones that were laid down by a meandering river system (Johnson and Alam, 1991).

Sampling and Sample Preparation

Sample sitesThis study presents whole-rock X-ray fluorescence (XRF)

analyses of Paleogene and Neogene sandstones and mudrocks from Province 1 (NW shelf; n = 66) and Neogene sandstones and mudrocks from Province 3 (CTFB; n = 219). The samples were collected from both deep and shallow exploration bore-holes, and also from outcrop (see Tables 2 and 3, respectively). The number of samples collected for each formation or group was determined by availability from drill core.

Samples from the NWS represent the Jaintia (n = 14), Barail (n = 6), Surma (n = 22) and Dupitila Groups (n = 24), in ascending order (Table 2). All samples were taken from drillcore. The Jaintia Group samples consist of 11 sandstones from the Tura Sandstone Formation, and three mudstones from the Kopili Shale; all of which were taken from the Bogra-2 well. Barail Group is represented by only six samples (one sandstone, five mudrocks), all of which were from the Singra-1 well. Surma Group samples (two sandstones, seven siltstones, 13 mudstones) were collected from the Bogra-2 and Singra-1 wells, whereas Dupitila Group samples (five sandstones, 13 siltstones, six mud-

Dhiman Kumer Roy and Barry P. Roser32

stones) were drawn from several wells (see Table 2).The CTFB suite is much larger (n = 219), but spans only

the Surma (n = 155), Tipam (n = 42) and Dupitila Groups (n = 22). The Surma samples are divided almost equally between the Bhuban (n = 80; 20 sandstones, 60 mudrocks) and the Bokabil Formations (n = 75; 14 sandstones, 64 mudrocks), collected from both drillcore and outcrop (Table 3, Fig. 1). Tipam Group samples represent the lower-most Tipam Sandstone Formation (n = 32; 16 sandstones, 16 mudrocks) and the Girujan Clay Formation (10 mudstones). Of these, five were taken from the Shahbajpur-1 well, and the remainder from outcrop (Fig. 1). The Dupitila Group samples (seven sandstones, 15 mudstones) were all col-lected from outcrop (Fig. 1).

Analytical proceduresClean drill core and outcrop samples were chipped to

< 1 cm using a manual splitter to remove any veins or thin weathering rinds. The chips were then repeatedly rinsed and soaked in deionized distilled water to remove dust and then dried in an oven at 110°C for 24 h. The dried chips were then crushed in a tungsten carbide ring mill, with mills time generally of 30-45 seconds, following the methodology of

Roser et al. (1998). Subsamples (10 g) of the pulps were placed in glass vials and returned to the oven at 110°C for > 24 h. Total loss on ignition (LOI) was subsequently deter-mined gravimetrically by ignition for at least 2 h at 1020°C. The ignited samples from the LOI determination were hand-ground in an agate pestle and mortar, and returned to a 110 °C oven before preparation of glass fusion beads for the XRF analysis.

The XRF analysis was performed at Shimane University, using a Rigaku RIX 2000 spectrometer equipped with a Rh-anode X-ray tube. Major element and 14 trace element (Ba, Ce, Cr, Ga, Nb, Ni, Pb, Rb, Sc, Sr, Th, V, Y, Zr) abun-dances were determined from glass fusion beads prepared with an alkali flux (80% lithium tetraborate (Li2B4O7) and 20% lithium metaborate (LiBO2)), in a flux to sample ratio of 2:1 (Kimura and Yamada, 1996). Calibration and correc-tion for spectral interferences followed the methodology of Kimura and Yamada (1996). Internal correction for intra-run drift was made using secondary calibration against ten Geological Survey of Japan standard rocks spanning the compositional range from gabbro (JGb-1) through to granite (JG-2).

Deposi'onal  environment

Neogene Dupi*la Dupi*la Sandstones,  mudstones Fluvial

Neogene Surma Surma Sandstones,  mudstones Deltaic

L.  Eocene-­‐E.  Miocene Barail Barail Sandstones,  minor  mudstones Deltaic

L.  Eocene Kopili  Shale Shales,  minor  limestone Shallow  marine

E.  to  M.  Eocene Sylhet  Limestone Limestone Shallow  marine

Paleocene-­‐E.  Eocene Tura  Sandstone Quartz  arenites Shallow  marine

Deposi'onal  environment

Neogene Dupi*la Dupi*la Sandstones,  mudstones Meandering

Neogene Girujan  Clay Mudstones Overbank

Neogene Tipam  Sandstone Sandstones,  mudstones Braided

Neogene Bokabil Sandstones,  mudstones Deltaic

Neogene Bhuban Sandstones,  mudstones DeltaicSurma

LithologyForma'onGroup

(A)  NW  shelf  (Province  1)

Jain*a

(B)  CTFB  (Province  3)

Age

Age Group Forma'on Lithology

Tipam

Table 1. Stratigraphy, facies and depositional environments of (a) NW shelf (NWS; Province 1) and (b) CTFB (Province 3) of the Bengal basin in Bangladesh (modified from Reimann, 1993; Alam et al. 2003; Najman et al. 2008). Data are presented for the shaded formations.

Major and trace element compositions of Tertiary sedimentary successions in the NW and SE Bengal basin, Bangladesh 33

Beach and dune sandAlluvial silt and clayValley alluvium and colluvium

} Thrust and fault

Lake

Dihing and Dupitila Formation (undifferentiated)

Dihing Formation

Dupitila Formation Tipam Group

Surma Group

LEGEND

revirR anhga

M

reviR segnaG

reviR anu

maJ

BAY OF BENGAL

West Bengal(INDIA)

Meghalaya (INDIA)

Assam(INIDA)

Tripura(INDIA)

Mizoram (INDIA)

RAJSHAHI

KHULNA

SYLHET

DHAKA

Main city Main riverCountry border

LEGEND

40 0 40 80 km

CHITTAGONG

BARISAL

1

2

3

92

22

24

26

88 90 92

9088

45

67

22

24

26

°

°

° ° °

°

°

°

°°°

°

D 61-70, 92-101

D 1-10, 23-24,34-40, 71-76,102-110

D 11-14, 25-26, 41-44, 77-83, 111-114

Geological map of the CTFB

D 15-22, 27-33,

45-60, 84-91

Fig 1. Map showing the location of drill hole and areas sampled in the NW shelf and CTFB, Bengal basin, Bangladesh. Drill hole No. (1) AS-13, 14, 27, 28, DOB-1, SOB-11/4, MS-13, 14, 15, 17, 19 (2) Bogra-2 (3) Singra-1 (4) Begumganj-2 (5) Feni-1 (6) Sitakund-5 and (7) Shahbajpur-1 (modified after Alam et al. 1990).

Dhiman Kumer Roy and Barry P. Roser34

Results and Discussion

Major and trace elements analyses (anhydrous normal-ized basis) of the NWS and CTFB samples are listed in Tables 2 and 3, respectively. The normalizing factors used to adjust the major element data to 100% were also applied to the trace element data. The tabulated data can be cor-rected to a hydrous basis if desired, using the original “as analyzed” total (anhydrous), and the LOI values determined from the original hydrous powders.

NW shelf (NWS, Province 1)Major elements

Major element abundances show significant variation within the NWS succession. Hydrodynamic separation of quartz and clay minerals during deposition strongly influ-ences SiO2 and Al2O3 contents, and hence largely controls the bulk composition of individual samples. Mean SiO2

contents in sandstones are high in all formations, with an extreme average value of 97.16 wt% and very narrow range (96.03-97.96 wt%) in the Tura Sandstone Formation of the Jaintia Group, and 87.05 wt% for the single sandstone ana-lyzed from the Barail Group. Average SiO2 content in the two Surma Group sandstones analyzed is 83.73 wt%, rising to 89.64 wt% (86.34-92.60 wt%) for the Dupitila Group sandstones.

Average SiO2 contents in the mudrocks show much wider variation. An average value of 61.40 wt% in the three Kopili Shale (Jaintia Group) samples analyzed is typical of shales, but disguises very low content (35.44 wt%) in one sample (DK-3) caused by abnormal Fe2O3 (35.01 wt%), and high SiO2 (89.28 wt%) in another (DK-5; Table 2). Average SiO2 content in the Barail mudrocks is also uniformly very high (90.28 wt%; range 83.40-94.61), well above the values typical of this lithotype (<~70 wt%). Average values fall to more normal values in the Surma (75.16 wt%) and Dupitila Groups (77.46 wt%). In these two groups the higher aver-ages in the mudrocks are caused by significantly higher SiO2 contents in siltstones versus mudstones. This is especially marked in the Dupitila samples, where SiO2 contents in silt-stones range from 80.40 to 88.31 wt%, slightly overlapping the range in sandstones (86.34-92.4 wt%), but well above that of companion mudstones (60.66-67.08 wt%), a range more typical of fine-grained sediments. These features indicate the NWS siltstones contain appreciable quantities of fine-grained quartz, and attest to the maturity and well-sorted nature of the NWS sediments in general.

As expected from hydrodynamic sorting, Al2O3 is the next most abundant major element in all formations. Aver-age content in the Tura sandstones is only 1.29 wt%, rising to 6.47 wt% in the single Barail sandstone, 8.33 wt% in the Surma Group, before falling to 6.57 wt% in the Dupitila sandstones. Mudrock averages show the opposite pattern, falling from 12.30 wt% in the Kopili Shale to 5.18 wt% in the Barail Group, returning to higher values more typical of

fine-grained sediments of 13.88 wt% in the Surma Group, and falling slightly to 11.62 wt% in the Dupitila Group.

Due to the covariations of SiO2 and Al2O3, Surma Group sediments thus tend to have higher contents of TiO2, Fe2O3, MnO, MgO, Na2O and P2O5 than underlying Barail and overlying Dupitila equivalents. Tura Sandstone exhibits remarkably low Na2O and K2O contents, with Na2O below theoretical lower limit of detection (0.10 wt%) in all except one sample, and maximum K2O of only 0.11 wt%. CaO con-tents are also very low in all Tura sandstones, with all < 1 wt% (Table 3), and in most mudrocks. Average CaO in the Kopili Shale (4.06 wt%) is biased by one high value (11.67 wt% in DK-3), and falls to 0.09 wt% in Barail mudrocks and 0.43 wt% in the Surma Group, before rising to 2.40 wt% in the Dupitila Group. However, Dupitila siltstones have much lower CaO contents (range 0.04-0.92 wt%) than their com-panion mudstones (5.97-7.87 wt%). The high abundances in these mudstones are also accompanied by relatively high LOI values (9.27-10.15 wt%), indicative of presence of authigenic CaCO3. In general, LOI values are low (< 5 wt%) in most of the NWS samples. However, higher LOI values (5-15 wt%) are seen in the Kopili Shale (11.51-14.07 wt%) and in many Surma mudrocks, where they appear to be associated with high Fe2O3 or Al2O3 contents, rather than CaO. This implies influence in these samples of other diagenetic phases, such as Fe oxy-hydroxides, siderite, or hydrous clays.

Overall the major element data for the NWS samples thus show marked fractionation between sandstones, siltstones, and mudstones; very high maturity, as indicated by high SiO2 contents; severe depletion in mobile elements such as Na2O, K2O, and CaO; and irregularities in the distribution of fluid-mobile elements. These features indicate their bulk chemistry has been strongly influenced by factors other than source composition, including sorting, weathering, and diagenesis.

Trace elementsThe effects of hydrodynamic sorting are seen clearly in

the NWS trace element data, with average abundances in the mudstones in each group almost always greater than in companion mudstones. This is true for all trace elements analyzed in the Dupitila and Jaintia Groups, with concen-trations in the mudrocks generally more than double those in the sandstones. In the Surma Group samples average contents in the mudrocks are higher for all except Ba, which is marginally higher (average 289 ppm) in the average of the two sandstones analyzed than in the 233 ppm mean from 20 mudrocks. The single sandstone analyzed in the Barail Group has higher Ba, Ga, Pb, Rb and Sr than the mudstone average (n = 6), but this contrast may not be significant.

The effects of quartz dilution are clearly seen in the Tura Sandstone samples, which are characterized by lower trace element abundances than all other sandstones. In the Tura sandstones average contents of all elements except Ba (80

Major and trace element compositions of Tertiary sedimentary successions in the NW and SE Bengal basin, Bangladesh 35

Tabl

e 2.

Who

le ro

ck m

ajor

(wt %

) and

trac

e el

emen

t (pp

m) a

naly

ses o

f san

dsto

nes a

nd m

udro

cks f

rom

the

NW

She

lf (P

rovi

nce

1), B

angl

ades

h.In

dex:

SaN

R –

sam

ple

num

ber;

Lith

– li

thol

ogy;

tota

l iro

n as

Fe 2

O3;

LOI–

Los

s on

igni

tion.

Not

e th

at d

ata

are

tabu

late

d on

an

anhy

drou

s nor

mal

ized

bas

is. T

he n

orm

aliz

ing

fact

ors

wer

e ap

plie

d to

bot

h th

e m

ajor

and

trac

e el

emen

t dat

a. O

rigin

al a

nhyd

rous

ana

lysi

s tot

al (T

otal

*) a

nd L

OI d

ata

are

incl

uded

to a

llow

reca

lcul

atio

n to

a h

ydro

us b

asis

if d

esire

d.Li

thol

ogy

code

s: c

sst -

coa

rse

sand

ston

e; m

sst -

med

ium

sand

ston

e; f

sst -

fine

sand

ston

e; z

st -s

iltst

one;

mst

- m

udst

one.

SaN

rD

epth

(m)

Wel

lLi

thSi

O2

TiO

2A

l 2O3

Fe2O

3M

nOM

gOC

aON

a 2O

K2O

P 2O

5B

aC

eC

rG

aN

bN

iPb

Rb

ScSr

ThV

YZr

LOI

Tota

l*D

upiti

la G

roup

Dup

itila

For

mat

ion

DD

-01

901

Sing

ra-1

mst

66.3

90.

7013

.30

5.02

0.09

3.37

6.27

1.40

3.32

0.14

503

8562

1716

2823

154

12.1

126

20.0

8931

297

9.39

99.3

9D

D-0

290

1.5

Sing

ra-1

mst

60.6

60.

7316

.35

6.76

0.11

3.72

5.97

1.24

4.32

0.14

668

8289

2217

3532

193

14.1

136

20.7

115

3320

010

.15

99.4

4D

D-0

490

2.5

Sing

ra-1

mst

66.6

70.

7113

.06

5.11

0.09

3.33

6.25

1.35

3.30

0.14

534

9364

1616

2926

151

12.8

128

20.8

8833

337

9.27

99.2

4D

D-0

590

3Si

ngra

-1m

st63

.91

0.71

14.3

86.

080.

113.

526.

281.

233.

640.

1458

886

7818

1733

2616

814

.213

320

.610

433

257

9.84

99.4

3D

D-0

690

3.5

Sing

ra-1

mst

63.5

90.

7215

.04

5.46

0.08

3.61

6.26

1.24

3.86

0.13

589

8373

2017

3226

177

14.1

130

19.6

100

3123

810

.02

99.4

9D

D-0

716

AS-3

zst

80.4

00.

3210

.98

2.50

0.04

0.91

0.86

1.60

2.32

0.06

363

5427

129

1123

131

6.7

8813

.537

2415

11.

3499

.77

DD

-08

24AS

-5zs

t82

.87

0.26

9.79

1.98

0.04

0.71

0.92

1.52

1.87

0.04

330

4529

126

1019

934.

111

410

.333

1613

01.

3010

0.40

DD

-09

64AS

-14

zst

80.8

00.

3611

.13

2.99

0.02

0.71

0.56

0.97

2.43

0.03

409

4838

139

1821

120

5.1

909.

744

1413

83.

2110

0.22

DD

-10

118

AS-2

7zs

t84

.64

0.57

13.5

40.

480.

010.

210.

140.

180.

220.

0344

753

102

1522

58

1711

.728

12.5

7323

287

5.04

99.6

0D

D-1

112

7AS

-28

zst

88.3

10.

3411

.04

0.05

0.01

0.15

0.04

0.01

0.03

0.01

449

8157

1218

026

109.

110

6.7

4514

185

3.94

99.9

1D

D-1

214

-16

DO

B-1

f sst

88.3

70.

157.

181.

210.

010.

360.

180.

462.

040.

0333

441

138

44

2210

73.

242

7.8

1611

117

1.18

100.

54D

D-1

332

-34

DO

B-1

m s

st86

.34

0.19

8.03

1.43

0.02

0.41

0.65

1.07

1.83

0.03

304

4226

95

718

872.

097

8.8

2215

981.

1810

0.25

DD

-14

62-6

4D

OB-

1m

sst

89.8

40.

176.

251.

090.

010.

320.

270.

621.

420.

0221

133

147

57

1575

2.4

499.

314

1398

1.09

101.

18D

D-1

596

-98

DO

B-1

m s

st91

.27

0.12

5.27

0.90

0.01

0.27

0.20

0.34

1.62

0.02

241

2811

64

315

812.

045

5.2

28

860.

9099

.69

DD

-16

126-

128

DO

B-1

m s

st92

.40

0.28

6.11

0.79

0.01

0.20

0.10

0.01

0.11

0.02

1147

368

105

1915

4.1

268.

029

1925

72.

3599

.29

DD

-17

14-1

6SO

B-11

/4m

st67

.08

0.58

14.2

24.

930.

051.

347.

871.

042.

810.

0846

910

367

1713

3388

165

13.2

110

27.9

7034

254

9.11

98.9

4D

D-1

882

-84

SOB-

11/4

zst

85.3

80.

308.

262.

880.

040.

460.

440.

561.

640.

0529

272

4610

718

2389

3.5

6210

.749

1915

02.

4910

0.07

DD

-19

88-9

0SO

B-11

/4zs

t83

.01

0.34

9.72

2.67

0.03

0.57

0.79

0.81

2.00

0.04

335

5232

118

1723

108

6.2

7511

.741

2015

72.

9899

.97

DD

-20

108-

110

SOB-

11/4

zst

83.9

80.

349.

312.

410.

030.

520.

530.

851.

980.

0431

952

2412

813

2310

44.

478

11.4

3818

149

2.53

99.9

4D

D-2

162

MS-

13zs

t85

.35

0.22

8.30

2.49

0.01

0.44

0.59

0.88

1.67

0.05

296

4821

106

1017

856.

184

10.8

2617

106

1.95

99.3

6D

D-2

268

MS-

14zs

t81

.40

0.36

10.7

82.

890.

020.

580.

711.

062.

160.

0438

556

3610

916

2010

66.

910

311

.444

1714

62.

9199

.12

DD

-23

73M

S-15

zst

82.8

90.

2710

.18

2.27

0.01

0.54

0.59

1.05

2.17

0.03

373

3936

117

1219

105

4.3

957.

735

1511

72.

5699

.39

DD

-24

77M

S-17

zst

81.2

20.

3711

.28

3.39

0.04

0.63

0.04

0.68

2.32

0.04

392

4936

119

1521

127

7.0

7111

.941

1916

03.

5510

0.24

DD

-25

88M

S-19

zst

83.2

10.

3110

.19

2.61

0.03

0.42

0.43

0.74

2.02

0.04

327

4826

117

1120

100

8.1

7810

.041

1713

12.

8899

.39

Surm

a G

roup

DS-

0113

00Si

ngra

-1m

st65

.23

0.81

17.3

16.

820.

112.

831.

701.

343.

700.

1454

080

106

2218

5531

174

15.7

112

17.8

126

3219

66.

5599

.87

DS-

0218

01Si

ngra

-1m

st74

.76

1.24

14.3

85.

600.

031.

020.

200.

911.

770.

0927

111

214

216

2651

2296

13.6

132

19.3

145

3748

06.

3399

.56

DS-

0318

02Si

ngra

-1m

st79

.06

1.03

11.3

85.

070.

050.

880.

250.

801.

390.

0822

310

711

814

2237

1876

10.0

104

15.1

105

3254

94.

5799

.17

DS-

0518

04Si

ngra

-1m

st74

.30

1.25

14.7

15.

740.

031.

010.

240.

871.

750.

1027

912

314

418

2651

2295

13.0

135

18.0

142

3756

66.

4099

.73

DS-

0616

00Bo

gra-

2m

st85

.62

1.01

8.69

3.47

0.01

0.50

0.12

0.09

0.45

0.03

9197

128

1023

2517

387.

885

11.1

114

2453

54.

2999

.79

DS-

0716

02Bo

gra-

2f s

st84

.87

0.32

7.80

2.70

0.06

0.77

0.60

1.39

1.43

0.05

273

4528

86

2215

613.

111

76.

636

1510

01.

5399

.73

DS-

0816

03Bo

gra-

2f s

st82

.59

0.43

8.86

3.44

0.05

0.94

0.63

1.44

1.57

0.07

305

6061

109

2318

688.

112

010

.454

2117

71.

7899

.33

DS-

0916

04Bo

gra-

2m

st82

.35

1.02

8.20

6.75

0.12

0.69

0.27

0.08

0.43

0.08

9910

713

510

2334

1735

10.8

8812

.212

430

713

5.22

99.5

5D

S-10

1606

Bogr

a-2

mst

61.3

20.

8918

.99

7.73

0.13

3.42

2.00

1.18

4.20

0.15

550

7813

026

2070

3419

518

.612

419

.713

934

190

7.86

99.8

8D

S-11

1608

Bogr

a-2

mst

67.0

61.

4217

.72

10.3

90.

121.

200.

450.

341.

150.

1519

212

117

022

3266

2979

20.9

188

20.2

226

3936

19.

7210

0.53

DS-

1217

23-1

724

Bogr

a-2

zst

85.7

11.

007.

724.

290.

010.

550.

220.

090.

390.

0397

115

144

823

2716

338.

974

13.5

110

2870

44.

3799

.28

DS-

1317

23-1

724

Bogr

a-2

mst

68.0

51.

2916

.87

8.45

0.20

1.52

0.53

0.36

2.55

0.18

310

131

156

2228

5618

134

17.9

179

21.6

172

4249

510

.52

99.4

0D

S-15

1724

-172

5Bo

gra-

2zs

t74

.35

1.40

16.6

83.

810.

031.

020.

140.

352.

110.

1024

113

415

922

3048

911

614

.415

219

.716

241

469

9.89

99.3

2

Tabl

e 2.

Who

le ro

ck m

ajor

(wt%

) and

trac

e el

emen

t (pp

m) a

naly

ses o

f san

dsto

nes a

nd m

udro

cks f

rom

the

NW

She

lf (P

rovi

nce

1), B

angl

ades

h.In

dex:

SaN

R-sa

mpl

e nu

mbe

r; Li

th-li

thol

ogy;

tota

l iro

n as

Fe 2

O3;

LOI-

Loss

on

igni

tion.

Not

e th

at d

ata

are

tabu

late

d on

an

anhy

drou

s nor

mal

ized

bas

is. T

he n

orm

aliz

ing

fact

ors

wer

e ap

plie

d to

bot

h th

e m

ajor

and

trac

e el

emen

t dat

a. O

rigin

al a

nhyd

rous

ana

lysi

s tot

al (T

otal

*) a

nd L

OI d

ata

are

incl

uded

to a

llow

reca

lcul

atio

n to

a h

ydro

us b

asis

if d

esire

d.Li

thol

ogy

code

s: c

sst -

coa

rse

sand

ston

e; m

sst -

med

ium

sand

ston

e; f

sst -

fine

sand

ston

e; z

st -s

iltst

one;

mst

- m

udst

one.

Dhiman Kumer Roy and Barry P. Roser36

Tabl

e 2

(ctd

). W

hole

rock

maj

or (w

t%) a

nd tr

ace

elem

ent (

ppm

) ana

lyse

s of s

ands

tone

s and

mud

rock

s fro

m th

e N

W S

helf

(Pro

vinc

e 1)

, Ban

glad

esh.

Tabl

e 2

(ctd

). W

hole

rock

maj

or (w

t %) a

nd tr

ace

elem

ent (

ppm

) ana

lyse

s of s

ands

tone

s and

mud

rock

s fro

m th

e N

W S

helf

(Pro

vinc

e 1)

, Ban

glad

esh.

SaN

rD

epth

(m)

Wel

lLi

thSi

O2

TiO

2A

l 2O3

Fe2O

3M

nOM

gOC

aON

a 2O

K2O

P 2O

5B

aC

eC

rG

aN

bN

iPb

Rb

ScSr

ThV

YZr

LOI

Tota

l*Su

rma

Gro

up c

td)

DS-

1617

25-1

726

Bogr

a-2

mst

70.6

41.

4919

.10

4.47

0.06

1.19

0.18

0.38

2.37

0.10

274

145

166

2432

704

129

16.1

198

24.0

202

4341

015

.71

99.2

7D

S-17

1725

-172

6Bo

gra-

2zs

t70

.64

1.71

17.8

66.

130.

080.

980.

290.

401.

810.

1124

014

218

324

3747

2110

718

.720

021

.519

644

457

9.76

99.7

7D

S-18

1726

-172

7Bo

gra-

2m

st68

.01

1.59

20.4

15.

280.

091.

310.

280.

322.

580.

1228

514

217

626

3561

1014

217

.218

724

.919

847

385

12.0

299

.66

DS-

1917

26-1

727

Bogr

a-2

zst

85.4

91.

007.

884.

330.

040.

550.

160.

110.

390.

0477

104

143

1023

2416

349.

979

12.2

108

2670

84.

1899

.49

DS-

2017

27-1

728

Bogr

a-2

mst

69.1

11.

2617

.38

7.21

0.11

1.39

0.42

0.35

2.58

0.18

310

119

164

2028

6421

140

18.3

180

23.1

175

3938

49.

9699

.35

DS-

2117

27-1

728

Bogr

a-2

zst

79.8

51.

4512

.57

4.30

0.01

0.69

0.10

0.21

0.80

0.04

140

130

189

1732

4724

6110

.313

317

.916

930

636

6.09

99.1

7D

S-22

1728

-172

9Bo

gra-

2m

st59

.40

1.14

16.0

616

.59

0.39

2.28

0.98

0.37

2.49

0.31

297

103

133

1726

5326

123

16.0

197

20.9

170

4227

513

.16

99.1

3D

S-23

1728

-172

9Bo

gra-

2zs

t91

.05

0.21

7.46

0.53

0.01

0.23

0.07

0.06

0.37

0.03

6451

303

66

620

2.0

235.

422

1029

27.

5199

.75

DS-

2417

29-1

730

Bogr

a-2

zst

91.1

60.

396.

241.

110.

010.

280.

070.

190.

510.

0475

6940

59

88

293.

439

9.4

5014

319

3.96

100.

34

Bar

ail G

roup

DB-

120

01Si

ngra

-1m

sst

87.0

50.

346.

472.

370.

040.

600.

741.

101.

250.

0571

945

406

611

1349

5.4

122

9.6

4018

118

6.08

100.

37D

B-2

2002

Sing

ra-1

mst

83.4

01.

298.

555.

480.

010.

610.

070.

200.

360.

0392

175

188

1028

3121

3010

.588

19.4

154

3811

575.

3010

0.67

DB-

420

02.5

Sing

ra-1

zst

89.8

30.

785.

792.

930.

010.

400.

070.

070.

110.

0242

106

942

1816

1014

5.3

3711

.571

2387

83.

3999

.60

DB-

520

03Si

ngra

-1zs

t94

.25

0.69

2.86

1.62

0.01

0.30

0.12

0.01

0.10

0.04

5410

184

316

89

130.

436

8.6

4322

793

1.75

99.0

9D

B-6

2004

Sing

ra-1

zst

94.6

10.

652.

651.

580.

020.

300.

080.

010.

080.

0246

102

821

158

813

3.4

329.

646

2175

71.

6099

.06

DB-

720

04.5

Sing

ra-1

mst

89.2

80.

836.

032.

990.

010.

440.

100.

080.

210.

0368

9398

619

1812

205.

148

8.5

7424

668

3.13

99.5

4Ja

intia

Gro

upK

opili

Sha

le F

orm

atio

nD

K-3

1765

Bogr

a-2

mst

35.4

40.

748.

7635

.01

0.84

6.55

11.6

70.

340.

530.

1313

415

815

49

1370

2827

25.8

403

30.4

546

5152

213

.59

95.5

2D

K-4

1766

Bogr

a-2

mst

59.4

91.

8022

.12

11.6

00.

082.

090.

400.

421.

920.

0821

315

618

827

3868

3210

923

.122

925

.025

236

523

14.0

799

.63

DK-

517

67Bo

gra-

2m

st89

.28

0.83

6.03

2.99

0.01

0.44

0.10

0.08

0.21

0.03

6893

986

1918

1220

5.1

488.

574

2466

811

.51

96.1

3Tu

ra S

ands

tone

For

mat

ion

DC

-119

91-1

992

Bogr

a-2

c ss

t97

.74

0.05

0.79

0.68

0.01

0.18

0.52

0.01

0.01

0.01

7119

10

21

63

0.6

130.

75

481

1.71

100.

12D

C-2

1991

-199

2Bo

gra-

2m

sst

97.4

70.

070.

960.

840.

010.

170.

460.

010.

010.

0171

173

13

12

32.

013

2.0

64

912.

4410

0.49

DC

-319

92-1

993

Bogr

a-2

m s

st97

.12

0.13

1.51

0.67

0.01

0.18

0.35

0.01

0.01

0.01

8029

21

41

45

2.0

132.

610

716

42.

5810

0.71

DC

-419

92-1

993

Bogr

a-2

m s

st97

.37

0.09

0.96

0.74

0.01

0.18

0.62

0.01

0.01

0.01

9316

11

32

42

0.5

161.

85

511

01.

9999

.10

DC

-619

94-1

995

Bogr

a-2

m s

st96

.03

0.15

2.29

0.87

0.01

0.18

0.34

0.06

0.06

0.01

5223

43

44

45

1.2

153.

91

712

03.

3198

.84

DC

-819

94-1

995

Bogr

a-2

c ss

t97

.96

0.13

0.77

0.39

0.01

0.18

0.54

0.01

0.01

0.01

104

291

13

14

40.

815

2.7

09

204

1.24

97.5

4D

C-9

1995

-199

6Bo

gra-

2f s

st96

.48

0.23

1.62

1.13

0.01

0.17

0.34

0.01

0.01

0.01

6728

51

50

86

0.8

143.

214

818

83.

6010

1.02

DC

-10

1995

-199

6Bo

gra-

2c

sst

97.5

80.

070.

950.

610.

010.

180.

560.

010.

010.

0188

181

03

15

41.

115

1.6

54

792.

1610

0.58

DC

-11

1996

-199

7Bo

gra-

2m

sst

97.0

70.

101.

370.

530.

010.

170.

450.

190.

100.

0198

332

13

15

82.

016

2.1

68

242

1.79

100.

51D

C-1

219

96-1

997

Bogr

a-2

m s

st97

.27

0.26

1.08

0.84

0.01

0.16

0.36

0.01

0.01

0.01

7631

51

51

64

1.9

132.

811

919

92.

9210

0.61

DC

-13

1997

-199

8Bo

gra-

2f s

st96

.65

0.13

1.88

0.71

0.01

0.16

0.32

0.01

0.11

0.01

7834

61

41

69

2.0

162.

56

826

03.

0810

0.83

Major and trace element compositions of Tertiary sedimentary successions in the NW and SE Bengal basin, Bangladesh 37

ppm), Ce (25 ppm), Sr (14 ppm) and Zr (158 ppm) are < 10 ppm. Among the mudrocks, average contents of Ce, Cr, Ni, Sc, Sr, Th, V, and Y in the Kopili Shale mudstones are greater than equivalents in the Barail, Surma and Dupitila Groups, suggesting differing provenance. Another feature of the mudrock analyses is the relatively high concentra-tions of several elements (Ce, Y, Zr) that are typically found in resistant heavy minerals such as monazite, apatite and zircon, especially in the Jaintia, Barail, and Surma Groups. For example, average Zr concentrations in the mudrocks in these three groups are 571, 851, and 456 ppm, respectively, well above the 190 ppm value in average upper continental crust (UCC; Taylor and McLennan, 1985). This suggests significant zircon concentration in the NWS mudrocks. Conversely, average concentrations of more mobile trace elements (Ba, Sr) are significantly lower in both sandstones and mudrocks within groups than in UCC (550 and 350 ppm, respectively). In clastic sediments both elements are typically associated with feldspars, and values in the NWS lower than UCC thus suggest significant loss during weath-ering or diagenesis.

The above features indicate that the trace element abun-dances in the NWS sediments have also been influenced by sorting, weathering, diagenesis, and heavy mineral con-centration, and hence do not directly reflect original source rock compositions.

CTFB (Province 3)Major elements

As in the NWS suite, the CTFB sandstones analyzed here have higher concentrations of SiO2 and lower concentra-tions of Al2O3 than the mudstones. Average SiO2 contents increase stratigraphically upward. SiO2 contents of the sand-stones range from 59.33-80.15 wt% (mean 74.21 wt%) in the Bhuban Formation, 71.97-83.06 wt% (mean 77.39 wt%) in the Bokabil Formation, 60.31-86.84 wt% (mean 80.71 wt%) in the Tipam Sandstone Formation, and 77.36-95.49 wt% (mean 85.60 wt%) for the Dupitila Formation. Lowest SiO2 in some samples, e.g. D-92, D-94 and D-109 (Bhuban) and D-42 (Tipam) are due to high CaO contents from authigenic CaCO3 cements. Average SiO2 contents in the mudrocks are similar in the Bhuban (67.55 wt%), Bokabil (67.77 wt%), Tipam (71.01 wt%) and Girujan Clay (69.60 wt%) Forma-tions. However, average SiO2 increases slightly in the Dupitila mudrocks (74.56 wt%), due to unusually high concentrations (80.19-92.32 wt%) in four siltstones.

Al2O3 concentrations in the Girujan Clay mudrocks tend to be a little higher than in equivalents in the other forma-tions, with a range of 14.90-19.79 wt% (mean 16.98 wt%), compared to 10.56-20.37 wt% (mean 16.06 wt%) in Bhuban mudrocks, 9.64-19.79 wt% (mean, 16.24 wt%) in Bokabil mudrocks, 10.02-19.79 wt% (mean, 14.65 wt%) in Tipam Sandstone Formation mudrocks and 4.40-18.55 wt% (mean, 14.15 wt%) in the Dupitila Formation. Average concentra-tions of Al2O3 in the mudrocks are 44% (Bhuban) to 80%

(Dupitila) greater than in the sandstones within each forma-tion, with relative enrichment increasing stratigraphically upward.

Average concentrations of the remaining major elements are naturally constrained by the sum of the SiO2 and Al2O3

contents. The next most abundant oxides are Fe2O3 and K2O, with ranges of averages by lithotype and formation of 2.36-6.53 and 1.47-3.16 wt%, respectively. Average Fe2O3 content in the sandstones falls progressively from 4.63 wt% in the Bhuban Formation through to 2.36 in the Bhuban Forma-tion, whereas mudrocks averages fall at a lower rate, from 6.53 wt% to 4.64 wt% respectively. This reflects a steady rise in relative enrichment between average mudrock and sandstone of 1.41 times (Bhuban), through 1.54 (Bokabil) and 1.61 (Tipam Sandstone), to 2.36 times in the Dupitila Formation. This suggests increasing fractionation between sandstone and mudrock end-members stratigraphically upward, as a result of improved sorting. The same pattern is observed for K2O, with the mudstone to sandstone enrich-ment factor increasing from 1.42 (Bhuban) through to 1.69 (Dupitila).

The most notable feature of the remaining major ele-ments is the low levels of the mobile oxides CaO and Na2O. Average CaO content in the sandstones falls from 3.91 wt% (Bhuban), through 1.76 wt% (Bokabil), to 2.16 wt% (Tipam Sandstone), to 0.68 wt% in the Dupitila Forma-tion. Comparable averages for the mudrocks are 1.96, 1.72, 1.47 and 0.85 wt%, respectively, and that in Girujan Clay mudrocks is even lower (mean 0.48 wt%, range 0.26-0.85 wt%). Sandstone Na2O contents are also low, averaging 1.16 wt% (Bhuban), 1.23 wt% (Bokabil), 0.89 wt% (Tipam) and 0.76 wt% (Dupitila); mudrock averages are lower still, fall-ing steadily from 1.10 wt% in the Bhuban Formation to 0.86 wt% in the Dupitila. With the exception of a few samples enriched in CaO from carbonate cements, CaO and Na2O contents in the CTFB sediments are considerably less than in UCC (4.2 and 3.9 wt% respectively; Taylor and McLen-nan, 1985). This points to considerable modification of bulk sediment compositions from the source to the depocenter. Moreover, the consistent trend towards lower abundances of these elements with stratigraphic position points to pro-gressive modification with time.

The remaining major elements (TiO2, MnO, MgO, P2O5) all share a common feature in greater abundances in the mudrocks than in the sandstones, with average enrichment factors ranging from 1.11 to 2.04. Furthermore, abundances in both sandstones and mudrocks generally decrease strati-graphically upwards, in response to increased SiO2 content. This again points to progressive change of modifying fac-tors with time.

Trace elementsThe CTFB trace element data also show marked

fractionation between sandstones and mudrocks. Within each formation almost all elements are enriched in the

Dhiman Kumer Roy and Barry P. Roser38

Tabl

e 3.

Who

le ro

ck m

ajor

(wt %

) and

trac

e el

emen

t (pp

m) a

naly

ses o

f san

dsto

nes a

nd m

udro

cks f

rom

the

CTF

B (P

rovi

nce

3), B

angl

ades

h.

SaN

rD

epth

(m)

Wel

lLi

thSi

O2

TiO

2A

l 2O3

Fe2O

3M

nOM

gOC

aON

a 2O

K2O

P 2O

5B

aC

eC

rG

aN

bN

iPb

Rb

ScSr

ThV

YZr

LOI

Tota

l*

Dup

itila

Gro

upD

upiti

la F

orm

atio

nD

-01

OC

mst

72.6

40.

6814

.25

4.25

0.06

1.68

1.56

1.73

2.99

0.15

435

8474

1615

3127

133

10.7

163

20.2

9232

315

2.31

100.

14D

-02

OC

zst

68.2

00.

7415

.78

5.75

0.08

2.62

1.66

1.51

3.52

0.14

485

8383

1917

4432

162

12.0

137

19.9

104

3421

73.

8210

0.10

D-0

3O

Czs

t67

.03

0.76

15.7

86.

030.

092.

662.

501.

623.

390.

1547

379

9416

1648

3216

514

.117

322

.310

833

214

4.11

98.8

8D

-04

OC

zst

66.7

50.

7717

.34

6.18

0.07

2.35

1.21

1.50

3.67

0.14

523

7998

2118

4637

190

16.1

142

21.1

114

3519

43.

3810

0.54

D-0

5O

Cm

st64

.89

0.77

17.3

96.

320.

082.

772.

561.

463.

610.

1552

278

9721

1744

4218

217

.015

620

.811

833

190

4.79

101.

73D

-06

OC

zst

75.6

30.

7012

.86

4.79

0.05

1.37

1.02

1.08

2.41

0.08

399

7310

715

1542

1813

110

.812

914

.293

3028

02.

7410

0.49

D-0

7O

Czs

t72

.04

0.79

14.6

55.

950.

071.

640.

911.

102.

740.

1144

675

113

1416

5723

145

12.5

130

18.3

107

3223

93.

3099

.48

D-0

8O

Cm

sst

77.9

20.

6111

.03

3.91

0.06

1.31

1.32

1.50

2.23

0.10

371

8081

913

4620

114

9.2

138

17.8

7236

303

1.67

99.6

5D

-09

OC

f sst

77.3

60.

5311

.14

4.15

0.06

1.65

1.24

1.44

2.34

0.08

373

5173

1212

4017

122

9.4

137

11.4

7422

194

1.75

100.

09D

-10

OC

m s

st80

.66

0.51

10.1

43.

260.

050.

841.

251.

321.

900.

0634

971

688

1123

1687

8.1

157

16.9

6325

205

1.47

99.1

4D

-11

OC

mst

77.9

20.

7713

.68

4.36

0.03

0.84

0.11

0.23

2.04

0.02

360

8810

215

1668

1812

313

.753

14.4

9745

283

3.74

100.

63D

-12

OC

f sst

83.0

80.

459.

313.

130.

060.

670.

800.

771.

710.

0332

272

6910

1116

1681

8.9

106

18.0

5524

203

1.82

100.

06D

-13

OC

mst

68.7

40.

9218

.55

5.44

0.14

1.71

0.72

0.62

3.12

0.04

481

9113

222

1952

2716

019

.111

922

.515

042

223

4.70

99.2

2D

-14

OC

zst

80.2

80.

7712

.23

3.10

0.02

0.99

0.07

0.58

1.96

0.01

366

7410

914

1569

1511

18.

954

13.2

8032

298

2.99

100.

56D

-15

OC

zst

92.3

20.

404.

401.

240.

020.

250.

100.

340.

950.

0017

178

713

910

1448

2.7

3013

.426

1328

81.

2198

.34

D-1

6O

Cm

sst

95.4

90.

082.

760.

490.

010.

190.

050.

130.

800.

0114

633

83

44

1142

0.6

252.

16

859

0.78

98.5

8D

-17

OC

zst

76.1

90.

9817

.11

2.67

0.01

0.59

0.05

0.24

2.14

0.01

322

106

163

1919

2821

111

16.3

5318

.613

241

316

4.61

99.8

5D

-18

OC

zst

85.8

30.

5610

.49

1.76

0.01

0.32

0.04

0.10

0.89

0.00

152

6093

1311

1513

619.

927

13.9

7316

311

3.36

100.

25D

-19

OC

m s

st91

.34

0.31

6.30

0.64

0.01

0.22

0.05

0.14

0.99

0.01

184

5444

47

615

515.

828

10.1

2814

172

1.84

98.5

1D

-20

OC

m s

st93

.33

0.32

4.48

0.92

0.01

0.20

0.04

0.04

0.66

0.01

127

3736

58

411

371.

620

8.6

1910

185

1.37

97.6

2D

-21

OC

zst

80.1

90.

7310

.42

5.93

0.02

0.47

0.07

0.23

1.92

0.02

366

9710

29

1433

2312

710

.144

20.2

8332

494

3.19

99.0

0D

-22

OC

mst

69.7

80.

8917

.32

5.80

0.05

2.02

0.23

0.57

3.26

0.07

497

111

118

2219

9230

175

15.6

7717

.312

757

206

4.34

100.

26

Tipa

m G

roup

Giru

jan

Cla

y Fo

rmat

ion

D-2

3O

Cm

st62

.80

0.92

19.4

68.

110.

112.

650.

851.

203.

730.

1651

185

158

2118

8437

187

20.9

132

21.2

159

3517

55.

0599

.58

D-2

4O

Cm

st63

.05

0.92

19.7

97.

990.

122.

520.

681.

143.

630.

1650

882

147

2518

7637

185

20.1

126

18.5

158

3517

25.

0910

0.68

D-2

5O

Cm

st63

.48

0.95

19.4

77.

580.

072.

890.

661.

083.

710.

1251

983

175

2519

107

3719

021

.311

320

.316

036

178

4.83

100.

15D

-26

OC

mst

69.4

00.

8916

.37

6.09

0.06

1.98

0.81

1.16

3.13

0.11

480

8415

517

1784

2816

015

.512

219

.713

333

215

3.71

99.1

6D

-27

OC

mst

73.3

20.

8315

.32

4.71

0.04

1.71

0.29

1.04

2.68

0.05

382

8312

218

1662

2314

413

.483

16.4

117

3025

73.

9910

0.45

D-2

9O

Cm

st73

.94

0.85

15.6

93.

980.

031.

500.

291.

012.

670.

0437

985

126

1917

5322

140

16.5

8615

.611

129

290

3.91

100.

49D

-30

OC

mst

74.3

40.

8315

.06

4.28

0.03

1.46

0.30

1.01

2.64

0.06

372

9112

315

1758

2213

816

.984

19.2

113

3132

23.

7299

.33

D-3

1O

Cm

st73

.70

0.81

14.9

05.

240.

041.

500.

260.

972.

510.

0637

481

123

1816

5924

137

15.8

8515

.611

731

281

3.58

100.

58D

-32

OC

mst

70.5

20.

8916

.81

6.24

0.04

1.72

0.26

0.73

2.76

0.03

390

9715

417

1778

2814

219

.987

21.6

150

3635

14.

4199

.32

D-3

3O

Cm

st71

.40

0.89

16.9

95.

330.

091.

510.

390.

762.

620.

0338

710

815

320

1778

3213

919

.298

18.6

137

3734

63.

4810

0.84

Tipa

m S

ands

tone

For

mat

ion

D-3

4O

Cf s

st81

.43

0.46

9.76

3.08

0.05

0.79

0.96

1.34

2.08

0.06

361

5659

811

2818

100

6.1

142

13.4

5220

175

1.58

98.5

4D

-35

OC

mst

65.2

60.

9619

.79

6.44

0.05

2.46

0.52

0.91

3.50

0.11

496

8214

026

1998

3618

020

.411

520

.115

637

198

4.84

100.

74D

-36

OC

m s

st80

.82

0.48

9.54

3.67

0.07

0.94

1.11

1.42

1.88

0.06

328

7262

1110

2216

907.

714

713

.157

2320

11.

2999

.80

D-3

7O

Cf s

st78

.54

0.55

10.7

24.

030.

051.

200.

991.

582.

250.

0938

364

6511

1333

2011

79.

814

313

.062

2421

41.

6399

.17

Inde

x:Sa

NR

–sa

mpl

enu

mbe

r;Li

th–

litho

logy

;to

tal

iron

asFe

2O3;

LOI–

Loss

onig

nitio

n.N

ote

that

data

are

tabu

late

don

ananhydrousnormalized

basi

s.Th

eno

rmal

izin

gfa

ctor

sw

ere

appl

ied

tobo

thth

em

ajor

and

trace

elem

entd

ata.

Orig

inal

anhy

drou

san

alys

isto

tal(

Tota

l*)a

ndLO

Idat

aar

ein

clud

edto

allo

wre

calc

ulat

ion

toa

hydr

ous

basi

sif

desi

red.

Lith

olog

yco

des:

css

t-co

arse

-gra

ined

sand

ston

e;m

sst-

med

ium

sand

ston

e;fs

st-f

ine

and

very

fine

grai

ned

sand

ston

e;zs

t-si

ltsto

ne;

mst

- m

udst

one.

OC

- ou

tcro

p sa

mpl

e; se

e Fi

g. 1

for l

ocat

ions

.

Tabl

e 3.

Who

le ro

ck m

ajor

(wt%

) and

trac

e el

emen

t (pp

m) a

naly

ses o

f san

dsto

nes a

nd m

udro

cks f

rom

the

CTF

B (P

rovi

nce

3), B

angl

ades

h.In

dex:

SaN

R-sa

mpl

e nu

mbe

r; Li

th-li

thol

ogy;

tota

l iro

n as

Fe2

O3;

LO

I-Lo

ss o

n ig

nitio

n. N

ote

that

dat

a ar

e ta

bula

ted

on a

n an

hydr

ous n

orm

aliz

ed b

asis

. The

nor

mal

izin

g fa

ctor

s w

ere

appl

ied

to b

oth

the

maj

or a

nd tr

ace

elem

ent d

ata.

Orig

inal

anh

ydro

us a

naly

sis t

otal

(Tot

al*)

and

LO

I dat

a ar

e in

clud

ed to

allo

w re

calc

ulat

ion

to a

hyd

rous

bas

is if

des

ired.

Li

thol

ogy

code

s: c

sst-c

oars

e-gr

aine

d sa

ndst

one;

m ss

t-med

ium

sand

ston

e; f

sst-fi

ne a

nd v

ery

fine

grai

ned

sand

ston

e; z

st -s

iltst

one;

mst

-mud

ston

e. O

C-o

utcr

op sa

mpl

e; se

e Fi

g. 1

for l

ocat

ions

.

Major and trace element compositions of Tertiary sedimentary successions in the NW and SE Bengal basin, Bangladesh 39

Tabl

e 3

(ctd

). W

hole

rock

maj

or (w

t %) a

nd tr

ace

elem

ent (

ppm

) ana

lyse

s of s

ands

tone

s and

mud

rock

s fro

m th

e C

TFB

(Pro

vinc

e 3)

, Ban

glad

esh.

SaN

rD

epth

(m)

Wel

lLi

thSi

O2

TiO

2A

l 2O3

Fe2O

3M

nOM

gOC

aON

a 2O

K2O

P 2O

5B

aC

eC

rG

aN

bN

iPb

Rb

ScSr

ThV

YZr

LOI

Tota

l*

Tipa

m G

roup

(ctd

)Ti

pam

San

dsto

ne F

orm

atio

n (c

td)

D-3

8O

Czs

t68

.43

0.85

16.0

37.

220.

102.

250.

731.

173.

080.

1348

480

117

2017

6032

163

15.8

107

18.4

126

3423

43.

8699

.92

D-3

9O

Cm

st68

.11

0.67

10.4

84.

930.

371.

8210

.07

1.27

2.16

0.13

342

7089

814

4218

103

12.1

267

18.2

8231

261

9.08

98.3

5D

-40

OC

zst

70.0

80.

9214

.82

6.36

0.08

2.23

1.29

1.25

2.81

0.16

437

111

143

1818

5923

146

14.8

112

21.7

128

3945

93.

8799

.84

D-4

1O

Czs

t69

.57

0.86

15.6

46.

180.

082.

361.

061.

232.

910.

1143

984

104

1917

5226

148

13.5

128

17.1

132

3322

63.

7499

.75

D-4

2O

Cm

sst

60.3

10.

427.

492.

980.

611.

7523

.89

0.95

1.53

0.07

224

5110

81

814

312

638.

018

818

.354

2716

615

.57

96.5

3D

-43

OC

f sst

77.5

70.

5510

.62

5.77

0.09

1.29

0.64

1.19

2.19

0.10

346

5072

1312

5218

127

9.5

115

10.1

9422

181

2.26

99.3

0D

-44

OC

zst

80.9

70.

5110

.02

3.74

0.05

0.91

0.75

1.14

1.87

0.04

349

6168

611

3517

958.

113

516

.773

2119

91.

6498

.65

D-4

5O

Cm

sst

79.1

10.

5511

.09

4.81

0.07

1.04

0.59

0.72

1.97

0.06

327

7681

1212

3625

106

11.3

100

14.8

9230

290

2.36

99.6

2D

-46

OC

m s

st83

.52

0.48

8.47

3.20

0.06

0.72

0.87

0.94

1.69

0.05

292

8265

410

2123

859.

311

220

.267

2633

91.

1898

.43

D-4

7O

Cf s

st83

.16

0.46

8.94

3.46

0.07

0.86

0.60

0.68

1.69

0.09

289

6169

1010

3119

897.

696

12.3

6022

235

1.53

99.5

7D

-48

OC

f sst

83.1

00.

458.

873.

370.

050.

800.

730.

761.

800.

0630

869

616

1026

2191

8.1

107

16.2

6724

284

1.37

98.2

9D

-49

OC

zst

72.2

40.

8515

.91

5.49

0.06

1.59

0.39

0.61

2.80

0.06

411

8611

919

1759

2515

516

.696

17.2

136

3426

53.

5099

.41

D-5

0O

Cf s

st86

.84

0.31

6.84

2.66

0.05

0.59

0.63

0.57

1.47

0.03

256

4738

38

1822

724.

692

14.2

4719

167

0.99

98.6

1D

-51

OC

f sst

81.7

20.

449.

483.

670.

070.

870.

850.

981.

870.

0532

264

5211

1024

2298

6.3

117

12.4

7223

201

1.83

99.3

9D

-52

OC

zst

78.9

00.

6410

.83

4.62

0.13

1.17

0.74

0.87

2.00

0.10

330

9095

713

3217

110

11.2

102

20.4

8731

399

2.51

98.5

9D

-53

OC

zst

75.8

00.

7413

.69

4.78

0.04

1.37

0.46

0.70

2.34

0.08

359

8011

316

1449

1712

713

.793

14.9

114

3228

63.

0399

.83

D-5

4O

Cm

sst

85.2

60.

207.

822.

650.

060.

570.

780.

961.

650.

0530

138

243

515

2179

5.7

116

12.3

5115

881.

1298

.20

D-5

5O

Cf s

st78

.28

0.65

11.4

95.

070.

061.

190.

510.

682.

000.

0932

584

9113

1342

1811

18.

094

14.6

9630

319

2.45

99.3

0D

-56

OC

m s

st85

.03

0.28

8.14

3.03

0.04

0.63

0.54

0.55

1.73

0.03

311

6729

98

2030

867.

310

012

.255

2619

41.

2899

.50

D-5

7O

Cm

sst

85.9

10.

347.

932.

720.

040.

570.

460.

431.

570.

0328

361

498

824

2478

5.5

8512

.063

2017

71.

4599

.51

D-5

8O

Cf s

st80

.78

0.50

11.0

63.

880.

050.

850.

420.

461.

970.

0337

266

5013

1134

2110

97.

687

12.7

7324

194

2.58

99.9

8D

-59

OC

zst

76.9

00.

6510

.59

5.70

0.08

1.33

1.25

0.87

2.52

0.10

369

6979

1413

4622

132

8.4

135

13.5

107

2622

61.

9788

.18

D-6

0O

Czs

t79

.63

0.53

10.4

43.

590.

060.

881.

451.

322.

010.

0833

881

706

1124

1899

8.3

165

20.4

8326

295

1.25

99.4

9D

R 6

499

8-99

9Sh

ahba

jpur

-1m

st66

.46

0.84

17.1

66.

840.

112.

560.

971.

303.

440.

1451

683

111

2218

6130

184

16.5

138

19.7

128

3320

25.

3799

.20

DR

65

1000

-100

1Sh

ahba

jpur

-1m

st65

.05

0.83

17.6

67.

310.

112.

650.

941.

193.

580.

1452

977

115

2117

6231

191

17.7

140

20.5

134

3419

45.

3698

.82

DR

66

1001

-100

2Sh

ahba

jpur

-1zs

t66

.06

0.84

17.5

96.

700.

102.

520.

901.

203.

590.

1352

984

112

2118

6134

189

15.9

139

20.2

133

3317

84.

9399

.01

DR

67

1004

-100

5Sh

ahba

jpur

-1zs

t65

.79

0.86

17.2

86.

840.

102.

520.

941.

193.

520.

1453

789

112

2118

6434

188

17.1

136

21.1

137

3420

95.

2298

.57

DR

68

1005

-100

6Sh

ahba

jpur

-1zs

t66

.93

0.78

16.4

56.

730.

102.

430.

981.

353.

330.

1449

581

106

2016

5830

178

14.7

143

18.9

125

3119

45.

1198

.62

Surm

a G

roup

Bok

abil

Form

atio

nD

-61

OC

f sst

77.4

60.

6711

.85

4.80

0.07

1.21

0.72

0.98

2.14

0.10

386

7910

114

1341

2011

19.

812

714

.810

228

286

2.34

100.

24D

-62

OC

zst

76.5

80.

7012

.06

5.10

0.05

1.40

0.76

0.95

2.28

0.12

398

7990

914

4819

120

10.2

122

19.3

110

2827

42.

2998

.96

D-6

3O

Czs

t83

.12

0.37

9.64

2.81

0.03

0.67

0.53

0.87

1.93

0.04

369

4643

107

2818

924.

113

49.

351

1713

01.

5999

.88

D-6

4O

Cm

st74

.37

0.69

13.8

25.

910.

041.

380.

540.

692.

460.

1039

979

112

1214

5124

125

14.8

130

19.7

112

3821

13.

0899

.21

D-6

5O

Cm

st63

.61

0.96

18.8

07.

440.

063.

241.

340.

783.

620.

1549

084

143

2419

7834

179

21.7

111

20.0

171

3820

13.

1210

0.30

D-6

6O

Czs

t73

.04

0.84

13.9

25.

770.

111.

630.

761.

102.

690.

1442

588

110

1216

5423

141

12.9

114

22.7

127

3329

72.

8798

.90

D-6

7O

Cm

st71

.35

0.83

14.5

05.

840.

082.

141.

221.

202.

700.

1442

887

103

1816

5122

140

14.0

137

17.3

126

3326

63.

3999

.73

D-6

8O

Cm

sst

79.4

80.

5410

.62

3.83

0.06

0.99

1.07

1.21

2.13

0.08

378

6864

711

3220

111

8.0

152

18.1

7823

219

1.47

98.6

7D

-69

OC

zst

69.4

40.

8315

.82

6.86

0.12

1.92

0.84

1.08

2.94

0.15

469

7311

020

1661

2615

912

.913

515

.614

032

208

3.57

100.

16D

-70

OC

mst

64.6

00.

9819

.05

8.47

0.11

2.42

0.65

0.41

3.16

0.16

464

9017

016

1992

3419

821

.710

727

.418

837

201

5.32

98.5

7D

-71

OC

zst

69.2

10.

8615

.55

6.69

0.06

2.49

1.07

1.00

2.92

0.15

448

8313

820

1663

2415

216

.811

416

.713

335

251

4.21

100.

12D

-72

OC

zst

79.6

40.

6410

.42

4.24

0.05

1.08

0.65

1.12

2.06

0.11

379

8597

312

3717

105

7.7

122

22.6

9326

329

1.93

99.5

0D

-73

OC

mst

72.0

10.

8514

.46

6.13

0.07

1.88

0.63

1.14

2.69

0.14

435

8611

717

1755

2214

113

.111

616

.712

734

296

2.99

100.

31D

-74

OC

mst

63.8

50.

9418

.70

7.70

0.07

3.00

0.95

1.17

3.49

0.13

518

8513

916

1874

3217

219

.212

726

.517

334

184

5.07

99.5

7D

-75

OC

f sst

78.0

00.

6311

.38

4.19

0.04

1.36

0.90

1.33

2.06

0.10

361

8185

1313

4520

106

7.4

134

15.8

8725

274

1.76

100.

32D

-76

OC

f sst

73.7

50.

7612

.72

5.16

0.05

2.09

1.56

1.34

2.43

0.14

407

8710

015

1546

1811

815

.413

417

.411

433

341

3.05

99.9

4

Tabl

e 3

(ctd

). W

hole

rock

maj

or (w

t%) a

nd tr

ace

elem

ent (

ppm

) ana

lyse

s of s

ands

tone

s and

mud

rock

s fro

m th

e C

TFB

(Pro

vinc

e 3)

, Ban

glad

esh.

Dhiman Kumer Roy and Barry P. Roser40

Tabl

e 3

(ctd

). W

hole

rock

maj

or (w

t %) a

nd tr

ace

elem

ent (

ppm

) ana

lyse

s of s

ands

tone

s and

mud

rock

s fro

m th

e C

TFB

(Pro

vinc

e 3)

, Ban

glad

esh.

SaN

rD

epth

(m)

Wel

lLi

thSi

O2

TiO

2A

l 2O3

Fe2O

3M

nOM

gOC

aON

a 2O

K2O

P 2O

5B

aC

eC

rG

aN

bN

iPb

Rb

ScSr

ThV

YZr

LOI

Tota

l*

Surm

a G

roup

(ctd

)B

okab

il Fo

rmat

ion

(ctd

)D

-77

OC

mst

66.3

00.

8717

.51

7.01

0.11

2.48

1.07

1.04

3.46

0.16

481

8312

016

1861

3217

717

.513

824

.515

434

195

4.36

98.8

4D

-78

OC

zst

71.0

30.

7814

.91

5.73

0.08

2.04

1.07

1.36

2.84

0.16

428

8096

1816

4824

148

13.8

138

16.9

120

3223

03.

3210

0.10

D-7

9O

Cf s

st76

.69

0.62

12.3

94.

260.

051.

140.

841.

502.

380.

1237

872

715

1331

2012

57.

014

120

.986

2621

81.

9210

0.06

D-8

0O

Cm

st72

.62

0.79

14.4

05.

710.

071.

900.

711.

152.

530.

1242

476

106

1615

5120

129

13.8

115

15.0

114

2823

83.

1010

0.72

D-8

1O

Cf s

st77

.12

0.66

12.0

94.

300.

071.

270.

831.

382.

150.

1335

997

9113

1435

1911

07.

513

218

.087

3037

41.

9310

0.62

D-8

2O

Czs

t71

.15

0.78

15.5

85.

930.

061.

590.

711.

182.

860.

1544

586

101

1316

4728

146

14.9

134

22.5

124

3323

82.

9599

.55

D-8

3O

Cm

st67

.62

0.84

17.4

56.

460.

082.

230.

801.

223.

160.

1546

582

113

2117

5528

162

15.0

127

18.3

145

3420

83.

8410

1.23

D-8

4O

Cm

st69

.49

0.93

16.7

46.

880.

121.

970.

440.

492.

840.

0940

688

154

2017

7629

153

17.6

131

18.1

151

3624

24.

4199

.77

D-8

5O

Czs

t71

.04

0.88

15.8

06.

640.

141.

850.

360.

512.

690.

0938

787

136

1817

7327

147

17.1

122

17.0

149

3324

96.

7699

.92

D-8

6O

Cm

st65

.56

0.99

18.9

47.

740.

142.

540.

400.

303.

310.

0943

491

152

2318

9437

176

21.6

114

19.1

183

3721

35.

4099

.45

D-8

7O

Czs

t69

.80

0.95

17.0

46.

300.

052.

090.

310.

512.

880.

0840

391

131

2018

8028

155

16.3

107

18.3

156

3625

84.

4499

.96

D-8

8O

Cm

st67

.46

0.87

17.1

46.

640.

092.

431.

010.

983.

260.

1345

684

127

2018

6431

170

19.8

141

20.3

151

3421

33.

7499

.93

D-8

9O

Cm

st69

.82

0.84

15.6

96.

070.

072.

090.

931.

243.

130.

1245

888

108

1316

5528

159

13.7

142

25.0

136

3321

03.

3298

.78

D-9

0O

Cm

st69

.47

0.83

15.9

76.

400.

112.

170.

831.

073.

000.

1345

383

115

1916

6626

161

18.7

133

17.7

130

3523

23.

1999

.63

D-9

1O

Czs

t46

.57

0.68

11.4

75.

641.

052.

0629

.76

0.22

2.40

0.15

295

6787

1313

4415

111

8.4

167

16.0

9732

153

20.1

497

.95

DR

37

2499

-250

0Fe

ni-1

mst

70.3

80.

7514

.67

5.73

0.11

2.22

2.06

1.15

2.78

0.15

419

8110

718

1652

2514

313

.114

317

.310

232

223

5.16

99.1

3D

R 3

825

00-2

501

Feni

-1zs

t66

.80

0.88

17.0

66.

870.

102.

560.

971.

243.

340.

1748

293

113

2118

5930

170

16.0

139

20.3

133

3723

94.

8298

.59

DR

39

2501

-250

2Fe

ni-1

zst

65.5

50.

8917

.93

7.17

0.11

2.64

1.05

1.12

3.39

0.16

478

8213

023

1777

3317

617

.514

218

.713

935

199

5.26

98.7

3D

R 4

025

02-2

503

Feni

-1m

st67

.17

0.82

17.2

36.

660.

102.

331.

000.

923.

640.

1355

686

106

2217

4932

172

16.3

105

17.5

133

3424

84.

8698

.34

DR

41

2503

-250

4Fe

ni-1

mst

63.1

40.

9219

.34

7.82

0.12

2.84

0.76

1.26

3.66

0.15

491

8615

024

1883

3418

518

.814

019

.415

934

178

5.56

98.9

9D

R 4

225

04-2

505

Feni

-1m

st65

.18

0.89

18.1

97.

250.

112.

640.

921.

253.

420.

1548

082

124

2318

7933

176

17.1

143

18.9

145

3218

85.

2899

.03

DR

43

2505

-250

6Fe

ni-1

mst

67.0

60.

8516

.80

6.57

0.09

2.58

1.32

1.29

3.29

0.14

471

9211

721

1759

3016

714

.713

319

.312

233

242

5.04

99.3

3D

R 4

425

06-2

507

Feni

-1m

st64

.06

0.94

18.9

57.

300.

102.

750.

761.

413.

590.

1549

084

145

2519

8135

183

17.8

140

20.0

154

3119

65.

3598

.96

DR

45

2634

-263

5Fe

ni-1

zst

67.2

90.

8416

.53

6.76

0.12

2.45

1.19

1.44

3.21

0.17

467

9512

220

1760

3116

616

.114

520

.412

435

242

4.84

99.0

7D

R 4

626

35-2

636

Feni

-1m

st66

.09

0.89

17.3

27.

010.

102.

611.

011.

403.

410.

1748

694

120

2218

6433

171

16.6

137

20.8

133

3425

54.

9998

.48

DR

47

2636

-263

7Fe

ni-1

m s

st81

.73

0.52

9.41

3.23

0.04

0.98

0.68

1.36

1.96

0.09

428

6461

1011

2722

914.

212

114

.449

1924

71.

6999

.20

DR

48

2637

-263

8Fe

ni-1

f sst

83.0

60.

548.

223.

270.

041.

341.

010.

781.

660.

0830

385

9110

1224

1686

4.8

5813

.543

2537

92.

8799

.14

DR

49

2638

-263

9Fe

ni-1

mst

62.6

71.

0119

.65

7.96

0.08

3.01

0.67

1.01

3.81

0.13

486

9014

524

2083

3219

721

.713

420

.416

336

205

5.46

99.2

1D

R 5

027

34-2

735

Feni

-1m

st65

.36

0.88

18.0

37.

140.

102.

700.

891.

223.

550.

1550

086

122

2218

6531

182

18.9

141

20.4

133

3419

65.

0999

.16

DR

51

2735

-273

6Fe

ni-1

mst

64.3

00.

9318

.74

7.33

0.09

2.81

0.83

1.15

3.67

0.15

509

9113

424

1968

3418

918

.814

121

.214

735

211

4.98

99.2

5D

R 6

917

94-1

795

Shah

bajp

ur-1

f sst

71.9

70.

7213

.03

5.34

0.07

2.29

2.37

1.29

2.80

0.12

488

7474

1616

4022

151

11.2

135

16.7

9329

247

4.32

98.6

1D

R 7

017

95-1

796

Shah

bajp

ur-1

mst

68.9

90.

8315

.45

6.62

0.05

2.62

1.03

1.21

3.07

0.13

482

7911

019

1771

2816

115

.513

617

.512

330

223

4.18

99.1

0D

R 7

117

96-1

797

Shah

bajp

ur-1

m s

st76

.45

0.70

10.8

84.

090.

061.

712.

311.

472.

180.

1439

410

064

1214

2916

115

8.0

145

19.9

7434

382

3.31

98.7

4D

R 7

217

97-1

798

Shah

bajp

ur-1

m s

st76

.32

0.68

10.9

54.

140.

061.

712.

221.

582.

200.

1439

789

5914

1428

1911

68.

914

316

.479

3235

13.

2598

.98

DR

73

1799

-180

0Sh

ahba

jpur

-1zs

t68

.05

0.81

15.3

16.

300.

082.

692.

041.

353.

240.

1252

688

9119

1747

2417

015

.014

820

.711

133

262

5.23

98.4

6D

R 7

418

01-1

802

Shah

bajp

ur-1

zst

71.8

20.

7312

.87

5.58

0.07

2.39

2.32

1.34

2.77

0.12

469

7577

1516

4025

150

13.2

137

16.9

9529

278

4.45

98.4

4D

R 7

520

11-2

012

Shah

bajp

ur-1

zst

69.6

70.

8314

.39

5.90

0.06

2.49

2.08

1.55

2.89

0.15

486

8793

1817

4821

146

13.0

143

18.8

104

3325

64.

5998

.64

DR

76

2012

-201

3Sh

ahba

jpur

-1zs

t69

.14

0.82

14.8

55.

910.

062.

452.

021.

652.

950.

1547

488

9518

1749

2915

015

.614

619

.811

334

280

4.64

98.9

6D

R 7

720

13-2

014

Shah

bajp

ur-1

zst

67.3

90.

8715

.86

6.44

0.06

2.64

1.93

1.48

3.18

0.15

509

8795

1918

5329

160

14.3

147

21.1

130

3426

05.

0298

.66

DR

78

2014

-201

5Sh

ahba

jpur

-1zs

t70

.01

0.83

14.3

25.

800.

062.

412.

091.

482.

850.

1447

195

9816

1746

2214

414

.114

421

.011

634

316

4.55

98.9

4D

R 7

920

16-2

017

Shah

bajp

ur-1

zst

68.0

60.

8415

.26

6.49

0.06

2.62

2.01

1.47

3.06

0.14

497

9010

117

1752

2615

513

.414

320

.811

534

263

4.93

98.8

2D

R 8

022

89-2

290

Shah

bajp

ur-1

zst

65.7

10.

8416

.49

6.62

0.08

2.71

2.61

1.14

3.64

0.15

567

8496

1919

4734

189

15.9

123

22.3

122

3422

35.

8698

.67

DR

81

2292

-229

3Sh

ahba

jpur

-1zs

t65

.61

0.85

15.9

96.

260.

092.

733.

591.

123.

610.

1456

588

9218

1945

3218

716

.712

324

.111

733

233

6.58

98.1

8D

R 8

222

93-2

294

Shah

bajp

ur-1

f sst

72.9

70.

7012

.63

5.04

0.07

2.17

2.32

1.29

2.71

0.11

465

7469

1515

3922

148

11.2

134

15.8

8427

240

4.09

98.9

9D

R 8

322

95-2

296

Shah

bajp

ur-1

mst

66.2

20.

8215

.59

6.18

0.09

2.65

3.60

1.17

3.52

0.15

544

8394

1818

4633

184

15.3

124

21.9

124

3524

46.

3498

.48

DR

94

373-

374

Sita

kund

-5zs

t64

.67

0.89

17.8

37.

150.

112.

911.

581.

163.

560.

1652

187

136

2319

7939

178

17.0

143

19.6

149

3420

65.

9698

.79

DR

95

374-

375

Sita

kund

-5m

st70

.38

0.78

14.4

06.

170.

122.

391.

761.

022.

810.

1745

986

110

1516

6429

142

17.2

134

20.5

105

3427

65.

2298

.77

DR

96

375-

376

Sita

kund

-5zs

t67

.92

0.86

15.7

46.

280.

122.

622.

191.

013.

120.

1548

179

126

2018

6932

157

15.7

147

18.8

121

3121

45.

8698

.04

Tabl

e 3

(ctd

). W

hole

rock

maj

or (w

t%) a

nd tr

ace

elem

ent (

ppm

) ana

lyse

s of s

ands

tone

s and

mud

rock

s fro

m th

e C

TFB

(Pro

vinc

e 3)

, Ban

glad

esh.

Major and trace element compositions of Tertiary sedimentary successions in the NW and SE Bengal basin, Bangladesh 41

Tabl

e 3

(ctd

). W

hole

rock

maj

or (w

t %) a

nd tr

ace

elem

ent (

ppm

) ana

lyse

s of s

ands

tone

s and

mud

rock

s fro

m th

e C

TFB

(Pro

vinc

e 3)

, Ban

glad

esh.

SaN

rD

epth

(m)

Wel

lLi

thSi

O2

TiO

2A

l 2O3

Fe2O

3M

nOM

gOC

aON

a 2O

K2O

P 2O

5B

aC

eC

rG

aN

bN

iPb

Rb

ScSr

ThV

YZr

LOI

Tota

l*

Surm

a G

roup

(ctd

)B

okab

il Fo

rmat

ion

(ctd

)D

R 9

737

6-37

7Si

taku

nd -5

mst

61.6

90.

9719

.79

7.80

0.10

3.16

1.37

0.97

4.01

0.14

553

9016

122

1992

3620

219

.015

024

.316

133

193

6.66

97.8

2D

R 9

861

2-61

3Si

taku

nd -5

mst

64.8

20.

9416

.91

6.95

0.08

2.99

2.68

1.07

3.44

0.13

494

9412

521

1869

3216

817

.314

120

.614

932

246

6.58

97.9

6D

R 9

997

5-97

6Si

taku

nd -5

m s

st78

.55

0.53

7.76

3.72

0.12

1.09

5.90

0.78

1.49

0.07

360

6910

68

1039

1968

7.2

393

14.9

4923

285

5.93

98.1

4D

R 1

0097

6-97

7Si

taku

nd -5

m s

st79

.96

0.47

9.18

4.22

0.06

1.47

1.86

0.92

1.79

0.07

378

5894

1110

6424

848.

117

210

.151

1817

03.

4998

.75

DR

101

1096

-109

7Si

taku

nd -5

mst

67.3

40.

9317

.37

6.76

0.06

2.38

0.64

0.99

3.42

0.11

594

9613

721

1868

3117

417

.414

821

.513

835

274

5.07

98.1

7D

R 1

0210

97-1

098

Sita

kund

-5m

st68

.02

0.89

16.7

36.

550.

072.

290.

791.

253.

310.

1160

086

127

2117

6930

164

18.6

159

18.8

141

3023

35.

0097

.85

DR

103

1098

-109

9Si

taku

nd -5

mst

65.6

80.

9418

.28

7.08

0.07

2.52

0.71

0.97

3.66

0.11

626

9013

922

1977

3118

618

.015

022

.714

731

262

5.40

98.0

8D

R 1

0410

99-1

100

Sita

kund

-5m

st63

.15

0.97

19.2

47.

930.

082.

770.

681.

113.

960.

1165

992

155

2520

7827

198

21.3

141

20.4

173

3421

85.

5798

.05

DR

105

1543

-154

4Si

taku

nd -5

mst

63.1

80.

9518

.41

7.59

0.11

3.08

1.65

1.20

3.67

0.17

523

8715

221

1987

3418

320

.114

323

.115

837

200

6.52

98.2

2D

R 1

0919

36-1

937

Sita

kund

-5m

st66

.56

0.82

16.4

26.

370.

142.

602.

551.

033.

360.

1486

478

133

2116

7130

167

16.3

155

17.5

120

3120

15.

9797

.40

DR

110

1937

-193

8Si

taku

nd -5

mst

66.4

30.

8517

.26

6.40

0.09

2.70

1.45

1.22

3.45

0.14

608

7913

320

1776

3017

717

.513

721

.013

630

213

5.74

98.5

8B

huba

n Fo

rmat

ion

D-9

2O

Cf s

st61

.15

0.62

8.88

4.06

0.82

2.20

19.5

70.

671.

890.

1330

766

739

1231

1684

8.1

2915

.668

2827

915

.32

98.0

6D

-93

OC

mst

75.6

40.

7310

.75

4.07

0.06

2.30

2.95

1.08

2.27

0.14

393

8988

1315

3418

106

10.7

115

18.0

9227

382

4.76

98.7

5D

-94

OC

f sst

59.3

30.

709.

054.

320.

892.

4720

.49

0.57

2.02

0.16

339

7974

1014

3013

919.

021

018

.078

3035

715

.70

98.0

5D

-95

OC

zst

61.3

30.

8818

.86

8.33

0.08

2.80

3.09

0.55

3.93

0.16

560

8415

024

1874

3319

519

.312

21.6

163

3617

86.

6599

.20

D-9

6O

Czs

t65

.13

0.87

17.0

27.

170.

132.

562.

850.

783.

320.

1748

184

129

2117

7131

166

19.6

126

19.5

144

3622

65.

8599

.44

D-9

7O

Czs

t63

.21

0.96

19.8

28.

050.

152.

490.

600.

683.

870.

1753

391

144

2620

8937

202

21.1

115

21.5

177

3818

74.

6299

.33

D-9

8O

Cm

st67

.88

0.83

14.9

66.

150.

142.

303.

760.

932.

900.

1545

485

110

1817

6227

147

18.7

123

18.9

133

3525

15.

9198

.96

D-9

9O

Cm

st66

.27

0.92

16.9

36.

320.

082.

412.

860.

803.

250.

1546

092

135

2118

6233

163

19.4

117

19.5

147

3624

05.

6599

.44

D-1

00O

Cf s

st78

.98

0.63

10.7

64.

080.

081.

420.

910.

972.

060.

1138

577

9112

1237

1810

410

.199

15.6

8827

318

2.54

99.3

8D

-101

OC

mst

70.2

00.

7914

.09

5.63

0.20

2.05

3.20

0.91

2.79

0.13

438

9210

717

1554

2414

114

.112

817

.812

135

270

2.60

98.6

7D

-102

OC

f sst

75.4

40.

6611

.83

6.32

0.09

1.53

0.64

0.92

2.48

0.09

444

6683

1614

6626

135

12.9

113

12.8

110

2622

35.

2299

.37

D-1

03O

Czs

t68

.66

0.90

16.1

96.

530.

052.

461.

100.

943.

030.

1445

981

126

1918

6226

155

17.8

113

19.0

148

3324

84.

3899

.47

D-1

04O

Czs

t72

.82

0.81

14.3

55.

850.

061.

660.

591.

062.

650.

1343

177

112

1716

5322

137

15.0

108

17.8

127

3227

32.

9999

.68

D-1

05O

Cf s

st77

.16

0.69

11.6

04.

380.

051.

721.

090.

982.

210.

1338

479

9313

1437

2111

312

.010

315

.896

3029

92.

9999

.13

D-1

06O

Cm

st80

.32

0.61

10.5

63.

400.

030.

960.

681.

222.

120.

1038

780

7111

1229

1910

78.

212

116

.376

2532

03.

5299

.42

D-1

07O

Cf s

st71

.86

0.77

14.8

96.

090.

041.

740.

691.

002.

810.

1144

974

9719

1551

2414

517

.611

216

.813

430

216

1.75

99.6

8D

-108

OC

mst

73.4

30.

7713

.32

5.39

0.06

2.08

1.15

1.15

2.49

0.14

410

8310

016

1545

2112

716

.510

716

.212

033

263

3.24

99.7

3D

-109

OC

f sst

68.2

40.

588.

433.

440.

681.

3414

.55

0.87

1.78

0.09

296

7275

911

2817

819.

234

715

.167

2732

611

.12

98.2

5D

-110

OC

zst

67.9

30.

6510

.75

4.81

0.58

1.88

10.3

50.

832.

120.

1133

772

9112

1342

1610

412

.326

114

.390

3025

79.

2598

.69

D-1

11O

Czs

t71

.15

0.80

14.7

95.

680.

082.

121.

081.

382.

760.

1443

985

101

1817

4823

141

15.9

137

16.7

126

3425

43.

3599

.00

D-1

12O

Czs

t72

.14

0.80

14.2

25.

660.

081.

951.

101.

262.

630.

1743

794

113

1616

4524

135

14.8

145

19.2

124

3629

83.

2399

.54

D-1

13O

Czs

t73

.47

0.87

15.8

55.

600.

041.

300.

040.

092.

630.

0951

511

794

1817

5534

137

14.4

7620

.613

038

360

4.15

99.2

9D

-114

OC

mst

66.9

50.

8617

.13

7.03

0.13

2.25

1.11

1.10

3.26

0.18

483

8710

820

1756

3116

717

.813

821

.514

336

227

4.31

98.9

9D

R 1

330

33-3

034

Begu

mga

nj-1

f sst

73.8

80.

6411

.73

4.71

0.20

1.98

3.14

1.25

2.32

0.15

389

7376

1513

3923

115

12.8

172

15.4

7729

265

4.65

98.4

7D

R 1

430

34-3

035

Begu

mga

nj-1

zst

64.6

50.

9419

.11

7.65

0.07

3.16

1.21

1.16

1.88

0.15

551

8312

625

1967

3819

522

.515

019

.415

332

183

5.44

98.3

7D

R 1

530

35-3

036

Begu

mga

nj-1

mst

65.1

70.

9617

.49

7.33

0.06

2.96

1.09

1.25

3.53

0.16

513

8812

923

1970

3217

820

.814

020

.214

936

236

5.08

98.3

8D

R 1

630

36-3

037

Begu

mga

nj-1

zst

64.0

40.

9018

.33

7.31

0.07

3.03

1.21

1.19

3.75

0.16

554

7912

623

1965

4018

619

.514

018

.914

233

186

5.57

98.8

6D

R 1

730

37-3

038

Begu

mga

nj-1

zst

64.7

70.

8516

.23

6.83

0.25

2.78

3.63

1.16

3.30

0.19

474

7811

120

1762

3316

416

.218

517

.512

232

193

6.66

98.1

6D

R 1

830

47-3

048

Begu

mga

nj-1

mst

66.5

10.

9216

.49

6.84

0.08

2.92

1.52

1.25

3.31

0.16

512

8611

921

1860

3516

517

.413

519

.012

833

250

5.25

98.9

2D

R 1

930

48-3

049

Begu

mga

nj-1

f sst

70.8

30.

7613

.67

6.14

0.09

2.54

1.81

1.30

2.70

0.15

496

7697

1716

4930

137

11.3

131

15.2

107

2623

84.

7099

.09

DR

20

3049

-305

0Be

gum

ganj

-1m

st63

.53

0.94

18.7

07.

430.

093.

031.

221.

143.

770.

1451

182

130

2419

7238

187

19.8

140

19.8

153

3019

35.

5598

.83

DR

21

3050

-305

1Be

gum

ganj

-1m

st63

.22

0.97

18.5

97.

680.

083.

121.

251.

143.

800.

1652

181

125

2419

6741

186

20.6

140

20.0

144

3120

85.

4498

.43

DR

22

3476

-347

7Be

gum

ganj

-1f s

st74

.48

0.61

10.2

64.

210.

101.

795.

221.

172.

020.

1334

876

7213

1341

1810

09.

817

214

.161

2729

86.

0698

.46

DR

23

3477

-347

8Be

gum

ganj

-1m

st64

.58

0.97

17.4

67.

080.

062.

991.

911.

193.

630.

1353

510

012

423

2070

3317

716

.912

720

.414

433

274

5.75

98.4

9D

R 2

434

78-3

479

Begu

mga

nj-1

mst

67.3

10.

9015

.60

6.33

0.06

2.75

2.46

1.23

3.20

0.15

494

107

114

2019

5932

157

15.5

128

19.8

118

3530

15.

7198

.71

Tabl

e 3

(ctd

). W

hole

rock

maj

or (w

t%) a

nd tr

ace

elem

ent (

ppm

) ana

lyse

s of s

ands

tone

s and

mud

rock

s fro

m th

e C

TFB

(Pro

vinc

e 3)

, Ban

glad

esh.

Dhiman Kumer Roy and Barry P. Roser42

Tabl

e 3

(ctd

). W

hole

rock

maj

or (w

t %) a

nd tr

ace

elem

ent (

ppm

) ana

lyse

s of s

ands

tone

s and

mud

rock

s fro

m th

e C

TFB

(Pro

vinc

e 3)

, Ban

glad

esh.

SaN

rD

epth

(m)

Wel

lLi

thSi

O2

TiO

2A

l 2O3

Fe2O

3M

nOM

gOC

aON

a 2O

K2O

P 2O

5B

aC

eC

rG

aN

bN

iPb

Rb

ScSr

ThV

YZr

LOI

Tota

l*

Surm

a G

roup

(ctd

)B

huba

n Fo

rmat

ion

DR

25

3479

-348

0Be

gum

ganj

-1zs

t67

.32

0.89

16.9

07.

360.

092.

370.

641.

382.

890.

1747

087

126

2117

7430

150

17.4

159

16.5

135

3622

54.

2699

.17

DR

26

3480

-348

1Be

gum

ganj

-1zs

t59

.98

1.05

20.3

78.

060.

063.

431.

381.

114.

410.

1458

399

148

2722

8038

211

23.9

132

22.2

171

3423

06.

0398

.93

DR

27

3523

-352

4Be

gum

ganj

-1m

st63

.47

0.93

19.5

07.

110.

092.

760.

971.

163.

880.

1452

987

134

2519

7135

194

18.7

136

19.2

147

3219

75.

4299

.14

DR

28

3524

-352

5Be

gum

ganj

-1m

st64

.74

0.92

17.7

37.

380.

142.

701.

631.

133.

490.

1749

691

122

2219

7132

174

17.7

145

18.5

137

3520

25.

7999

.16

DR

29

3525

-352

6Be

gum

ganj

-1m

st64

.24

0.83

15.1

35.

930.

262.

596.

551.

153.

190.

1345

581

106

2018

5729

155

15.6

161

17.5

116

3222

98.

3798

.60

DR

30

3526

-352

7Be

gum

ganj

-1zs

t63

.62

0.88

17.1

36.

830.

102.

893.

431.

383.

600.

1452

590

117

2318

6533

177

14.9

146

19.4

123

3420

66.

6798

.91

DR

31

3527

-352

8Be

gum

ganj

-1m

st64

.64

0.86

16.6

16.

680.

102.

763.

531.

223.

470.

1350

082

112

2118

6637

171

17.0

149

18.7

120

3320

96.

6498

.59

DR

32

3660

-366

1Be

gum

ganj

-1m

st68

.83

0.87

15.8

36.

570.

092.

450.

971.

223.

030.

1548

084

111

2018

5827

155

15.9

121

17.8

119

3124

34.

5598

.80

DR

33

3661

-366

2Be

gum

ganj

-1m

st66

.08

0.97

17.0

77.

270.

092.

750.

981.

233.

410.

1559

189

128

2319

6435

172

15.2

124

19.1

141

3224

14.

9198

.74

DR

34

3662

-366

3Be

gum

ganj

-1zs

t71

.28

0.81

14.4

66.

060.

102.

181.

041.

202.

720.

1547

481

102

1716

5227

139

13.1

120

17.1

106

3225

34.

0599

.00

DR

35

3663

-366

4Be

gum

ganj

-1m

st67

.52

0.90

16.4

56.

940.

092.

580.

961.

213.

220.

1448

683

113

2118

6029

163

17.7

124

18.4

133

3123

84.

5898

.80

DR

36

3664

-366

5Be

gum

ganj

-1f s

st78

.23

0.62

10.6

64.

320.

091.

521.

321.

241.

850.

1533

777

6912

1235

2194

8.2

114

14.0

6730

277

3.29

98.9

8D

R 5

228

42-2

843

Feni

-1zs

t69

.20

0.83

15.5

96.

240.

102.

391.

401.

073.

030.

1545

190

107

1917

5628

157

14.1

134

19.8

126

3526

74.

8399

.12

DR

53

2843

-284

4Fe

ni-1

zst

69.5

10.

7915

.42

5.98

0.09

2.33

1.66

1.11

2.95

0.15

559

8510

819

1656

3015

014

.213

818

.911

133

240

5.03

98.6

6D

R 5

428

44-2

845

Feni

-1m

st68

.03

0.86

16.4

06.

390.

082.

471.

261.

143.

210.

1547

995

119

2017

5830

164

15.2

133

20.6

117

3325

64.

8798

.47

DR

55

2845

-284

6Fe

ni-1

zst

63.8

70.

9118

.80

7.33

0.09

2.84

1.17

1.09

3.75

0.16

537

8713

524

1972

3418

720

.713

720

.415

634

198

5.59

98.6

0D

R 5

628

46-2

847

Feni

-1m

st65

.07

0.91

18.1

87.

030.

102.

801.

091.

133.

540.

1650

287

120

2319

7031

182

20.0

137

20.1

157

3520

45.

3398

.96

DR

57

2847

-284

8Fe

ni-1

mst

64.8

30.

9017

.83

7.34

0.12

2.87

1.24

1.17

3.55

0.16

509

8312

322

1869

3018

316

.813

820

.015

135

201

5.54

98.7

5D

R 5

828

48-2

849

Feni

-1m

st65

.11

0.89

17.6

37.

270.

132.

841.

450.

993.

510.

1650

184

132

2118

6831

182

19.0

140

19.5

146

3420

25.

4898

.83

DR

59

2852

-285

3Fe

ni-1

zst

67.6

20.

8416

.59

6.51

0.09

2.54

1.26

1.13

3.25

0.15

495

8510

820

1860

3116

517

.413

319

.713

234

218

4.96

98.9

4D

R 6

028

53-2

854

Feni

-1zs

t63

.45

0.82

14.3

76.

050.

362.

418.

450.

972.

960.

1750

488

100

1717

5225

147

11.6

162

19.4

104

3629

49.

5498

.37

DR

61

2854

-285

5Fe

ni-1

mst

70.8

60.

8314

.53

5.82

0.08

2.31

1.58

1.11

2.72

0.16

440

9110

418

1748

2613

912

.413

020

.111

535

293

4.65

98.8

9D

R 6

229

13-2

914

Feni

-1zs

t65

.29

0.97

18.2

67.

260.

072.

620.

751.

003.

660.

1354

993

126

2320

7133

185

17.6

126

21.6

143

3524

94.

9998

.65

DR

63

2914

-291

5Fe

ni-1

mst

74.7

60.

7312

.81

4.99

0.05

1.81

0.94

1.26

2.53

0.13

443

8675

1515

3922

128

10.2

107

17.6

8931

307

3.46

99.0

7D

R 8

430

14-3

015

Shah

bajp

ur-1

f sst

76.5

30.

7011

.91

4.52

0.05

1.65

0.88

1.29

2.36

0.11

425

9110

213

1544

2411

98.

713

621

.990

2838

12.

8198

.78

DR

85

3016

-301

7Sh

ahba

jpur

-1f s

st79

.05

0.62

10.4

24.

010.

041.

520.

891.

342.

010.

1139

177

8611

1235

2199

8.0

129

17.2

6027

320

2.40

99.2

7D

R 8

630

17-3

018

Shah

bajp

ur-1

zst

67.6

40.

8715

.92

7.18

0.05

2.84

0.88

1.31

3.18

0.13

499

8910

920

1863

2516

513

.813

118

.912

732

269

4.24

98.8

8D

R 8

730

18-3

019

Shah

bajp

ur-1

m s

st77

.56

0.58

11.0

84.

330.

051.

600.

891.

502.

310.

1141

776

5610

1432

2111

79.

912

217

.563

2328

82.

4998

.69

DR

88

3018

-301

9Sh

ahba

jpur

-1zs

t74

.16

0.67

12.8

75.

380.

052.

110.

851.

282.

520.

1142

775

8914

1452

2713

012

.313

117

.593

2924

93.

1298

.82

DR

89

3019

-302

0Sh

ahba

jpur

-1f s

st76

.12

0.70

11.8

44.

770.

051.

850.

981.

292.

280.

1240

088

9912

1543

2211

810

.813

020

.793

2931

52.

8699

.27

DR

90

3020

-302

1Sh

ahba

jpur

-1f s

st72

.17

0.75

13.7

05.

920.

052.

310.

971.

292.

710.

1344

687

105

1515

5224

140

11.9

134

19.4

9831

290

3.74

98.7

9D

R 9

130

21-3

022

Shah

bajp

ur-1

mst

72.3

80.

7513

.43

5.81

0.05

2.33

1.13

1.35

2.65

0.13

446

8495

1416

4822

140

12.0

122

17.9

9731

272

3.62

98.5

4D

R 9

234

02-3

403

Shah

bajp

ur-1

f sst

77.2

80.

5811

.05

4.44

0.05

1.72

0.96

1.57

2.25

0.11

410

6569

1313

3224

111

9.5

120

13.4

6722

253

2.84

98.5

8D

R 9

334

08-3

409

Shah

bajp

ur-1

f sst

77.5

70.

5710

.96

4.21

0.04

1.67

1.03

1.57

2.25

0.11

422

6857

1013

3218

113

8.3

120

16.7

6522

258

2.62

98.7

8D

R 1

1124

90-2

491

Sita

kund

-5m

st63

.88

0.95

18.2

67.

350.

113.

031.

641.

023.

610.

1550

891

145

2419

8634

177

19.2

139

19.8

156

3520

66.

1098

.19

DR

112

2494

-249

5Si

taku

nd -5

zst

67.9

20.

8314

.38

6.17

0.19

2.58

3.87

1.09

2.81

0.16

446

8912

314

1764

2614

014

.416

823

.311

335

283

6.78

98.2

2D

R 1

1324

95-2

496

Sita

kund

-5m

st66

.44

0.90

16.7

46.

640.

102.

841.

791.

073.

330.

1550

192

126

2118

7630

163

16.2

130

19.5

144

3320

85.

9497

.54

DR

114

2496

-249

7Si

taku

nd -5

mst

65.1

90.

9217

.42

7.04

0.11

2.96

1.76

1.00

3.44

0.15

512

9313

918

1980

3417

316

.313

423

.914

933

214

6.22

97.7

5D

R 1

1526

48-2

649

Sita

kund

-5m

st67

.17

0.87

15.6

86.

640.

073.

042.

021.

123.

270.

1261

088

135

1918

7126

162

15.8

139

19.0

128

3024

25.

8197

.61

DR

116

2649

-265

0Si

taku

nd -5

mst

68.7

20.

8414

.70

6.51

0.07

2.95

1.90

1.17

3.02

0.12

555

8112

218

1864

2515

014

.912

618

.111

430

262

5.51

97.9

4D

R 1

1726

50-2

651

Sita

kund

-5m

st69

.84

0.82

14.1

36.

120.

072.

841.

991.

242.

820.

1249

090

117

1817

5823

140

11.5

122

18.4

105

3228

35.

3798

.66

DR

118

2651

-265

2Si

taku

nd -5

zst

71.0

70.

7613

.48

6.04

0.07

2.70

1.84

1.18

2.75

0.11

591

8311

117

1659

2313

811

.711

916

.297

2826

74.

9998

.53

DR

119

2793

-279

4Si

taku

nd -5

zst

68.8

00.

8715

.23

6.49

0.06

2.63

1.37

1.26

3.16

0.14

551

8811

619

1857

2715

815

.411

817

.911

831

277

4.94

98.5

4D

R 1

2027

94-2

795

Sita

kund

-5m

sst

78.2

80.

5810

.30

4.61

0.05

1.74

1.03

1.21

2.09

0.10

410

7273

1211

4126

106

8.8

9514

.160

2526

53.

1798

.56

DR

121

2795

-279

6Si

taku

nd -5

m s

st80

.15

0.54

9.69

3.75

0.04

1.47

1.06

1.21

1.99

0.10

516

7066

1111

3120

968.

698

14.5

4724

276

2.86

98.4

6

Tabl

e 3

(ctd

). W

hole

rock

maj

or (w

t%) a

nd tr

ace

elem

ent (

ppm

) ana

lyse

s of s

ands

tone

s and

mud

rock

s fro

m th

e C

TFB

(Pro

vinc

e 3)

, Ban

glad

esh.

Major and trace element compositions of Tertiary sedimentary successions in the NW and SE Bengal basin, Bangladesh 43

mudrocks, with enrichment factors generally greater than 1.25, with a maximum of 2.30 for Ni in the Dupitila Forma-tion. The exceptions are Sr in the Bhuban Formation, which is fractionally enriched in the sandstone average (134 ppm) compared to the mudrocks (132 ppm); and Zr, which is clearly enriched in the sandstones in both the Bhuban (287 ppm) and Bokabil (287 ppm) Formations relative to their mudrocks (245 and 232 ppm, respectively).

As for most of the major elements, trace element abun-dances in both the sandstones and the mudrocks tend to decrease from the Bhuban through to the Dupitila Forma-tions due to quartz dilution, although the decrease is not always regular. Strontium shows the least change, falling from an average of 134 ppm in Bhuban sandstones through to 88 ppm in Dupitila sandstones; for the equivalent mudrocks contents fall from 132 ppm to 99 ppm, respec-tively. Strontium also shows the least contrast between the mudrocks and the sandstones, with enrichment factors of 0.99 to 1.13 throughout the succession. Furthermore, concentrations of Sr in all CTFB samples are considerably lower than in UCC (350 ppm; Taylor and McLennan, 1985), suggesting significant loss of this mobile element. This is also the case for Ba, with average contents by lithology and formation ranging from 267 to 486 ppm, well below the UCC value of 550 ppm (Taylor and McLennan, 1985). Contents of less mobile trace elements (Ce. Cr, Nb, Sc, Sr, Th, V, Y, Zr) are close to or are greater than UCC values, indicating they have not been affected by the processes which reduced Sr and Ba abundances.

Conclusions

Geochemical compositions of Paleogene and Neogene mudstones and sandstones from Province 1 (NWS) and Province 3 (CTFB) in Bangladesh show significant and systematic variations, between both formations and groups, and between lithotypes. These variations reflect the operation of several processes, among which hydrodynamic sorting, source change, weathering, and preferential heavy mineral concentration are likely to be significant. These systematic variations may hold potential keys to resolve the exhumation history of the Himalaya in relation to tectonic and climatic factors. Detailed interpretation of the geochemical variations in the NWS and CTFB in the light of tectonic and climate factors will be made in future work, along with comparison and correlation with published data for Province 2 (Surma Basin), in an effort to improve under-standing of Himalayan erosion in a regional context.

Acknowledgements

We thank Professor Mrinal Kanti Roy (Geology and Mining, University of Rajshahi, Bangladesh) for his help and encouragement during fieldwork and sampling, and Muhammad Imadduddin (Managing Director), Bangladesh

Petroleum Exploration (BAPEX) for permission to access drill cores from exploration wells. Special thanks are also due to Professor Syed Samsuddin Ahmed and Md. Sultan-Ul-Islam (Geology and Mining, University of Rajshahi) for their encouragement and valuable suggestions. This work was supported by a Monbukagakusho (MEXT) Special Program scholarship (to DKR) and by internal research funding (to BPR).

References

Aitchison, J. C., Ali, J. R. and Davis, A. M. 2007. When and where did India and Asia collide? Journal of Geophysical Research, 112, B05423.

Alam, M., Alam, M. M., Curray, J. R., Chowdhury, M. L. R. and Gani, M. R. 2003. An overview of sedimentary geology of the Bengal basin in relation to the regional framework and basin-fill history. Sedimentary Geology, 155, 179-208.

Alam, M. K., Hasan, A. K. M. S., Khan, M. R., and Whitney, J. W. 1990. Geological map of Bangladesh, scale 1: 1,000,000. Geological Survey of Bangladesh, Dhaka.

Hossain, H. M. Z., Roser, B. P. and Kimura, J. I. 2010. Petrography and whole-rock geochemistry of the Tertiary Sylhet succession, northeast-ern Bengal Basin, Bangladesh: Provenance and source area weathering. Sedimentary Geology, 228, 171-183.

Johnson, S. Y., and Nur, A. M. N. 1991. Sedimentation and tectonics of the Sylhet trough, Bangladesh. Geological Society of America Bulletin, 103, 1513-1527.

Johnsson, M. J. 1993. The system controlling the composition of clastic sediments. In: M. J. Johnsson and A. Basu, eds, Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper, 284, 1-19.

Kimura, J.-I. and Yamada, Y. 1996. Evaluation of major and trace element XRF analyses using a flux to sample ratio of two to one glass beads. Journal of Mineralogy, Petrology and Economic Geology, 91, 62-72.

Lindsay, J. F., Holiday, D. W. and Hulbert, A. G. 1991. Sequence stratigra-phy and the evolution of the Ganges-Brahmaputra complex. American Association of Petroleum Geologists Bulletin, 75, 1233-1254.

McLennan, S. M., Hemming, S., McDaniel, D. K. and Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance and tectonics: in Johnsson, M. J., and Basu, A., eds., Processes Controlling the Composi-tion of Clastic Sediments. Geological Society of America Special Paper, 284, 1-19.

Molnar, P. and Tapponier, P. 1975. Cenozoic tectonics of Asia: effects of continental collision. Science, 189, 144-154.

Mukherjee, A., Fryar, A. E. and Thomas, W. A. 2009. Geologic, geomor-phic and hydrologic framework and evolution of the Bengal basin, India and Bangladesh. Journal of Asian Earth Sciences, 34, 227-244.

Najman, Y. 2006. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci-ence Reviews, 74, 1-72.

Najman, Y., Bickle, M, Boudagher-Fadel, M., Carter, A., Garzanti, E., Paul, M., Wijbrans, J., Willett, E., Oliver, G., Parrish, R., Akhter, H., Allen, R., Ando, S., Chisty, E., Reisberg, L. and Vezzoli, G. 2008. The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh. Earth and Planetary Science Letters, 273, 1-14.

Nesbitt, H. W. and Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717.

Rahman M. J. J. and Faupl, P. 2003. The composition of the subsurface Neogene shales of the Surma Group from the Sylhet Trough, Bengal Basin, Bangladesh. Sedimentary Geology, 155, 407-417.

Rahman, M. J. J. and Suzuki, S. 2007a. Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: Implication for provenance, tectonic setting and weathering. Geochemical Journal, 41, 415-428.

Dhiman Kumer Roy and Barry P. Roser44

Rahman, M. J. J. and Suzuki, S. 2007b. Composition of Neogene shales from the Surma Group, Bengal Basin, Bangladesh: Implication for provenance and tectonic setting. Austrian Journal of Earth Sciences, 100, 54-64.

Raymo, M. E. and Ruddiman, W. F. 1992. Tectonic forcing of the Late Cenozoic climate. Nature, 359, 117-122.

Reimann, K.-U. 1993. Geology of Bangladesh. Gebruder Borntraeger, Berlin. 160 p.

Richter, F. M., Rowley, D. B. and DePaolo, D. J. 1992. Sr isotope evolution of seawater: the role of tectonics. Earth and Planetary Science Letters, 109, 11-23.

Roser, B. P. and Korsch, R. J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 and K2O/Na2O ratio. Journal of Geology, 94, 635-650.

Roser, B. P. and Korsch, R. J. 1988. Provenance signatures of sandstone-mudstone suites determined using discrimination function analysis of major-element data. Chemical Geology, 67, 119-139.

Roser, B. P., Sawada, Y. and Kabeto, K. 1998. Crushing performance and contamination trials of a tungsten carbide ring mill compared to agate grinding. Geoscience Reports of Shimane University, 17, 1-11.

Uddin, A. and Lundberg, N. 1999. A paleo-Brahmaputra? Subsurface lithofacies analysis of Miocene deltaic sediments in the Himalayan-Bengal system, Bangladesh. Sedimentary Geology, 123, 227-242.

Taylor, S. R. and McLennan, S. M. 1985. The continental crust: its compo-sition and evolution. Oxford, Blackwell Scientific, 312 p.

(Received: Oct. 3, 2011, Accepted: Oct. 28, 2011)

Major and trace element compositions of Tertiary sedimentary successions in the NW and SE Bengal basin, Bangladesh 45