basics and state of the art of quantum-chemistry methods ......basics and state of the art of...

78
Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖 (Igor Ying Zhang) 复旦大学化学系 Department of Chemistry, Fudan University 2018-08-02, 北京 Hands-on Workshop Density-functional Theory and Beyond

Upload: others

Post on 18-Nov-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Basics and State of the Art of Quantum-ChemistryMethods for Molecules, Clusters and Materials

张颖 (Igor Ying Zhang)

复旦大学化学系Department of Chemistry, Fudan University

2018-08-02, 北京Hands-on Workshop Density-functional Theory and Beyond

Page 2: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Electronic Structure Theory

Materials science and engineering: Properties of solids

Solve many-electron Schrödinger Equation

Hψ(r1, ..., rN ) =

[−

12

N∑i

∇2i −

N∑i

v(ri) +N∑

i<j

1rij

]ψ(r1, ..., rN ) = Eψ(r1, ..., rN )

3N-dimensional problem.Find a good approximation!

Igor (FDU) QCM 2018-08-02 2 / 46

Page 3: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Different Ways to Approach the Exact Solutions

Wave-function Theory (WFT) Density-functional Theory (DFT)

A. E. Mattsson, and J. M. Wills, IJQC, 116, 834 (2016).G. H. Booth, et. al., Nature, 493, 365 (2013).

Improvable accuracy & potentially richer information

Igor (FDU) QCM 2018-08-02 3 / 46

Page 4: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Different Ways to Approach the Exact Solutions

Wave-function Theory (WFT)

Density-functional Theory (DFT)

A. E. Mattsson, and J. M. Wills, IJQC, 116, 834 (2016).G. H. Booth, et. al., Nature, 493, 365 (2013).

Improvable accuracy & potentially richer informationIgor (FDU) QCM 2018-08-02 3 / 46

Page 5: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

▶ The 2nd-order Møller-Plessetperturbation theory

▶ The simplest wave function-basedmethod

▶ The computational cost is O(N5)with system size N

MP2

▶ Coupled-cluster approach withsingle, double, and perturbativetriple excitations

▶ “Gold standard” in quantumchemistry

▶ The computational cost is O(N7)with system size N

CCSD(T)

MP2 and CCSD(T) are the mostpopular wave function-basedquantum-chemistry methods

Igor (FDU) QCM 2018-08-02 4 / 46

Page 6: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

▶ The 2nd-order Møller-Plessetperturbation theory

▶ The simplest wave function-basedmethod

▶ The computational cost is O(N5)with system size N

MP2

▶ Coupled-cluster approach withsingle, double, and perturbativetriple excitations

▶ “Gold standard” in quantumchemistry

▶ The computational cost is O(N7)with system size N

CCSD(T)

MP2 and CCSD(T) are the mostpopular wave function-basedquantum-chemistry methods

Igor (FDU) QCM 2018-08-02 4 / 46

Page 7: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Performance of CCSD(T) and MP2

F. Neese, et. al. Acc. of Chem. Research, 42, 641 (2009).J. Zheng, et. al. J. Chem. Theory Comput., 3, 569 (2007).

▶ CCSD(T) shows an overwhelmingperformance, serving the ultimatebenchmark for the development ofother methods.

State of the Art▶ Large-scale parallel CCSD(T)

implementations → >= 1,000s nodes.▶ Reduced-scaling CCSD(T) algorithms:

O(N7) → O(N?)▶ Coupled-electron pair approximations

(CEPA) and others▶ Molecules → Solids

▶ MP2 surpasses DFAs in manyimportant properties, including weakinteraction, charge-transfer-drivenproperties and others.

State of the Art▶ Large-scale parallel MP2

implementations → >= 1,000s nodes.▶ Reduced-scaling MP2 algorithms:

O(N5) → O(N3), and even O(N)▶ Double hybrid density functional

approximations▶ Molecules → Solids

Igor (FDU) QCM 2018-08-02 5 / 46

Page 8: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Performance of CCSD(T) and MP2

F. Neese, et. al. Acc. of Chem. Research, 42, 641 (2009).J. Zheng, et. al. J. Chem. Theory Comput., 3, 569 (2007).

▶ CCSD(T) shows an overwhelmingperformance, serving the ultimatebenchmark for the development ofother methods.

State of the Art▶ Large-scale parallel CCSD(T)

implementations → >= 1,000s nodes.▶ Reduced-scaling CCSD(T) algorithms:

O(N7) → O(N?)▶ Coupled-electron pair approximations

(CEPA) and others▶ Molecules → Solids

▶ MP2 surpasses DFAs in manyimportant properties, including weakinteraction, charge-transfer-drivenproperties and others.

State of the Art▶ Large-scale parallel MP2

implementations → >= 1,000s nodes.▶ Reduced-scaling MP2 algorithms:

O(N5) → O(N3), and even O(N)▶ Double hybrid density functional

approximations▶ Molecules → Solids

Igor (FDU) QCM 2018-08-02 5 / 46

Page 9: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Basics of MP2 and CCSD(T)Elementary configuration space concepts

References:▶ Szabo, Attila and Ostlund, Neil S. Modern Quantum Chemistry, publisher

McGraw-Hill, New York, 1996. BOOK▶ Rodney J. Bartlett and Monika Musial, Coupled-cluster theory in quantum

chemisty, Rev. Modern Phys. 79:291:352, 2007▶ So Hirata, Thermodynamic limit and size-consistent design, Theor. Chem.

Acc. 129:727-746, 2011

Igor (FDU) QCM 2018-08-02 6 / 46

Page 10: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Definition of the Correlation Energy in Quantum Chemistry

Ecorr = Eexact − EHFMost accepted definition of correlationenergy (Löwdin)

Hatree-Fock (HF) approximation:

▶ The common ground of allquantum-chemistry methods.

▶ A mean-field approximation (orindependent particle) model

▶ A single slater determinant|Φ0⟩ = |ϕ1ϕ2...ϕn⟩

▶ A set of single-particle HForbitals {ϕi} (occupied +virtual)

|Φ0⟩ = 1√N !

∣∣∣∣∣∣∣∣ϕ1(x1) ϕ1(x2) · · · ϕ1(xN )ϕ2(x1) ϕ2(x2) · · · ϕ2(xN )

......

...ϕN (x1) ϕN (x2) · · · ϕN (xN )

∣∣∣∣∣∣∣∣∂⟨Φ0∣∣H∣∣Φ0

⟩∂ϕi

= 0;⟨Φ0∣∣H∣∣Φ0

⟩= EHF

(−1

2 ∇2 + Vext + VCoul + K)

|ϕi⟩ =εi |ϕi⟩

F |ϕi⟩ =εi |ϕi⟩

Configuration Space concepts:

▶ HF ground state: |Φ0⟩▶ nth-order excitations: |Φa···

i··· ⟩

▶ T3 |Φ0⟩ =∑

ijkabc Cabcijk

∣∣∣Φabcijk

⟩▶ Ground state + excited states

→ Configuration space for theElectron Correlation problem

Φ0 Φai Φab

ij Φabcijk

T1 T2 T3

Ψ0 = Φ0 +∑

iaCa

i Φai +∑

ijabCab

ij Φabij +

∑ijkabc

Cabcijk Φabc

ijk + · · ·

Igor (FDU) QCM 2018-08-02 7 / 46

Page 11: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Definition of the Correlation Energy in Quantum Chemistry

Ecorr = Eexact − EHFMost accepted definition of correlationenergy (Löwdin)

Hatree-Fock (HF) approximation:

▶ The common ground of allquantum-chemistry methods.

▶ A mean-field approximation (orindependent particle) model

▶ A single slater determinant|Φ0⟩ = |ϕ1ϕ2...ϕn⟩

▶ A set of single-particle HForbitals {ϕi} (occupied +virtual)

|Φ0⟩ = 1√N !

∣∣∣∣∣∣∣∣ϕ1(x1) ϕ1(x2) · · · ϕ1(xN )ϕ2(x1) ϕ2(x2) · · · ϕ2(xN )

......

...ϕN (x1) ϕN (x2) · · · ϕN (xN )

∣∣∣∣∣∣∣∣∂⟨Φ0∣∣H∣∣Φ0

⟩∂ϕi

= 0;⟨Φ0∣∣H∣∣Φ0

⟩= EHF

(−1

2 ∇2 + Vext + VCoul + K)

|ϕi⟩ =εi |ϕi⟩

F |ϕi⟩ =εi |ϕi⟩

Configuration Space concepts:

▶ HF ground state: |Φ0⟩▶ nth-order excitations: |Φa···

i··· ⟩

▶ T3 |Φ0⟩ =∑

ijkabc Cabcijk

∣∣∣Φabcijk

⟩▶ Ground state + excited states

→ Configuration space for theElectron Correlation problem

Φ0 Φai Φab

ij Φabcijk

T1 T2 T3

Ψ0 = Φ0 +∑

iaCa

i Φai +∑

ijabCab

ij Φabij +

∑ijkabc

Cabcijk Φabc

ijk + · · ·

Igor (FDU) QCM 2018-08-02 7 / 46

Page 12: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Configuration Interaction (CI) Expansion

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Intermediatenormalization: ⟨Ψ0|Φ0⟩ = C0 = 1; ⟨Ψ0|Ψ0⟩ = 1; ⟨Ψ0|Ψ0⟩ ≍ N

Convention:

Due to the electron indistinguishability, the summations in the wavefunction should only go through the combination of i < j, a <b for Cab

ij and i < j < k, a < b < c for Cabcijk , and so forth.

For simplicity, we do not explicitly write this constrain down in thistalk.

CI energy:(H − EHF

)|Ψ0⟩ = (Eexact − EHF ) |Ψ0⟩

⟨Φ0∣∣(H − EHF

)∣∣Ψ0⟩

= Ecorr ⟨Φ0|Ψ0⟩

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

Igor (FDU) QCM 2018-08-02 8 / 46

Page 13: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Configuration Interaction (CI) Expansion

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Intermediatenormalization: ⟨Ψ0|Φ0⟩ = C0 = 1; ⟨Ψ0|Ψ0⟩ = 1; ⟨Ψ0|Ψ0⟩ ≍ N

Convention:

Due to the electron indistinguishability, the summations in the wavefunction should only go through the combination of i < j, a <b for Cab

ij and i < j < k, a < b < c for Cabcijk , and so forth.

For simplicity, we do not explicitly write this constrain down in thistalk.

CI energy:(H − EHF

)|Ψ0⟩ = (Eexact − EHF ) |Ψ0⟩

⟨Φ0∣∣(H − EHF

)∣∣Ψ0⟩

= Ecorr ⟨Φ0|Ψ0⟩

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

Igor (FDU) QCM 2018-08-02 8 / 46

Page 14: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Configuration Interaction (CI) Expansion

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Intermediatenormalization: ⟨Ψ0|Φ0⟩ = C0 = 1; ⟨Ψ0|Ψ0⟩ = 1; ⟨Ψ0|Ψ0⟩ ≍ N

Convention:

Due to the electron indistinguishability, the summations in the wavefunction should only go through the combination of i < j, a <b for Cab

ij and i < j < k, a < b < c for Cabcijk , and so forth.

For simplicity, we do not explicitly write this constrain down in thistalk.

CI energy:

(H − EHF

)|Ψ0⟩ = (Eexact − EHF ) |Ψ0⟩

⟨Φ0∣∣(H − EHF

)∣∣Ψ0⟩

= Ecorr ⟨Φ0|Ψ0⟩

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

Igor (FDU) QCM 2018-08-02 8 / 46

Page 15: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Configuration Interaction (CI) Expansion

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Intermediatenormalization: ⟨Ψ0|Φ0⟩ = C0 = 1; ⟨Ψ0|Ψ0⟩ = 1; ⟨Ψ0|Ψ0⟩ ≍ N

Convention:

Due to the electron indistinguishability, the summations in the wavefunction should only go through the combination of i < j, a <b for Cab

ij and i < j < k, a < b < c for Cabcijk , and so forth.

For simplicity, we do not explicitly write this constrain down in thistalk.

CI energy:

(H − EHF

)|Ψ0⟩ = (Eexact − EHF ) |Ψ0⟩

⟨Φ0∣∣(H − EHF

)∣∣Ψ0⟩

= Ecorr ⟨Φ0|Ψ0⟩

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

⟩Igor (FDU) QCM 2018-08-02 8 / 46

Page 16: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Nesbet’s and Brillouin’s Theorems

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

Hamiltonian: H = −12

N∑i

∇2i −

N∑i

v(ri) +N∑

i<j

1rij

Correlationenergy:

Ecorr =∑

ia

Cai

⟨Φ0∣∣H∣∣Φa

i

⟩+∑ijab

Cabij

⟨Φ0∣∣H∣∣Φab

ij

⟩Ecorr =

∑ia

Cai

⟨ϕi

∣∣F ∣∣ϕa

⟩+∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Brillouin’sTheorem:

⟨ϕi

∣∣F ∣∣ϕa

⟩∗=⟨ϕa

∣∣F ∣∣ϕi

⟩= εi ⟨ϕi|ϕa⟩ = 0

For HF orbitals, the matrix elements of the Hamil-tonian with single excited configurations are zero!

Correlationenergy:

Ecorr =∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Nesbet’sTheorem:

If we would know the precise values of the double excitationcoefficients, we would know the EXACT correlation energy

BUT all coefficients of excited configura-tions are indirectly depends on each others!

The central task in quantum chemistry is to find bet-ter approximations to the doubly excited coefficients CD

Igor (FDU) QCM 2018-08-02 9 / 46

Page 17: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Nesbet’s and Brillouin’s Theorems

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

Hamiltonian: H = −12

N∑i

∇2i −

N∑i

v(ri) +N∑

i<j

1rij

Correlationenergy:

Ecorr =∑

ia

Cai

⟨Φ0∣∣H∣∣Φa

i

⟩+∑ijab

Cabij

⟨Φ0∣∣H∣∣Φab

ij

⟩Ecorr =

∑ia

Cai

⟨ϕi

∣∣F ∣∣ϕa

⟩+∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Brillouin’sTheorem:

⟨ϕi

∣∣F ∣∣ϕa

⟩∗=⟨ϕa

∣∣F ∣∣ϕi

⟩= εi ⟨ϕi|ϕa⟩ = 0

For HF orbitals, the matrix elements of the Hamil-tonian with single excited configurations are zero!

Correlationenergy:

Ecorr =∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Nesbet’sTheorem:

If we would know the precise values of the double excitationcoefficients, we would know the EXACT correlation energy

BUT all coefficients of excited configura-tions are indirectly depends on each others!

The central task in quantum chemistry is to find bet-ter approximations to the doubly excited coefficients CD

Igor (FDU) QCM 2018-08-02 9 / 46

Page 18: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Nesbet’s and Brillouin’s Theorems

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

Hamiltonian: H = −12

N∑i

∇2i −

N∑i

v(ri) +N∑

i<j

1rij

Correlationenergy:

Ecorr =∑

ia

Cai

⟨Φ0∣∣H∣∣Φa

i

⟩+∑ijab

Cabij

⟨Φ0∣∣H∣∣Φab

ij

Ecorr =∑

ia

Cai

⟨ϕi

∣∣F ∣∣ϕa

⟩+∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Brillouin’sTheorem:

⟨ϕi

∣∣F ∣∣ϕa

⟩∗=⟨ϕa

∣∣F ∣∣ϕi

⟩= εi ⟨ϕi|ϕa⟩ = 0

For HF orbitals, the matrix elements of the Hamil-tonian with single excited configurations are zero!

Correlationenergy:

Ecorr =∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Nesbet’sTheorem:

If we would know the precise values of the double excitationcoefficients, we would know the EXACT correlation energy

BUT all coefficients of excited configura-tions are indirectly depends on each others!

The central task in quantum chemistry is to find bet-ter approximations to the doubly excited coefficients CD

Igor (FDU) QCM 2018-08-02 9 / 46

Page 19: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Nesbet’s and Brillouin’s Theorems

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

Hamiltonian: H = −12

N∑i

∇2i −

N∑i

v(ri) +N∑

i<j

1rij

Correlationenergy:

Ecorr =∑

ia

Cai

⟨Φ0∣∣H∣∣Φa

i

⟩+∑ijab

Cabij

⟨Φ0∣∣H∣∣Φab

ij

⟩Ecorr =

∑ia

Cai

⟨ϕi

∣∣F ∣∣ϕa

⟩+∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Brillouin’sTheorem:

⟨ϕi

∣∣F ∣∣ϕa

⟩∗=⟨ϕa

∣∣F ∣∣ϕi

⟩= εi ⟨ϕi|ϕa⟩ = 0

For HF orbitals, the matrix elements of the Hamil-tonian with single excited configurations are zero!

Correlationenergy:

Ecorr =∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Nesbet’sTheorem:

If we would know the precise values of the double excitationcoefficients, we would know the EXACT correlation energy

BUT all coefficients of excited configura-tions are indirectly depends on each others!

The central task in quantum chemistry is to find bet-ter approximations to the doubly excited coefficients CD

Igor (FDU) QCM 2018-08-02 9 / 46

Page 20: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Nesbet’s and Brillouin’s Theorems

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

Hamiltonian: H = −12

N∑i

∇2i −

N∑i

v(ri) +N∑

i<j

1rij

Correlationenergy:

Ecorr =∑

ia

Cai

⟨Φ0∣∣H∣∣Φa

i

⟩+∑ijab

Cabij

⟨Φ0∣∣H∣∣Φab

ij

⟩Ecorr =

∑ia

Cai

⟨ϕi

∣∣F ∣∣ϕa

⟩+∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Brillouin’sTheorem:

⟨ϕi

∣∣F ∣∣ϕa

⟩∗=⟨ϕa

∣∣F ∣∣ϕi

⟩= εi ⟨ϕi|ϕa⟩ = 0

For HF orbitals, the matrix elements of the Hamil-tonian with single excited configurations are zero!

Correlationenergy:

Ecorr =∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Nesbet’sTheorem:

If we would know the precise values of the double excitationcoefficients, we would know the EXACT correlation energy

BUT all coefficients of excited configura-tions are indirectly depends on each others!

The central task in quantum chemistry is to find bet-ter approximations to the doubly excited coefficients CD

Igor (FDU) QCM 2018-08-02 9 / 46

Page 21: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Nesbet’s and Brillouin’s Theorems

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

Hamiltonian: H = −12

N∑i

∇2i −

N∑i

v(ri) +N∑

i<j

1rij

Correlationenergy:

Ecorr =∑

ia

Cai

⟨Φ0∣∣H∣∣Φa

i

⟩+∑ijab

Cabij

⟨Φ0∣∣H∣∣Φab

ij

⟩Ecorr =

∑ia

Cai

⟨ϕi

∣∣F ∣∣ϕa

⟩+∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Brillouin’sTheorem:

⟨ϕi

∣∣F ∣∣ϕa

⟩∗=⟨ϕa

∣∣F ∣∣ϕi

⟩= εi ⟨ϕi|ϕa⟩ = 0

For HF orbitals, the matrix elements of the Hamil-tonian with single excited configurations are zero!

Correlationenergy:

Ecorr =∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Nesbet’sTheorem:

If we would know the precise values of the double excitationcoefficients, we would know the EXACT correlation energy

BUT all coefficients of excited configura-tions are indirectly depends on each others!

The central task in quantum chemistry is to find bet-ter approximations to the doubly excited coefficients CD

Igor (FDU) QCM 2018-08-02 9 / 46

Page 22: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Nesbet’s and Brillouin’s Theorems

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

Hamiltonian: H = −12

N∑i

∇2i −

N∑i

v(ri) +N∑

i<j

1rij

Correlationenergy:

Ecorr =∑

ia

Cai

⟨Φ0∣∣H∣∣Φa

i

⟩+∑ijab

Cabij

⟨Φ0∣∣H∣∣Φab

ij

⟩Ecorr =

∑ia

Cai

⟨ϕi

∣∣F ∣∣ϕa

⟩+∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Brillouin’sTheorem:

⟨ϕi

∣∣F ∣∣ϕa

⟩∗=⟨ϕa

∣∣F ∣∣ϕi

⟩= εi ⟨ϕi|ϕa⟩ = 0

For HF orbitals, the matrix elements of the Hamil-tonian with single excited configurations are zero!

Correlationenergy:

Ecorr =∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Nesbet’sTheorem:

If we would know the precise values of the double excitationcoefficients, we would know the EXACT correlation energy

BUT all coefficients of excited configura-tions are indirectly depends on each others!

The central task in quantum chemistry is to find bet-ter approximations to the doubly excited coefficients CD

Igor (FDU) QCM 2018-08-02 9 / 46

Page 23: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Nesbet’s and Brillouin’s Theorems

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Correlationenergy:

Ecorr =∑

I

CI

⟨Φ0∣∣H∣∣ΦI

Hamiltonian: H = −12

N∑i

∇2i −

N∑i

v(ri) +N∑

i<j

1rij

Correlationenergy:

Ecorr =∑

ia

Cai

⟨Φ0∣∣H∣∣Φa

i

⟩+∑ijab

Cabij

⟨Φ0∣∣H∣∣Φab

ij

⟩Ecorr =

∑ia

Cai

⟨ϕi

∣∣F ∣∣ϕa

⟩+∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Brillouin’sTheorem:

⟨ϕi

∣∣F ∣∣ϕa

⟩∗=⟨ϕa

∣∣F ∣∣ϕi

⟩= εi ⟨ϕi|ϕa⟩ = 0

For HF orbitals, the matrix elements of the Hamil-tonian with single excited configurations are zero!

Correlationenergy:

Ecorr =∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Nesbet’sTheorem:

If we would know the precise values of the double excitationcoefficients, we would know the EXACT correlation energy

BUT all coefficients of excited configura-tions are indirectly depends on each others!

The central task in quantum chemistry is to find bet-ter approximations to the doubly excited coefficients CD

Igor (FDU) QCM 2018-08-02 9 / 46

Page 24: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

MP2: First-order perturbation treatment of Cabij

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Correlationenergy:

Ecorr =∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

Coefficientsby MP2: Cab

ij = −⟨ϕaϕb||ϕiϕj⟩

εa + εb − εi − εj→∣∣ΨMP2

⟩EMP2

c = −∑ijab

|⟨ϕiϕj ||ϕaϕb⟩|2

εa + εb − εi − εj

Igor (FDU) QCM 2018-08-02 10 / 46

Page 25: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Configuration Interaction (CI) Equation

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Intermediatenormalization: ⟨ΨI |Φ0⟩ = CI ; ⟨Ψ0|Φ0⟩ = C0 = 1

Secular Equation:⟨

ΦI

∣∣H − EHF

∣∣Ψ0⟩

= Ecorr ⟨ΦI |Ψ0⟩

∑J

⟨ΦI

∣∣H − EHF

∣∣ΦJ

⟩CJ = Ecorr

∑J

CJ ⟨ΦI |ΦJ ⟩

Igor (FDU) QCM 2018-08-02 11 / 46

Page 26: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Configuration Interaction (CI) Equation

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Intermediatenormalization: ⟨ΨI |Φ0⟩ = CI ; ⟨Ψ0|Φ0⟩ = C0 = 1

Secular Equation:

⟨ΦI

∣∣H − EHF

∣∣Ψ0⟩

= Ecorr ⟨ΦI |Ψ0⟩

∑J

⟨ΦI

∣∣H − EHF

∣∣ΦJ

⟩CJ = Ecorr

∑J

CJ ⟨ΦI |ΦJ ⟩

Igor (FDU) QCM 2018-08-02 11 / 46

Page 27: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Truncated Configuration Interaction with DoubleExcitations (CID)

Secular Equation:∑klcd

⟨Φab

ij

∣∣H − EHF

∣∣Φcdkl

⟩Ccd

kl = Ecorr

∑klcd

Ccdkl

⟨Φab

ij |Φcdkl

⟩(

0 B∗

B D

)(1

C

)= Ecorr

(1

C

)

Bijab =⟨

Φabij

∣∣H∣∣Φ0⟩

Dijab,klbc =⟨

Φabij

∣∣H − EHF

∣∣Φbckl

CI Coefficients: C = −(D − 1Ecorr)−1B

CI Correlation: Ecorr = −B∗(D − 1Ecorr)−1B

Igor (FDU) QCM 2018-08-02 12 / 46

Page 28: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Truncated Configuration Interaction with DoubleExcitations (CID)

Secular Equation:∑klcd

⟨Φab

ij

∣∣H − EHF

∣∣Φcdkl

⟩Ccd

kl = Ecorr

∑klcd

Ccdkl

⟨Φab

ij |Φcdkl

⟩(

0 B∗

B D

)(1

C

)= Ecorr

(1

C

)

Bijab =⟨

Φabij

∣∣H∣∣Φ0⟩

Dijab,klbc =⟨

Φabij

∣∣H − EHF

∣∣Φbckl

CI Coefficients: C = −(D − 1Ecorr)−1B

CI Correlation: Ecorr = −B∗(D − 1Ecorr)−1B

Igor (FDU) QCM 2018-08-02 12 / 46

Page 29: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Size ExtensivityIf we treat a supersystem consisting of non-interacting subsystems (A · · · B),we should obtain the sum of the individual subsystem energies.

Ecorr[A · · · B] = Ecorr[A] + Ecorr[B]

Equivalent definition is that the correlation energy should be asympotitcallypropotional to the number of electrons N

Ecorr ≍ N

▶ In chemistry one is interested in the relative energies of molecules ofdifferent size, making this property a prerequisite for the development ofelectronic-structure methods.

▶ In condensed matter systems that contain an infinite number ofelectrons, the approximation that is not size extensive doesn’t work atall.

Igor (FDU) QCM 2018-08-02 13 / 46

Page 30: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Analysis of Size Extensivity in H2 · · · H2

For a single minimal basis H2 molecule, we found that the CID matrix is ofthe form:

H =(

0 VV ∆

)with

∆ =⟨ΦD

∣∣H − EHF

∣∣ΨD

⟩V =

⟨Φ0∣∣H − EHF

∣∣ΨD

⟩ σ∗

σGround state of theminimal basis H2system.With the lowest eigenvalue:

E0 = 12

(∆ −

√∆2 + 4V 2

)

It is easy to show that for N noninteracting H2 molecules CID gives:

E0 = 12

(∆ −

√∆2 + 4NV 2

)≍ N1/2

Igor (FDU) QCM 2018-08-02 14 / 46

Page 31: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Analysis of Size Extensivity in H2 · · · H2

For a single minimal basis H2 molecule, we found that the CID matrix is ofthe form:

H =(

0 VV ∆

)with

∆ =⟨ΦD

∣∣H − EHF

∣∣ΨD

⟩V =

⟨Φ0∣∣H − EHF

∣∣ΨD

⟩ σ∗

σGround state of theminimal basis H2system.With the lowest eigenvalue:

E0 = 12

(∆ −

√∆2 + 4V 2

)It is easy to show that for N noninteracting H2 molecules CID gives:

E0 = 12

(∆ −

√∆2 + 4NV 2

)≍ N1/2

Igor (FDU) QCM 2018-08-02 14 / 46

Page 32: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

CID in Iterative Solution

CI Coefficients: C = −(D − 1Ecorr)−1B

CI Correlation: Ecorr = −B∗(D − 1Ecorr)−1B

Large-dimentional eigenvalue problem → iterative solution (Davidson algorithm){E(0)

corr = EMP2c ;C(0) → ΨMP2

}→ E(1)

corr = − EMP2c + ∆EMP3

c

1 + ⟨ΨMP2|ΨMP2⟩

{EMPn

c ≍ N ;⟨ΨMP2|ΨMP2⟩ ≍ N

}→ E(1)

corr ≍ N0

Igor (FDU) QCM 2018-08-02 15 / 46

Page 33: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

CID in Iterative Solution

CI Coefficients: C = −(D − 1Ecorr)−1B

CI Correlation: Ecorr = −B∗(D − 1Ecorr)−1B

Large-dimentional eigenvalue problem → iterative solution (Davidson algorithm){E(0)

corr = EMP2c ;C(0) → ΨMP2

}→ E(1)

corr = − EMP2c + ∆EMP3

c

1 + ⟨ΨMP2|ΨMP2⟩

{EMPn

c ≍ N ;⟨ΨMP2|ΨMP2⟩ ≍ N

}→ E(1)

corr ≍ N0

Igor (FDU) QCM 2018-08-02 15 / 46

Page 34: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Brueckner-Goldstone Theorem

EMP2c = ▼ ▲ ▲ ▼ + ▼ ▲

ErMP2c = ▼ ▲ ▲ ▼ + ▼ ▲ ×S

= −−▼ ▲▲ ▼

▼ ▲▲ ▼▼ ▲▲ ▼▼ ▲▲ ▼

renormalizedterm in CID

unlinked 4th-excited terms

linked 2nd-excited terms

Many-body Corr. Unlinked Corr.No size extensive

Linked Corr.Size extensive

Renormalized diagrams in the truncated CI correlation scale as N2 or higher with theelectron number N , which, however, can be exactly eliminated by the disconnected (orunlinked) higher-order excited diagrams (except for exclusion principle violating terms).

Igor (FDU) QCM 2018-08-02 16 / 46

Page 35: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Brueckner-Goldstone Theorem

EMP2c = ▼ ▲ ▲ ▼ + ▼ ▲

ErMP2c = ▼ ▲ ▲ ▼ + ▼ ▲ ×S

= −−▼ ▲▲ ▼

▼ ▲▲ ▼▼ ▲▲ ▼▼ ▲▲ ▼

renormalizedterm in CID

unlinked 4th-excited terms

linked 2nd-excited terms

Many-body Corr. Unlinked Corr.No size extensive

Linked Corr.Size extensive

Renormalized diagrams in the truncated CI correlation scale as N2 or higher with theelectron number N , which, however, can be exactly eliminated by the disconnected (orunlinked) higher-order excited diagrams (except for exclusion principle violating terms).

Igor (FDU) QCM 2018-08-02 16 / 46

Page 36: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Brueckner-Goldstone Theorem

EMP2c = ▼ ▲ ▲ ▼ + ▼ ▲

ErMP2c = ▼ ▲ ▲ ▼ + ▼ ▲ ×S

= −−▼ ▲▲ ▼

▼ ▲▲ ▼▼ ▲▲ ▼▼ ▲▲ ▼

renormalizedterm in CID

unlinked 4th-excited terms

linked 2nd-excited terms

Many-body Corr. Unlinked Corr.No size extensive

Linked Corr.Size extensive

Renormalized diagrams in the truncated CI correlation scale as N2 or higher with theelectron number N , which, however, can be exactly eliminated by the disconnected (orunlinked) higher-order excited diagrams (except for exclusion principle violating terms).

Igor (FDU) QCM 2018-08-02 16 / 46

Page 37: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Linked and Unlinked Clusters for Correlations

Many-body perturbation theory:

▶ Linked diagrams are size extensive, but unlinked ones not (withoutproof; look in the references[1,2])

▶ Rayleigh-Schrödinger (RS) perturbation theory includes both linkedand unlinked terms, and thus is not size extensive.

▶ Excluding unlinked diagrams in the perturbation series, RSPT →Møller-Plesset (MP) perturbation theory.

▶ MPn methods (inlcuding MP2) are therefore size extensive.

1) J. Goldstone, Proc. Royal Soc. London A 1957, 239:12172) R.J. Bartlett, Ann. Rev. Phys. Chem. 1981, 32:359

Configuration interaction approach:

▶ CI approaches renormalize the linked diagrams, meanwhile includeunlinked diagrams, both of which are not size extensive

▶ In Full CI solution, the renormalized low-order diagrams cancel outexactly with some unlinked diagrams in higher-order.

▶ To be specific, CID is not size extensive, because it containsrenormalized second-order diagrams, however the unlinked 4th-orderdiagrams are completely excluded.

Igor (FDU) QCM 2018-08-02 17 / 46

Page 38: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Linked and Unlinked Clusters for Correlations

Many-body perturbation theory:

▶ Linked diagrams are size extensive, but unlinked ones not (withoutproof; look in the references[1,2])

▶ Rayleigh-Schrödinger (RS) perturbation theory includes both linkedand unlinked terms, and thus is not size extensive.

▶ Excluding unlinked diagrams in the perturbation series, RSPT →Møller-Plesset (MP) perturbation theory.

▶ MPn methods (inlcuding MP2) are therefore size extensive.

1) J. Goldstone, Proc. Royal Soc. London A 1957, 239:12172) R.J. Bartlett, Ann. Rev. Phys. Chem. 1981, 32:359

Configuration interaction approach:

▶ CI approaches renormalize the linked diagrams, meanwhile includeunlinked diagrams, both of which are not size extensive

▶ In Full CI solution, the renormalized low-order diagrams cancel outexactly with some unlinked diagrams in higher-order.

▶ To be specific, CID is not size extensive, because it containsrenormalized second-order diagrams, however the unlinked 4th-orderdiagrams are completely excluded.

Igor (FDU) QCM 2018-08-02 17 / 46

Page 39: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Linked and Unlinked Clusters for Correlations

CI wave function:

Ψ0 = Φ0 +∑

ia

Cai Φa

i +∑ijab

Cabij Φab

ij +∑

ijkabc

Cabcijk Φabc

ijk + · · ·

= Φ0 +∑

I

CIΦI , where I = S(1), D(2), T (3), · · ·

Electron correlation can be seperated clusters by clusters:

▶ N -electrons correlation clusters, which covers all the correlations in N electrons:1) one-electron correlation cluster: Ψ(1) =

∑iaCa

i Φai

2) two-electron correlation cluster: Ψ(2) =∑

ijabCab

ij Φabij

▶ Linked and unlinked clusters, denoted by CJ with J = S(1), D(2), T (3):

1) Cabcijk = Cabc

ijk + Cai C

bcjk − Ca

j Cbcik + · · · = Cabc

ijk + Aabcijk

[Ca

i Cbj Cc

k

3! + · · ·]

,

where Aabcijk is an anti-symmetric operator to ensure the anti-symmetry property in

the CI expansion.

Igor (FDU) QCM 2018-08-02 18 / 46

Page 40: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Coupled-cluster Approach with Singles and Doubles(CCSD)

Cai =Ca

i

Cabij =Cab

ij + Cai Cb

j − Cbi Ca

j = Cabij + Aab

ij

(Ca

i Cbj

2!

)Cabc

ijk =Cabcijk + Ca

i Cbcjk − Ca

j Cbcik + · · · = Cabc

ijk + Aabcijk

[Ca

i Cbj Cc

k

3! + · · ·]

Cabcdijkl =Cabcd

ijkl + Aabcdijkl

[Ca

i Cbj Cc

kCdl

4! +Ca

i Cbj Ccd

kl

(2!)22! +Ca

i Cbcdjkl

(3!)2 +Cab

ij Ccdkl

(2!)3(2!)22!

]

Seperate linked and unlinked clusters up to 4th excitations:

▶ Terms in blue: linked clusters, but renormalized partially▶ Terms in red: unlinked clusters

CCSDwave function:

ΨCCSD0 =

(1 + T1 + T2 +

(T1 + T2

)2

2!+

(T1 + T2

)3

3!+ · · ·

)Φ0

= eT1+T2 Φ0

Igor (FDU) QCM 2018-08-02 19 / 46

Page 41: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Coupled-cluster Approach with Singles and Doubles(CCSD)

Cai =Ca

i

Cabij =Cab

ij + Cai Cb

j − Cbi Ca

j = Cabij + Aab

ij

(Ca

i Cbj

2!

)Cabc

ijk =Cabcijk + Ca

i Cbcjk − Ca

j Cbcik + · · · = Cabc

ijk + Aabcijk

[Ca

i Cbj Cc

k

3! + · · ·]

Cabcdijkl =Cabcd

ijkl + Aabcdijkl

[Ca

i Cbj Cc

kCdl

4! +Ca

i Cbj Ccd

kl

(2!)22! +Ca

i Cbcdjkl

(3!)2 +Cab

ij Ccdkl

(2!)3(2!)22!

]

Seperate linked and unlinked clusters up to 4th excitations:

▶ Terms in blue: linked clusters, but renormalized partially▶ Terms in red: unlinked clusters

CCSDwave function:

ΨCCSD0 =

(1 + T1 + T2 +

(T1 + T2

)2

2!+

(T1 + T2

)3

3!+ · · ·

)Φ0

= eT1+T2 Φ0

Igor (FDU) QCM 2018-08-02 19 / 46

Page 42: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Coupled-cluster Approaches

CC wave function:ΨCCSD

0 =(

1 + T +T 2

2!+T 3

3!+ · · ·

)Φ0 = eT Φ0

with T = T1 + T2 + T3 + · · ·

▶ The full CC with T = T1 + T2 + T3 + · · · is identical to FCI▶ CCSD = T = T1 + T2 (scales as O[N6])▶ CCSDT = T = T1 + T2 + T3 (scales as O[N8])▶ · · ·▶ CC approaches are size extensive

Igor (FDU) QCM 2018-08-02 20 / 46

Page 43: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

CCSD(T): “Gold Standard”In recent years it has become possible for small molecules to pursue very ac-curate calculations in CCSDT and CCSDTQ. However, in most of the cases,CCSDT is too expensive, as it scales as O(N8). On the other hand it is clearthat one has to go beyond CCSD if high accuracy (“chemical accuracy” of1-3 kcal/mol) should be reached.

This compromise is the “gold standard” CCSD(T) model, which takes a per-turbative correction to the converged doubly excited coefficients of CCSDcalculations. This triple-excitation correction features an O(N7) effort andreads

∆E(T ) = −∑

ijkabc

tabcijk

(tabcijk + tabc

ijk

)(εa + εb + εc − εi − εj − εk)

tabcijk = − P (ijk)P (abc)

∑d tab

ij ⟨bc||dk⟩ −∑

l tilab ⟨lc||jk⟩

εa + εb + εc − εi − εj − εk

tabcijk = − P (ijk)P (abc) ti

a ⟨bc||jk⟩εa + εb + εc − εi − εj − εk

Igor (FDU) QCM 2018-08-02 21 / 46

Page 44: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Convergence of CC EnergiesDeviation from full-CI (CO molecules, cc-pVDZ basis, frozen core) in mEhfor CI and CC models with various excitation levels:

CI CCSD 30.804 12.120

SDT 21.718 1.011SD(T) – 1.470SDTQ 1.775 0.061

SDTQP 0.559 0.008SDTQPH 0.035 0.002

For a given excitation level, the CC models are about one order of magni-tude more accurate than CI models (which becomes even more significantfor larger molecules)!

Gauss, J.; Lecture notes for ”Coupled Cluster Theory“, Workshop, Mariapfarr, Austra, 2004.Neese, F.; Lecture notes for ”Density-functional theory and beyonds“, Workshop, Trieste, Italy, 2013.

Igor (FDU) QCM 2018-08-02 22 / 46

Page 45: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Summary: Basics of MP2 and CCSD(T)

• Configuration Space: {Φ0, Φa

i , Φabij , Φabc

ijk · · ·}

• CI Expansion: Ψ0 = Φ0 +∑ia

Cai Φa

i +∑ijab

Cabij Φab

ij + · · ·

• Correlation energy: Ecorr =∑ijab

Cabij ⟨ϕiϕj ||ϕaϕb⟩

• Size extensivity: E[A · · ·B] = E[A] + E[B], E ≍ N

Both MP2 and CCSD(T) are size extensive,which is the theoretical guarantee of using these

methods to large and even extended systemsIgor (FDU) QCM 2018-08-02 23 / 46

Page 46: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Challenges and State-of-the-art of MP2 and CCSD(T)

• Error in MP2 Correlation

• Slow Basis-set Convergence

• High Computational Cost

• Molecules → Solids

Igor (FDU) QCM 2018-08-02 24 / 46

Page 47: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Nonempirical Improvement over MP2

Renormalized Second-order Perturbation Theory (rPT2):

Xinguo Ren, Patrick Rinke, Gustavo E. Scuseria, and Matthias Scheffler. Phys. Rev. B, 2013, 88:035102

▲ ▼

▲ ▼

X

X

▲ ▼

+

+

+

▲ ▼

▲ ▼

X

X

X

▲ ▲

▲ ▼

▲ ▼

+ · · · (= rSE)

+ · · · (= SOSEX)

+ · · · (= RPA)

Igor (FDU) QCM 2018-08-02 25 / 46

Page 48: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Empirical Improvement over MP2

Hybrid (Becke):

EHxc [ρ] = ELDA

xc + a(EHF

x − ELDAx

)+ b∆EGGA

x + c∆EGGAc

Double hybrid (XYG3):

EDHxc [ρ] = ELDA

x + a(EHF

x − ELDAx

)+ b∆EGGA

x + cEGGAc + (1 − c)EP T 2

c

Three parameters {a, b, c} were optimized against 223 molecules in G3/99 set

XYG3 {a = 0.8033; b = 0.2107; c = 0.6789}

Ying Zhang , Xin Xu, and William A. Goddard III. Proc. Natl. Acad. Sci. USA, 2009, 106:4963-4968

Igor (FDU) QCM 2018-08-02 26 / 46

Page 49: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Performance of XYG3

Basis set: 6-311+G(3df,2p)

Igor (FDU) QCM 2018-08-02 27 / 46

Page 50: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Slow Basis-set Convergence

The basis-set convergence in theHartree-Fock theory that is not toohard. However, the slow convergenceof CI expansion has presented a forb-biding barrier to high-accuracy calcu-lations.

The explicit correlation expansionmodels in configuration space re-quire an accurate representation ofthe two-electron density with a cuspwhen two electrons are getting closeto each other.

Igor (FDU) QCM 2018-08-02 28 / 46

Page 51: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

State-of-the-Art of Basis-set Issue

Basis-set Extrapolations:

Ecorrlmax

= Ecorr∞ + A/(lmax + 1)3 + O

[(lmax + 1)−4]

• Gaussian-type basis sets, including cc-pVnZ, aug-cc-pVnZ,def-nZVP, and so forth

• Plane-wave basis sets provide an intrinsically and systemati-cally improvable solution of the electronic correlation by increasingthe momentum cutoff parameters.

• Numeric atom-centered orbital (NAO) basis sets: NAO-VCC-nZ is a series of NAO basis sets with valence-correlation con-sistency (VCC). NAO-VCC-nZ is now the default choice in FHI-aims for advanced correlation methods, including MP2, CCSD(T),RPA, GW, and so forth.

T.H. Dunning 1989 J. Chem. Phys. 90:1007

J. J. Shepherd et. al. 2012 Phys. Rev. B 86:035111

I. Y. Zhang et. al. 2013 New. J. Phys. 15:123033

Igor (FDU) QCM 2018-08-02 29 / 46

Page 52: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

State-of-the-Art of Basis-set IssueExplictly correlated methods: R12/F12:

1) ”Correlation Consistent Basis Sets and Explicitly CorrelatedWavefunctions in a Numerical Atom-Centered Framework“, TH4Poster, FHI Fachbeirat 20162) Ten-no Research Group Home-page

References:

▶ ”Explicitly Correlated Electrons inMolecules”, Chem. Rev. (2012) 112:4

▶ ”Explicitly Correlated R12/F12 Methods forElectronic Structure”, Chem. Rev. (2012)1:75

▶ “Explicitly Correlated Electronic StructureTheory from R12/F12 ansätze”, WIREsComput. Mol. Sci. (2012) 2:114

Igor (FDU) QCM 2018-08-02 30 / 46

Page 53: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

State-of-the-Art of Basis-set IssueExplictly correlated methods: R12/F12:

1) ”Correlation Consistent Basis Sets and Explicitly CorrelatedWavefunctions in a Numerical Atom-Centered Framework“, TH4Poster, FHI Fachbeirat 20162) Ten-no Research Group Home-page

References:

▶ ”Explicitly Correlated Electrons inMolecules”, Chem. Rev. (2012) 112:4

▶ ”Explicitly Correlated R12/F12 Methods forElectronic Structure”, Chem. Rev. (2012)1:75

▶ “Explicitly Correlated Electronic StructureTheory from R12/F12 ansätze”, WIREsComput. Mol. Sci. (2012) 2:114

Igor (FDU) QCM 2018-08-02 30 / 46

Page 54: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

High Computational Cost

O(N7)

O(N5)

O(N4)

O(N4) O(O2V 2)

O(O4)

N = O + V

(H2O)n; D-ζ Basis Set

Resolution of Identity (RI)

vpqrs = ⟨ϕpϕq|ϕrϕs⟩ ≈

∑µ

MµprMµ

qs

O(N4) O(N3)

RI-MP2• M. Feyereisen, et. al. Chem. Phys. Lett. 1993, 208:359• D. E. Bernholdt, et. al. Chem. Phys. Lett. 1996, 250:477• T. Najajima, et. al. Chem. Phys. Lett. 2006, 427:225• F. Aquilante et. al. J. Chem. Phys. 2007, 127:114107• X. Ren, et. al. New J. Phys. 2012, 14:053020

RI-CCSD and/or RI-CCSD(T):

• A.P. Rendell, et. al. J. Chem. Phys. 1994, 101:400• T.B. Pedersen, et. al. J. Chem. Phys. 2004, 120:8887• M. Pitonak, et. al. Chem. Comm. 2011, 76:713• A.E. DePrince, et. al. JCTC 2013, 9:2687• A.E. DePrince, et. al. JCTC 2013, 9:2687

Local Resolution of Identity(RI-LVL)

⟨ϕpϕq|ϕrϕs⟩ ≈∑µ′ν′

Mµ′pr Vµ′ν′ Mν′

qs

µ′, ν′ ∼ O(N0) O(N2)

• A.C. Ihrig, et. al. New J. Phys. 2015, 17:093020• S.V. Levchenko, et. al. Comput. Phys. Comm. 2015,192:60

Tensor HyperContraction(THC) Scheme

⟨ϕpϕq|ϕrϕs⟩ ≈ XPp XP

r V P QXQq XQ

s

O(N2)

• S. Schumacher, et. al. JCTC 2015, 11:3052• R.M. Rarrish, et. al. J. Chem. Phys. 2014, 140:181102

Reduced-scaling Algorithms

3 Nearsightedness of the correlation

3 Sparsity in real space

7 Delocalization of molecular or-bitals (MO)

MO =⇒{

Atom-centered orbitalsLocalized MOs

References:• M. Schtz, et. al. J. Chem. Phys. 1999, 111:5691• P. Pinski, et. al. J. Chem. Phys. 2015, 144:024109• M. Häser, et. al. J. Chem. Phys. 1992, 96:489• S.A. Maurer, et. al. J. Chem. Phys. 2014, 140:224112

Igor (FDU) QCM 2018-08-02 31 / 46

Page 55: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

High Computational Cost

O(N7)

O(N5)

O(N4)

O(N4) O(O2V 2)

O(O4)

N = O + V

(H2O)n; D-ζ Basis Set

Resolution of Identity (RI)

vpqrs = ⟨ϕpϕq|ϕrϕs⟩ ≈

∑µ

MµprMµ

qs

O(N4) O(N3)

RI-MP2• M. Feyereisen, et. al. Chem. Phys. Lett. 1993, 208:359• D. E. Bernholdt, et. al. Chem. Phys. Lett. 1996, 250:477• T. Najajima, et. al. Chem. Phys. Lett. 2006, 427:225• F. Aquilante et. al. J. Chem. Phys. 2007, 127:114107• X. Ren, et. al. New J. Phys. 2012, 14:053020

RI-CCSD and/or RI-CCSD(T):

• A.P. Rendell, et. al. J. Chem. Phys. 1994, 101:400• T.B. Pedersen, et. al. J. Chem. Phys. 2004, 120:8887• M. Pitonak, et. al. Chem. Comm. 2011, 76:713• A.E. DePrince, et. al. JCTC 2013, 9:2687• A.E. DePrince, et. al. JCTC 2013, 9:2687

Local Resolution of Identity(RI-LVL)

⟨ϕpϕq|ϕrϕs⟩ ≈∑µ′ν′

Mµ′pr Vµ′ν′ Mν′

qs

µ′, ν′ ∼ O(N0) O(N2)

• A.C. Ihrig, et. al. New J. Phys. 2015, 17:093020• S.V. Levchenko, et. al. Comput. Phys. Comm. 2015,192:60

Tensor HyperContraction(THC) Scheme

⟨ϕpϕq|ϕrϕs⟩ ≈ XPp XP

r V P QXQq XQ

s

O(N2)

• S. Schumacher, et. al. JCTC 2015, 11:3052• R.M. Rarrish, et. al. J. Chem. Phys. 2014, 140:181102

Reduced-scaling Algorithms

3 Nearsightedness of the correlation

3 Sparsity in real space

7 Delocalization of molecular or-bitals (MO)

MO =⇒{

Atom-centered orbitalsLocalized MOs

References:• M. Schtz, et. al. J. Chem. Phys. 1999, 111:5691• P. Pinski, et. al. J. Chem. Phys. 2015, 144:024109• M. Häser, et. al. J. Chem. Phys. 1992, 96:489• S.A. Maurer, et. al. J. Chem. Phys. 2014, 140:224112

Igor (FDU) QCM 2018-08-02 31 / 46

Page 56: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

High Computational Cost

O(N7)

O(N5)

O(N4)

O(N4) O(O2V 2)

O(O4)

N = O + V

(H2O)n; D-ζ Basis Set

Resolution of Identity (RI)

vpqrs = ⟨ϕpϕq|ϕrϕs⟩ ≈

∑µ

MµprMµ

qs

O(N4) O(N3)

RI-MP2• M. Feyereisen, et. al. Chem. Phys. Lett. 1993, 208:359• D. E. Bernholdt, et. al. Chem. Phys. Lett. 1996, 250:477• T. Najajima, et. al. Chem. Phys. Lett. 2006, 427:225• F. Aquilante et. al. J. Chem. Phys. 2007, 127:114107• X. Ren, et. al. New J. Phys. 2012, 14:053020

RI-CCSD and/or RI-CCSD(T):

• A.P. Rendell, et. al. J. Chem. Phys. 1994, 101:400• T.B. Pedersen, et. al. J. Chem. Phys. 2004, 120:8887• M. Pitonak, et. al. Chem. Comm. 2011, 76:713• A.E. DePrince, et. al. JCTC 2013, 9:2687• A.E. DePrince, et. al. JCTC 2013, 9:2687

Local Resolution of Identity(RI-LVL)

⟨ϕpϕq|ϕrϕs⟩ ≈∑µ′ν′

Mµ′pr Vµ′ν′ Mν′

qs

µ′, ν′ ∼ O(N0) O(N2)

• A.C. Ihrig, et. al. New J. Phys. 2015, 17:093020• S.V. Levchenko, et. al. Comput. Phys. Comm. 2015,192:60

Tensor HyperContraction(THC) Scheme

⟨ϕpϕq|ϕrϕs⟩ ≈ XPp XP

r V P QXQq XQ

s

O(N2)

• S. Schumacher, et. al. JCTC 2015, 11:3052• R.M. Rarrish, et. al. J. Chem. Phys. 2014, 140:181102

Reduced-scaling Algorithms

3 Nearsightedness of the correlation

3 Sparsity in real space

7 Delocalization of molecular or-bitals (MO)

MO =⇒{

Atom-centered orbitalsLocalized MOs

References:• M. Schtz, et. al. J. Chem. Phys. 1999, 111:5691• P. Pinski, et. al. J. Chem. Phys. 2015, 144:024109• M. Häser, et. al. J. Chem. Phys. 1992, 96:489• S.A. Maurer, et. al. J. Chem. Phys. 2014, 140:224112

Igor (FDU) QCM 2018-08-02 31 / 46

Page 57: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

High Computational Cost

O(N7)

O(N5)

O(N4)

O(N4) O(O2V 2)

O(O4)

N = O + V

(H2O)n; D-ζ Basis Set

Resolution of Identity (RI)

vpqrs = ⟨ϕpϕq|ϕrϕs⟩ ≈

∑µ

MµprMµ

qs

O(N4) O(N3)

RI-MP2• M. Feyereisen, et. al. Chem. Phys. Lett. 1993, 208:359• D. E. Bernholdt, et. al. Chem. Phys. Lett. 1996, 250:477• T. Najajima, et. al. Chem. Phys. Lett. 2006, 427:225• F. Aquilante et. al. J. Chem. Phys. 2007, 127:114107• X. Ren, et. al. New J. Phys. 2012, 14:053020

RI-CCSD and/or RI-CCSD(T):

• A.P. Rendell, et. al. J. Chem. Phys. 1994, 101:400• T.B. Pedersen, et. al. J. Chem. Phys. 2004, 120:8887• M. Pitonak, et. al. Chem. Comm. 2011, 76:713• A.E. DePrince, et. al. JCTC 2013, 9:2687• A.E. DePrince, et. al. JCTC 2013, 9:2687

Local Resolution of Identity(RI-LVL)

⟨ϕpϕq|ϕrϕs⟩ ≈∑µ′ν′

Mµ′pr Vµ′ν′ Mν′

qs

µ′, ν′ ∼ O(N0) O(N2)

• A.C. Ihrig, et. al. New J. Phys. 2015, 17:093020• S.V. Levchenko, et. al. Comput. Phys. Comm. 2015,192:60

Tensor HyperContraction(THC) Scheme

⟨ϕpϕq|ϕrϕs⟩ ≈ XPp XP

r V P QXQq XQ

s

O(N2)

• S. Schumacher, et. al. JCTC 2015, 11:3052• R.M. Rarrish, et. al. J. Chem. Phys. 2014, 140:181102

Reduced-scaling Algorithms

3 Nearsightedness of the correlation

3 Sparsity in real space

7 Delocalization of molecular or-bitals (MO)

MO =⇒{

Atom-centered orbitalsLocalized MOs

References:• M. Schtz, et. al. J. Chem. Phys. 1999, 111:5691• P. Pinski, et. al. J. Chem. Phys. 2015, 144:024109• M. Häser, et. al. J. Chem. Phys. 1992, 96:489• S.A. Maurer, et. al. J. Chem. Phys. 2014, 140:224112

Igor (FDU) QCM 2018-08-02 31 / 46

Page 58: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Finite Clusters → Periodic Systems

CRYSCOR: [1]▶ Methods: Local MP2▶ Basis set: Gaussian-type orbitals▶ Core states: Considered explicitly▶ K-grid: Gamma-centered k-mesh

CP2K [2]▶ Methods: Canonical MP2▶ Basis set: Gaussian & plane waves▶ Core states: Pseudo potentials▶ K-grid: Gamma-only

VASP [3,4]▶ Methods: Canonical MP2 and CCSD(T)▶ Basis set: Plane waves▶ Core states: Pseudo potentials▶ K-grid: Gamma-center k-mesh

[1] C. Pisani, et al., J. Comput. Chem. 29, 2113 (2008).

[2] M. Del Ben, et al. J. Chem. Theory Comput. 8, 4177(2012).

[3] A. Grüneis, et al. J. Chem. Phys. 133, 074107 (2010).

[4] G. H. Booth, et al. Nature, 493, 365 (2013).

Igor (FDU) QCM 2018-08-02 32 / 46

Page 59: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

MP2 and CCSD(T) in FHI-aims

3(released) Canonical MP2 for both Molecules and Solids

3(released) Canonical CCSD(T) for Molecules

3(in testing) Reduced-scaling MP2 for both Molecules and Solids

3(in testing) Canonical CCSD for Solids

ø (in developing) Canonical CCSD(T) for Solids

Features:▶ Resolution-of-Identity, RI-MP2 and RI-CCSD(T)▶ Gamma-centered multiple k-points▶ Large-scale parallelization▶ The reduced-scaling Laplace-Transform MP2 ∼ O(N<3)

Igor (FDU) QCM 2018-08-02 33 / 46

Page 60: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Initialize a bunch of tasks {δk,k, q′}Flowchart of Peri-odic MP2 in FHI-aims

Communicate the requiredmatrices for each task

Generate L,R, and calculate EP T 2c

for a given batch {δk,k, q′}

Finish

update the nextbatch of tasks

{δk,k, q′}

Traverse{δk,k, q′}?

Preparerestartfile?

Store EP T 2c

and {δk,k, q′}

δk1, k1, q′1 δk2, k2, q′

2 · · · δkn, kn, q′n

yes

no

yes

no

{k, k′, q, q′}

V, c, ϵ, C

N2o ∗ N2

v ∗ Na

3 Parallelization w.r.t k-grid and MO

3 Scalapack/BLACS

3 85% parallel efficiency in com-modity supercomputers (up to 1000scores)

Igor (FDU) QCM 2018-08-02 34 / 46

Page 61: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Basis-set convergence of the periodic MP2 methodDiamond Si

E (eV) a0 (Å) B0 (GPa) E (eV) a0 (Å) B0 (GPa)N2Z 7.65 3.56 451 4.62 5.44 98N3Z 7.81 3.55 454 4.92 5.41 101N4Z 7.96 3.54 454 5.07 5.41 101CBS[34] 8.06 3.54 454 5.17 5.41 102VASP 2010[1] 7.97 3.55 450 5.05 5.42 100(PW) 2013[2] 8.04

MgO AlPE (eV) a0 (Å) B0 (GPa) E (eV) a0 (Å) B0 (GPa)

N2Z 5.11 4.23 160 4.06 5.48 92N3Z 5.39 4.23 162 4.41 5.45 94N4Z 5.47 4.24 164 4.55 5.45 95CBS[34] 5.53 4.24 165 4.66 5.45 95VASP 2010[1] 5.35 4.23 153 4.32 5.46 93(PW) 2013[2] 4.63

[1] A. Grüneis, et al. J. Chem. Phys. 133, 074107 (2010).

[2] G. H. Booth, et al. Nature, 493, 365 (2013).

Igor (FDU) QCM 2018-08-02 35 / 46

Page 62: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Accuracy: Small Molecules v.s. Extended Systems

Errors (unit in meV) in 10 cohesive energies and 148 atomization energies in G2BLYP B3LYP PBE PBE0 SCAN XYG3

C -545 -423 165 65 15 -32Si -720 -558 -110 -120 50 126

SiC -710 -527 -80 -100 10 46BN -308 -225 172 62 122 86BP -460 -319 150 110 200 196AlN -510 -384 -150 -230 -40 33AlP -722 -533 -242 -232 -72 27LiF -170 -128 -130 -240 -40 107LiCl -370 -259 -220 -220 -70 28MgO -480 -383 -210 -290 50 -23MAE 500 374 163 167 67 70G2

MAE 319 129 751 221 247 73

J. Paier, M. Marsman, and G. Kresse, J. Chem. Phys. 127, 024103 (2007).J.W. Sun, A. Ruzsinszky, and J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).

I.Y. Zhang and X. Xu, ChemPhysChem 13, 1486 (2012).

Igor (FDU) QCM 2018-08-02 36 / 46

Page 63: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Accuracy: Small Molecules v.s. Extended Systems

Errors (unit in meV) in 10 cohesive energies and 148 atomization energies in G2BLYP B3LYP PBE PBE0 SCAN XYG3

C -545 -423 165 65 15 -32Si -720 -558 -110 -120 50 126

SiC -710 -527 -80 -100 10 46BN -308 -225 172 62 122 86BP -460 -319 150 110 200 196AlN -510 -384 -150 -230 -40 33AlP -722 -533 -242 -232 -72 27LiF -170 -128 -130 -240 -40 107LiCl -370 -259 -220 -220 -70 28MgO -480 -383 -210 -290 50 -23MAE 500 374 163 167 67 70G2

MAE 319 129 751 221 247 73

J. Paier, M. Marsman, and G. Kresse, J. Chem. Phys. 127, 024103 (2007).J.W. Sun, A. Ruzsinszky, and J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).

I.Y. Zhang and X. Xu, ChemPhysChem 13, 1486 (2012).

Igor (FDU) QCM 2018-08-02 36 / 46

Page 64: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Accuracy: Small Molecules v.s. Extended Systems

Errors (unit in meV) in 10 cohesive energies and 148 atomization energies in G2BLYP B3LYP PBE PBE0 SCAN XYG3

C -545 -423 165 65 15 -32Si -720 -558 -110 -120 50 126

SiC -710 -527 -80 -100 10 46BN -308 -225 172 62 122 86BP -460 -319 150 110 200 196AlN -510 -384 -150 -230 -40 33AlP -722 -533 -242 -232 -72 27LiF -170 -128 -130 -240 -40 107LiCl -370 -259 -220 -220 -70 28MgO -480 -383 -210 -290 50 -23MAE 500 374 163 167 67 70G2

MAE 319 129 751 221 247 73

J. Paier, M. Marsman, and G. Kresse, J. Chem. Phys. 127, 024103 (2007).J.W. Sun, A. Ruzsinszky, and J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).

I.Y. Zhang and X. Xu, ChemPhysChem 13, 1486 (2012).

Igor (FDU) QCM 2018-08-02 36 / 46

Page 65: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Reduced-scaling MP2: Laplace Transformation + RI-LVL

EMP2 = −2occ∑i,j

virt∑a,b

basis∑s,u,t,v

Csi C

uj Cu

aCvb (su|tv)

2

ϵa + ϵb − ϵi − ϵj

Xqsu =

occ∑i

Csi C

ui eϵitq Y q

su =virt∑a

CsaC

ua e−ϵatq

ELTMP2 = −

Nq∑q

wq

basis∑s,u,t,v

(su∣∣tv)q [2 (su|tv) − (sv|tu)]2

1x

=∫ ∞

0e−xtdt ≈

Nq∑q

wqe−xtq

[1] PY. Ayala, and GE. Scuseria, J. Chem. Phys. 110, 3660 (1999).[2] M. Häser, Theor Chim Acta 87, 147 (1993)

by Arvid C. Ihrig

Igor (FDU) QCM 2018-08-02 37 / 46

Page 66: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Reduced-scaling MP2: Laplace Transformation + RI-LVL

EMP2 = −2occ∑i,j

virt∑a,b

basis∑s,u,t,v

Csi C

uj Cu

aCvb (su|tv)

2

ϵa + ϵb − ϵi − ϵj

Xqsu =

occ∑i

Csi C

ui eϵitq Y q

su =virt∑a

CsaC

ua e−ϵatq

ELTMP2 = −

Nq∑q

wq

basis∑s,u,t,v

(su∣∣tv)q [2 (su|tv) − (sv|tu)]2

1x

=∫ ∞

0e−xtdt ≈

Nq∑q

wqe−xtq

[1] PY. Ayala, and GE. Scuseria, J. Chem. Phys. 110, 3660 (1999).[2] M. Häser, Theor Chim Acta 87, 147 (1993)

by Arvid C. Ihrig

Igor (FDU) QCM 2018-08-02 37 / 46

Page 67: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Reduced-scaling MP2: Laplace Transformation + RI-LVL

EMP2 = −2occ∑i,j

virt∑a,b

basis∑s,u,t,v

Csi C

uj Cu

aCvb (su|tv)

2

ϵa + ϵb − ϵi − ϵj

Xqsu =

occ∑i

Csi C

ui eϵitq Y q

su =virt∑a

CsaC

ua e−ϵatq

ELTMP2 = −

Nq∑q

wq

basis∑s,u,t,v

(su∣∣tv)q [2 (su|tv) − (sv|tu)]2

1x

=∫ ∞

0e−xtdt ≈

Nq∑q

wqe−xtq

[1] PY. Ayala, and GE. Scuseria, J. Chem. Phys. 110, 3660 (1999).[2] M. Häser, Theor Chim Acta 87, 147 (1993)

by Arvid C. Ihrig

Igor (FDU) QCM 2018-08-02 37 / 46

Page 68: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Reduced-scaling MP2: Laplace Transformation + RI-LVL

EMP2 = −2occ∑i,j

virt∑a,b

basis∑s,u,t,v

Csi C

uj Cu

aCvb (su|tv)

2

ϵa + ϵb − ϵi − ϵj

Xqsu =

occ∑i

Csi C

ui eϵitq Y q

su =virt∑a

CsaC

ua e−ϵatq

ELTMP2 = −

Nq∑q

wq

basis∑s,u,t,v

(su∣∣tv)q [2 (su|tv) − (sv|tu)]2

1x

=∫ ∞

0e−xtdt ≈

Nq∑q

wqe−xtq

[1] PY. Ayala, and GE. Scuseria, J. Chem. Phys. 110, 3660 (1999).[2] M. Häser, Theor Chim Acta 87, 147 (1993)

by Arvid C. Ihrig

Igor (FDU) QCM 2018-08-02 37 / 46

Page 69: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Performance & Scaling

Scaling Analysis

(H2O)10 – (H2O)150NAO-VCC-2Z basis sets

Igor (FDU) QCM 2018-08-02 38 / 46

Page 70: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Computational Scaling of the LT-MP2 with RI-LVL

0 20 40 60 80 100 120 140 160

number of water molecules

0

1

2

3

4

5

6

7

wal

ltim

ein

hour

s

canonical MP2 ∼ N4.93

LT-MP2 ∼ N2.31

canonical MP2 + RI coeffs ∼ N3.89

LT-MP2 + RI coeffs ∼ N2.23

MP2 correlationenergy errors

consistently below1 meV/atom

Igor (FDU) QCM 2018-08-02 39 / 46

Page 71: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

H2O on TiO2 (110)

Periodic Implementation

H2O on a TiO2 (110) surface

O,H – NAO-VCC-2Z basis setTi – tier1 basis set

Γ-point calculations

Igor (FDU) QCM 2018-08-02 40 / 46

Page 72: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

H2O on TiO2 (110) - System Size Convergence

0 20 40 60 80 100 120

number of atoms in surface unit cell

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

abso

rpti

on e

nerg

y in e

V

z-layers

x-axis (2 layers)

y-axis (2 layers)

3 layers

3 unit cellsin x-axis 4 unit cells

in y-axis

(4X4X4,384 atoms)

(3X4X3,216 atoms)

Igor (FDU) QCM 2018-08-02 41 / 46

Page 73: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

H2O on TiO2 (110) - System Size Convergence

0 20 40 60 80 100 120

number of atoms in surface unit cell

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

abso

rpti

on e

nerg

y in e

V

z-layers

x-axis (2 layers)

y-axis (2 layers)

3 layers

3 unit cellsin x-axis 4 unit cells

in y-axis

(4X4X4,384 atoms)

(3X4X3,216 atoms)

Igor (FDU) QCM 2018-08-02 41 / 46

Page 74: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

RI-CCSD(T) in FHI-aims: Accuracy

Igor (FDU) QCM 2018-08-02 42 / 46

Page 75: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

RI-CCSD in FHI-aims: Parallelization Efficiency

Igor (FDU) QCM 2018-08-02 43 / 46

Page 76: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

RI-CCSD in FHI-aims: Cluster v.s. Periodic

Igor (FDU) QCM 2018-08-02 44 / 46

Page 77: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Advanced first-principle methods for ma-terials science and engineering

http://th.fhi-berlin.mpg.de/site/index.php?n=Groups

▶ Canonical RI-MP2: Towards accurate MP2 calculations for solids

▶ Reduced-scaling MP2: Laplace-transformation + local RI

▶ RI-CCSD(T): Large-scale parallel implementations for bothmolecules and solids

Igor (FDU) QCM 2018-08-02 45 / 46

Page 78: Basics and State of the Art of Quantum-Chemistry Methods ......Basics and State of the Art of Quantum-Chemistry Methods for Molecules, Clusters and Materials 张颖(Igor Ying Zhang)

Acknowledgement

Prof. Matthias Scheffler

Advanced first-principle methods for ma-terials science and engineering

http://th.fhi-berlin.mpg.de/site/index.php?n=Groups

Arvid C. IhrigReduced-scaling MP2

Dr. Tonghao ShenRI-CCSD(T)

Igor (FDU) QCM 2018-08-02 46 / 46