avances en envase sustentable

Click here to load reader

Post on 16-Jul-2015

116 views

Category:

Design

2 download

Embed Size (px)

TRANSCRIPT

  • EnvasesSustentablesAvances en

  • CA 381

    Cuerpo acadmico

    Nuevas tecnologas para el diseoDiseo industrial y manufactura asistida por computadoraNuevos materiales y sistemas de manufacturaDiseo para la sustentabilidad Anlisis de tendencias en el diseo y desarrollo de productos

    Tecnologas tradicionales de manufactura de productosOptimizacin de procesos tecnolgicos tradicionalesSustentabilidad en lo procesos tecnolgicos tradicionalesDesarrollo de infraestructura para los procesos tecnolgicos tradicionalesDesarrollo de tecnologas alternativasEnvase y embalaje

    Innovacin tecnolgica para el diseo

  • Equipo

    AlbertoRosa

    FranciscoGonzlez Madariaga

    Jaime FGmez

    EnriqueHerrera

    HctorFlores Magn

    MarioOrozco

  • EnvaseSustentable

  • El envase es el medio de diseo que tiene el mayor impacto y crecimiento global, y toca a millones de consumidores cada da en el planeta.

    Juega un rol vital en la proteccin, distribucin y comunicacin de cada producto y servicio que consumimos.

    El envase presenta un enorme impacto ambiental, y el diseo del mismo juega un rol crtico y de responsabilidad de cara a los recursos y sustentabilidad del planeta y su futuro.

  • Slo para recordar...

  • 1. ProteccinLa funcin primaria y esencial es contener y proteger al producto.Quiz las carteras de huevo fabricadas con pulpa de papel moldeada sean el mejor ejemplo de un envase funcional.

  • 2. TransporteAdems de proteger, el envase debe ayudar al transporte, distribucin y almacenaje del producto.

  • 3. ComunicacinDebe de describir su contenido, propiedades, mercado, beneficios, etc, etc....

  • Un problema de percepcin...

  • ?Cmo es un envase sustentable

  • 1. Es benfico, seguro y saludable para los individuos y sus comunidades a lo largo de su ciclo de vida2. Cumple con los criterios de mercado, costo y desempeo3. Es fabricado, transportado y debidamente reciclado utilizando energa renovable4. Maximiza el uso de materiales renovables y reciclables5. Es manufacturado usando procesos tecnologas limpias 6. Est fabricado de materiales seguros en todos los posibles escenarios del fin de ciclo de vida7. Est fsicamente diseado para optimizar materiales y energa8. Es efectivamente reciclado y utilizado en ciclos biolgicos o industriales de la cuna a la cuna (cradle-to-cradle)

  • 65% Diseo para reciclaje o utilizacin del material reciclado

    57% Reduccin del peso del envase

    41% Materiales renovables o bio-materiales

    25% Materiales compostables

    Hacia donde se dirige la investigacin en envase sustentable

  • Anlisis del ciclo de vida (LCA)

    39

    The materials life cycle

    CHAPTER 3

    Image of casting courtesy of Skillspace; image of car making courtesy of U.S. Department of Energy EERE program; image of cars courtesy of Reuters.com; image of junk car courtesy of Junkyards.com.

    CONTENTS

    3.1 Introduction and synopsis

    3.2 The material life cycle

    3.3 Life-cycle assessment: details and diffi culties

    3.4 Streamlined LCA

    3.5 The strategy for eco-selection of materials

    3.6 Summary and conclusion

    3.7 Further reading

    3.8 Appendix: software for LCA

    3.9 Exercises 3.1 Introduction and synopsis

    The materials of engineering have a life cycle. They are created from ores and feedstock. These are manufactured into products that are distributed and used. Like us, products have a fi nite life, at the end of which they become scrap. The materials they contain, however, are still there; some (unlike us) can be resurrected and enter a second life as recycled content in a new product.

    Life-cycle assessment (LCA) traces this progression, documenting the resources consumed and the emissions excreted during each phase of life. The output is a sort of biography, documenting where the materials have been, what they have done, and the consequences for their surroundings.

    Material

    Manufacture

    Use

    Disposal

    Resources

    Manufactura

    UsoMaterial

    Disposicin

    Recursos

  • sold, and used. Products have a useful life, at the end of which they are dis-carded, a fraction of the materials they contain perhaps entering a recycling loop, the rest committed to incineration or landfi ll.

    Energy and materials are consumed at each point in this cycle, deplet-ing natural resources. Consumption brings an associated penalty of car-bon dioxide (CO 2), oxides of sulfur (SO x), and of nitrogen (NO x), and other emissions in the form of low-grade heat and gaseous, liquid, and solid waste. In low concentrations, most of these emissions are harmless, but as their concentrations build, they become damaging. The problem, simply put, is that the sum of these unwanted by-products now often exceeds the capacity of the environment to absorb them. For some the damage is local and the creator of the emissions accepts the responsibility and cost of con-taining and remediating it (the environmental cost is said to be internal-ized). For others the damage is global and the creator of the emissions is not held directly responsible, so the environmental cost becomes a burden on society as a whole (it is externalized). The study of resource consump-tion, emissions, and their impacts is called life-cycle assessment (LCA).

    Materialproduction

    Productmanufacture

    Productuse

    Productdisposal

    Natural resources

    CO2, NOx, SOxParticulatesToxic wasteLow grade heat

    Emissions

    Energy

    Feedstocks

    Transport

    FIGURE 3.1 The material life cycle. Ore and feedstock are mined and processed to yield a mate-rial. This material is manufactured into a product that is used, and at the end of its life, it is discarded, recycled, or, less commonly, refurbished and reused. Energy and materials are consumed in each phase, generating waste heat and solid, liquid, and gaseous emissions.

    The material life cycle 41

    Recursos

    Materia prima

    Transporte

    Energa

    Produccin deMateriales

    Manufactura deproductos

    Uso de losproductos

    DisposicinfinalCO2 NOx SOx

    PartculasBasura txicaCalor

    Emisiones

    Recursos naturales

  • ?Vidrio PE PET Aluminio AceroCul de estos envases tendrmenor gasto energtico

  • 201

    The masses of fi ve competing container types, the material of which they are made, and the embodied energy of each are listed in Table 9.2 . All fi ve materials can be recycled. For all fi ve, cost-effective processes exist for making containers. All but one steelresist corrosion in the mildly acidic or alkaline conditions characteristic of bottled drinks. Steel is easily pro-tected with lacquers.

    Embo

    died

    ene

    rgy

    (MJ/k

    g)

    100

    Ener

    gy/u

    nit v

    ol (M

    J/lite

    r)

    100

    200

    50

    150

    0

    2

    4

    6

    8

    PEPET

    Stee

    l

    Glas

    s

    Alum

    inum

    PE

    PET

    Stee

    l

    Glas

    s

    Alum

    inum

    Energy per kg

    Energy per liter

    FIGURE 9.2 Top: the embodied energy of the bottle materials. Bottom: the material energy per liter of fl uid contained.

    Table 9.1 Design requirements for drink containers

    Function Drink container

    Constraints Must be immune to corrosion in the drink Must be easy and fast to shape Must be recyclable Objective Minimize embodied energy per unit capacity

    Free variables Choice of material

    Selection per unit of function

    201

    The masses of fi ve competing container types, the material of which they are made, and the embodied energy of each are listed in Table 9.2 . All fi ve materials can be recycled. For all fi ve, cost-effective processes exist for making containers. All but one steelresist corrosion in the mildly acidic or alkaline conditions characteristic of bottled drinks. Steel is easily pro-tected with lacquers.

    Embo

    died

    ene

    rgy

    (MJ/k

    g)

    100

    Ener

    gy/u

    nit v

    ol (M

    J/lite

    r)

    100

    200

    50

    150

    0

    2

    4

    6

    8

    PEPET

    Stee

    l

    Glas

    s

    Alum

    inum

    PE

    PET

    Stee

    l

    Glas

    s

    Alum

    inum

    Energy per kg

    Energy per liter

    FIGURE 9.2 Top: the embodied energy of the bottle materials. Bottom: the material energy per liter of fl uid contained.

    Table 9.1 Design requirements for drink containers

    Function Drink container

    Constraints Must be immune to corrosion in the drink Must be easy and fast to shape Must be recyclable Objective Minimize embodied energy per unit capacity

    Free variables Choice of material

    Selection per unit of function

    Energa por kg Energa por lt

    Alumi

    nio

    Alumi

    nio

    Vidrio

    Acero

    Vidrio

    Acero

    Ener

    ga/

    unida

    d de

    volum

    en (M

    J/lt)

    Gasto

    ene

    rgt

    ico (M

    J/kg)

    Tipo de contenedor

    Botella PET 400 ml

    Botella PE 1 lt

    Botella vidrio 750 ml

    Lata Al 440 ml

    Lata acero 440 ml

    Material

    PET

    PE HD

    Vidrio de soda

    Al serie 5000

    Acero plano

    Masa, gms

    25

    38

    325

    20

    45

    Gasto energtico

    MJ/kg

    84

    81

    15.5

    208

    32

    Energa/litro

    MJ/lt

    5.3

    3.8

    6.7

    9.5

    3.3