benerjee 2007

Upload: renato-moraes

Post on 03-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Benerjee 2007

    1/8

    Physica A 386 (2007) 573580

    Breathing of voltage dependent anion channel as revealed by the

    fractal property of its gating

    Smarajit Manna1, Jyotirmoy Banerjee1,2, Subhendu Ghosh

    Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India

    Received 22 December 2006; received in revised form 19 May 2007

    Available online 14 August 2007

    Abstract

    The gating of voltage dependent anion channel (VDAC) depends on the movement of voltage sensors in the

    transmembrane region, but the actual mechanism is still not well understood. With a view to understand the phenomenon

    we have analyzed the current recordings of VDAC in lipid bilayer membrane (BLM) and found that the data show self-

    similarity and fractal characteristics. We look for the microscopic and molecular basis of fractal behavior of gating of

    VDAC. A model describing the oscillatory dynamics of voltage sensors of VDAC in the transmembrane region under

    applied potential has been proposed which gives rise to the aforesaid fractal behavior.

    r 2007 Published by Elsevier B.V.

    Keywords: VDAC; Fractal; Voltage sensor; Bilayer electrophysiology; DFA

    1. Introduction

    The dynamics of ion channels are traditionally studied through time series data analysis. The latter involves

    techniques like calculation of mean, standard deviation, analysis of properties of histogram, and classical

    power spectrum analysis [1]. In doing so it is usually considered that the time series are linear, stationary, and

    equilibrium in nature [2], whereas in reality these are nonlinear, non-stationary, and non-equilibrium.

    Recently a new technique, called fractal analysis, has been introduced widely for analyzing the time series of

    various systems. Goldberger et al. [3] used this technique in the time series of heartbeat and gait recordings of

    healthy and diseased human beings. Liebovitch et al. [4] used the fractal method to analyze ion channel

    kinetics of the time series of a single ATP sensitive potassium channel from rat pancreatic b cells. Ion channel

    opening and closing occur due to change in conformational states. The kinetics of transition between theconformational states has a great biological importance as it provides the information on the molecular

    structure and the function of the ion channel protein. Fractal model is a more appropriate signature

    of ion channel kinetics than the traditional description, i.e. a finite number of discrete states. This fractal

    model represents the continuum of states and indicates that the rate constants are not constants in reality.

    ARTICLE IN PRESS

    www.elsevier.com/locate/physa

    0378-4371/$- see front matterr 2007 Published by Elsevier B.V.

    doi:10.1016/j.physa.2007.06.049

    Corresponding author.

    E-mail address: [email protected] (S. Ghosh).1These authors contributed equally to the work.2Present address: EPH Lab, Department of Pharmacology, NDDR, R & D III, Ranbaxy Research Laboratories, Plot No. 20, Sector 18,

    Gurgaon, Haryana 122015, India.

    http://www.elsevier.com/locate/physahttp://localhost/var/www/apps/conversion/tmp/scratch_3/dx.doi.org/10.1016/j.physa.2007.06.049mailto:[email protected]:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_3/dx.doi.org/10.1016/j.physa.2007.06.049http://www.elsevier.com/locate/physa
  • 7/28/2019 Benerjee 2007

    2/8

    This reflects that the switching of a protein channel occurs in many different time scales. This new emerging

    fractal analysis gives a lot of hidden information about the kinetics of the system, which are not extractable

    from the conventional methods.

    Fractals have fascinating properties that are present in natural objects like airways in the lungs [5], the

    distribution of blood flow in the ever-smaller vessels in the heart [6] and the ever-finer infoldings of cellular

    membranes [7]. Geometrical objects can be considered as fractals when they satisfy two criteria: self-similarityand fractional dimensionality. Self-similarity means a whole object is composed of subunits under subunits on

    multi-levels and each subunit at different levels is equivalent to the whole object [8], i.e. if any small piece

    (subunit) of a fractal object is magnified, it appears similar to the whole object. Self-similarity can occur only if

    the structures at a small scale are correlated to the structure at a large scale. The second criterion of a fractal

    object, distinguishable from Euclidean object, is that it has fractional dimension [9].

    Definition of fractal dimension: Fractal dimension is defined as a generic term for dimension that can take

    fractional value. As a general concept of empirical dimension, if N is the number of small pieces that go into

    the larger one and S is the scale to which the small pieces compare to the larger one, the relation among N, S,

    and D is N SD, where D is the dimension. Hence, D log N/log S.

    Similarly, the definition of the fractal dimension of a self-similar object is written as fractal dimension

    log(number of self-similar pieces)/log(magnification factor). For example, Sierpinski triangle consists of

    3 self-similar pieces each with magnification factor 2. Hence, the fractal dimension is (log3/log2) 1.58.Here we have focused our investigations on voltage dependent anion channel (VDAC) from rat brain

    mitochondria. VDAC is an abundant protein in the outer mitochondrial membrane, which forms large voltage

    gated pore (2.53 nm) on the membrane and act as a pathway for the movement of substances in and out of

    the mitochondria by passive diffusion [10]. Recently we have shown that there is an increase in the pore size of

    VDAC in the presence of Bax and tBid proteins, which might be a mechanism of cell death [11]. VDACs

    crucial role in apoptotic cell death [1114] and synaptic transmission [1517] has made it an important

    therapeutic target for various disorders.

    In the present work we have analyzed the single channel gating current time trace of VDAC. The amplitude

    of fluctuation in time series of VDAC gating does not grow up with time, which means the time series is

    bounded. Furthermore, the time series is non-stationary as the statistical parameters of VDAC time trace are

    time varying. These are the key points why we were interested to do detrended fluctuation analysis (DFA) foranalyzing self-similarity parameter (fractal behavior) of the time trace. Moreover, in DFA analysis, a bounded

    time series is mapped to a self-similar process by integrating the original time series. In the present paper we

    demonstrate that the experimental time series data of gating of VDAC at selected membrane potentials have

    self-similarity and fractional dimensionality, hence, the time series have fractal behavior. Consequently, we

    have looked into the physical or molecular basis of the fractal properties of the single channel VDAC gating,

    which is based on the dynamics of voltage sensors of the channel protein.

    2. Materials and methods

    Diphytanoyl Phosphatidyl Choline (DPhPC) and cholesterol were obtained from Avanti Polar Lipids,

    Birmingham, AL, USA. n-Decane, Hepes, and all other chemicals were purchased from Sigma Chemical Co.(St. Louis, MO, USA).

    Purification of VDAC: VDAC was purified from rat brain mitochondria using the method of De Pinto et al. [18].

    Reconstitution of VDAC in planar lipid bilayers: VDAC was reconstituted into the planar lipid bilayers

    according to the method of Roos et al. [19]. Single-channel currents were recorded at sampling frequency of

    1 kHz and the data is further sampled at frequency 100 Hz.

    Determination of self-similarity parameter: To measure the self-similarity parameter we have first integrated

    the VDAC gating time series, which consists of 12,000 data points within an interval of 1 ms according to the

    following formula:

    Yk Xk

    t1

    It Iave, (1)

    ARTICLE IN PRESS

    S. Manna et al. / Physica A 386 (2007) 573580574

  • 7/28/2019 Benerjee 2007

    3/8

    where I(t) is the value of current in the time trace at time t and Iave the average current value of the total time

    trace. Then the integrated time series is divided into equal boxes of size n to measure the vertical

    characteristic scale of the integrated series. A least square is drawn in each box. The difference between

    integrated data Y(k) and y-coordinates Yn(k) on the linear fit at t 0 to 12,000 is measured. Then the

    characteristic size of fluctuation F(n) is measured using the formula given below:

    Fn 1=NXNk1

    fYk Ynkg2

    " #1=2

    : (2)

    By the same way F(n) for different box sizes (n 100, 250, 500, 1000, 1500, 2000, 3000, 4000, 6000, 12,000) are

    calculated. Then the loglog plot of F(n) versus n is drawn followed by a linear fit and the slope value of the

    linear fit (a), which characterizes the self-similarity parameter, is measured. This is called the Detrended

    Fractal Analysis (DFA) [3].

    Determination of fractal dimension: We have used the method proposed by Liebovitch [20] for calculating

    fractal dimension of the time trace of VDAC gating. The following relation is used for the determination of

    fractal dimension:

    keff

    teff

    At1deff

    . (3)

    If a channel remains in a state for at least a certain time teff that it would switch to another state, this measure

    is referred to as the effective rate constant keff. The effective time resolution at which we measure the data is

    denoted by teff. After measurement ofkeff and teff, a graph ofkeff versus teff was plotted on logarithmic scale,

    d is the fractal dimension.

    3. Results and discussion

    Purified rat brain mitochondrial VDAC, when reconstituted in a planar lipid membrane, showed voltage-

    dependent gating. Single channel current trace for VDAC at +25 mV and sampling frequencies 100 Hz and

    1 kHz are shown in Figs. 1(A) and (B) respectively. Fig. 1(C) shows the single-channel trace of VDAC at

    +15 mV (sampling frequency 100 Hz). As described in the Materials and Methods we have carried out DFAof the above-mentioned time series in order to characterize the self-similarity. Fig. 2 shows the integrated time

    series (divided into boxes of equal length n 1500) of VDAC gating time trace as in Fig. 1(B) (sampled at

    frequency 1 kHz). Figs. 3(A) and (B) show the loglog plot of characteristic size of fluctuation F(n) versus box

    size n at +25 and +15 mV respectively. We found a linear relationship between n and F(n) in these loglog

    plots, which indicates the fluctuations in small boxes are related to fluctuations in large boxes, i.e. the presence

    of scaling (self-similarity). The slopes of the linear fits (which characterizes self-similarity parameter [3]) are

    0.779 and 0.743 at +25 and +15 mV respectively.

    Having established the self-similarity of the VDAC gating we calculated its fractal dimension using the

    method of Liebovitch [20] as described in Materials and Methods. Fig. 4 shows the loglog plot of keff versus

    teff at +25 mV. We found that the logarithm of the effective kinetic rate constant keff as a function of the

    effective time scale teff

    is linear. It is evident from the figure that the power law as defined in Eq. (3) fits quite

    well. A similar result is found for +15 mV. The slope of the straight line gives the measure of fractal

    dimension d (1.8670.03). Thus the voltage dependent gating time series of VDAC, as obtained from our

    experimental data, satisfies two criteria: self-similarity and fractional dimensionality, hence follows fractal

    behavior. It may be mentioned here that the above-mentioned results are obtained from the time series

    analysis of segments of the current versus time traces (012,000 ms) at membrane potentials +25 and

    +15 mV. However, our observation is that the fractal behavior either breaks or changes the self-similarity

    parameter and fractal dimension (multi-fractals) at a different range of segments of the current versus time

    trace. Also, a similar property has been proposed earlier for a different ion channel [20].

    The discovery of fractal property of single-channel recordings of VDAC suggests a different scenario of the

    physical properties of the ion channel protein. Ion channels, like many other proteins, have moving

    components that perform useful functions. The channel proteins contain aqueous, ion-selective pore that

    crosses the plasma membrane, and they use a number of distinct gating mechanisms to open and close this

    ARTICLE IN PRESS

    S. Manna et al. / Physica A 386 (2007) 573580 575

  • 7/28/2019 Benerjee 2007

    4/8

    ARTICLE IN PRESS

    200

    2000 4000 6000 8000 10000

    80005000 10000

    12000

    Current(pA)

    0

    200

    Current(pA)

    Current(pA)

    0

    0

    Time (ms)

    2000 4000 6000 80000

    Time (ms)

    Time (ms)

    Sampling frequency - 100 Hz

    Sampling frequency - 1 kHz

    Fig. 1. Continuous current trace of rat brain VDAC where sampling frequency is (A) 100Hz at +25 mV, (B) 1 kHz at +25mV,

    (C) 100 Hz at +15mV. The medium consisted of 500mM KC1, 10 mM Hepes, and 5 mM MgCl2 (pH 7.4).

    S. Manna et al. / Physica A 386 (2007) 573580576

  • 7/28/2019 Benerjee 2007

    5/8

    pore in response to biological stimuli, such as the binding of a ligand or a change in the transmembrane

    voltage [21]. Voltage dependent ion channel opening follows a very steep dependence on membrane voltage

    [22]. In order to allow channels to switch to the open state, gating charges (transmembrane regions containing

    charged amino acids on the channel protein) move within the membrane electric field to open the pore [2224].

    Voltage gated channels have four-fold symmetry with a central pore domain surrounded by voltage-sensor

    regions [25]. Hodgkin and Huxley recorded the steep dependence of channel gating on transmembrane voltage

    and argued that it must be due to the movement of some component in the membrane with a substantial

    charge or electric dipole moment [24,26], This led to the idea that there is probably a specialized structure, a

    voltage sensor that accomplishes the charge movement. It seems unlikely that such a large amount of charge

    could be displaced systematically by incidental movements of a few charges here and there in the protein, or by

    small angular changes in the dipoles associated with the peptide bonds. Nevertheless, the general principles

    ARTICLE IN PRESS

    10000 1000100

    n

    1000

    F

    (n)

    1000

    10000

    log

    F

    (n)

    log n

    Fig. 3. Loglog plot of characteristic size for fluctuation [F(n) vs. box size (n); (A) +25 mV and (B) +15 mV. Slopes of the linear plots

    (self-similarity parameter) are (A) 0.779 and (B) 0.743.

    0 1500 3000 4500 6000 7500 9000 10500 12000

    -30000

    -20000

    -10000

    0

    10000

    20000

    30000

    40000

    50000

    60000

    Y(k)

    k

    Fig. 2. Integrated time series of the current trace of 12,000ms at +25 mV, sampling rate 1 ms. Plot ofY(k) versus kdivided into boxes of

    equal length n 1500 . A least square is drawn in each box.

    S. Manna et al. / Physica A 386 (2007) 573580 577

  • 7/28/2019 Benerjee 2007

    6/8

    behind the transmembrane helices upon activation by applied voltage are still under investigation. Here, we

    highlight the role of transmembrane movement of the voltage sensors of VDAC in regulation of channel

    gating.

    VDACs could fold as a 12 b-strand barrel with an a-helix at the N-terminus protruding outside or

    interacting with the membrane surface [27]. There lies a lot of controversy over the gating mechanism of

    VDAC with respect to its voltage sensors. Although the amino acid residues affecting the voltage sensitivity

    of VDAC has been identified using site-directed mutagenesis [28], the mechanism of the voltage sensor activity

    of VDAC needs to be studied in detail. The voltage-sensing domain in VDAC is distributed over a relativelylarge region of the protein and the mechanism for voltage gating of this channel requires the movement of a

    major fraction of the protein mass across the membrane [28]. These changes might be due to the changes in

    position of the voltage sensor regions of VDAC in response to a particular voltage. It is important to note here

    that as per the existing model [28] VDACs gating is controlled by the movement of the voltage-sensing

    residues in four different transmembrane domains of the channel and not by the gating particles. Keeping in

    view that the voltage sensor regions of VDAC are embedded in the transmembrane region [28] and their

    movement is responsible for the voltage-dependent gating we propose a mechanism to describe the changes in

    the conformational states of VDAC due to the movement of voltage sensors in the transmembrane region.

    In VDAC the movement of voltage sensor occurs because they are made up of charged amino acid residues,

    thus sensitive for voltage dependent ion channel gating. Hence voltage sensor regions start moving from their

    initial positions as soon as the external voltage is applied. As a result, charged voltage sensor regions

    experience an imbalance in electrostatic force due to their mutual interactions [29]. Hence fluctuations of

    different amplitudes are taking place in the voltage sensor regions depending on the initial conditions of

    conformational state. If the kinetic energy of fluctuation is sufficient to overcome the energy barrier between

    any two conformational states the transition takes place leading to channel gating. To begin with let us

    consider the movement of only one voltage sensor. When a voltage sensor region tends to move from its

    equilibrium position, a number of forces are acting on it as follows: (i) a restoring force that acts in the

    opposite direction of its displacement due to elastic property of the protein molecule, (ii) a damping force

    arising due to viscosity of the medium in which the voltage sensor region is moving, and (iii) a driving

    electrostatic force due to the mutual interactions of the voltage sensor regions. The movement of a voltage

    sensor, as per our understanding, is analogous to a forced oscillator and that of a set of voltage sensors are like

    coupled oscillators. At this juncture, we would like to mention that coupled oscillators in biological systems

    have been linked to fractal behavior [30]. Hence, it is expected that the movement of the voltage sensors of

    ARTICLE IN PRESS

    10010

    0.01

    0.1

    logK

    log T

    eff

    eff

    Fig. 4. Plot ofkeff vs. teff at +25 mV applied voltage in loglog scale. The linear fit of the plot has the slope value of0.863970.03. The

    fractal dimension d is 1.8670.03.

    S. Manna et al. / Physica A 386 (2007) 573580578

  • 7/28/2019 Benerjee 2007

    7/8

    VDAC at a particular applied potential would give rise to fractal gating behavior. The self-similarity in the

    movement of sensor implies that there is a kind of breathing movement in the channel. This appears to be

    an inherent property of VDAC and can be used to characterize the ion channel protein.

    Despite tremendous progress in the investigation of voltage-gated ion channels the molecular mechanism

    underlying voltage sensing has remained a matter of debate. On the basis of electrophysiological studies, a

    number of structural and functional models of the voltage-gated ion channels have been proposed [25,3134].But the process by which gating charges are repositioned has been a subject of intense controversy. It may be

    mentioned again that our investigations are limited to selected membrane potentials. Hence, our analysis of

    fractal behavior of VDAC gating is not a generalized conclusion, the latter being pending for future.

    Use of fractal as a tool to investigate the voltage sensor activity in voltage gated ion channel is easier and

    much more effective than the other conventional approaches like X-ray diffraction, NMR, etc., where ion

    channel structure is used to determine its functioning. Here we have studied qualitatively the structural

    dynamics of VDAC using knowledge of its functional properties. Although the present studies were carried

    out with VDAC at selective membrane potentials, these, if found true for other voltages and various ion

    channels, will throw light on the mechanism of the voltage dependent gating of voltage gated ion channels in

    general. Since there is a lot of controversy on the role of voltage sensor in the gating of VDAC, the present

    work will give a structural (dynamical) insight into the movement of voltage sensors, which is analogous to

    forced oscillator movement. The coupled oscillator model of the voltage sensors gives a meaningfulexplanation of the functioning of the voltage gated ion channels in the light of large number of conformational

    states, i.e. the existence of its fractal behavior. In addition, this work will give us an idea about the kind of

    electric field required for its movement in the transmembrane region. Thus it will help in determining the ways

    to control the voltage sensor movements in the transmembrane region and hence the regulation of VDAC

    gating. That is expected to give insight to various cellular processes like functioning of mitochondria, cell

    death, synaptic transmission, etc. Experimental studies on the fractal behavior of VDAC at other membrane

    potentials and of similar voltage sensitive ion channels are in progress.

    Acknowledgement

    Authors thank the Department of Science and Technology, Government of India, for the financialassistance.

    References

    [1] L.S. Milescu, G. Akk, F. Sachs, Maximum likelihood estimation of ion channel kinetics from macroscopic currents, Biophys. J. 88

    (2005) 24942515.

    [2] S.M. Bezrukov, M. Winterhalter, Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel, Phys.

    Rev. Lett. 85 (2000) 202205.

    [3] A.L. Goldberger, L.A.N. Amaral, J.M. Hausdorff, P.C. Ivanov, C.-K. Peng, H.E. Stanley, Fractal dynamics in physiology:

    alterations with disease and aging, Proc. Nat. Acad. Sci. USA 99 (2002) 24662472.

    [4] L.S. Liebovitch, D. Scheurle, M. Rusek, M. Zochowski, Fractal methods to analyze ion channel kinetics, Methods 24 (2001) 359375.

    [5] B.J. West, V. Bhargava, A.L. Goldberger, Beyond the principle of similitude: renormalization in the bronchial tree, J. Appl. Physiol.60 (1986) 10891097.

    [6] J.B. Bassingthwaighte, J.H.G.M. van Beek, Lightning and the heart: fractal behavior in cardiac function, Proc. IEEE 76 (1988)

    693699.

    [7] D. Paumgartner, G. Losa, E.R. Weibel, Resolution effect on the stereological estimation of surface and volume and its interpretation

    in terms of fractal dimensions, J. Microsc. 121 (1981) 5163.

    [8] J. Feder, Fractals, Plenum Press, New York, 1988.

    [9] H. Takayasu, Introduction to fractals, in: H. Takayasu (Ed.), Fractals in the Physical Sciences, Manchester University Press,

    Manchester and New York, 1990, pp. 110.

    [10] V. De Pinto, M. Tommasino, R. Benz, F. Palmieri, The 35 kDa DCCD-binding protein from pig heart mitochondria is the

    mitochondrial porin, Biochim. Biophys. Acta 813 (1985) 230242.

    [11] J. Banerjee, S. Ghosh, Bax increases the pore size of rat brain mitochondrial VDAC in the presence of tBid, Biochem. Biophys. Res.

    Commun. 323 (2004) 310314.

    [12] S. Shimizu, M. Narita, Y. Tsujimoto, Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial

    channel VDAC, Nature 399 (1999) 483487.

    ARTICLE IN PRESS

    S. Manna et al. / Physica A 386 (2007) 573580 579

  • 7/28/2019 Benerjee 2007

    8/8

    [13] S. Shimizu, T. Ide, T. Yanagida, Y. Tsujimoto, Electrophysiological study of a novel large pore formed by Bax and the voltage-

    dependent anion channel that is permeable to cytochrome c, J. Biol. Chem. 275 (2000) 1232112325.

    [14] M. Crompton, The mitochondrial permeability transition pore and its role in cell death, Biochem. J. 341 (1999) 233249.

    [15] E.A. Jonas, J.A. Hickman, M. Chachar, B.M. Polster, T.A. Brandt, Y. Fannjiang, I. Ivanovska, G. Basanez, K.W. Kinnally, J.

    Zimmerberg, J.M. Hardwick, L.K. Kaczmarek, Proapoptotic N-truncated BCl-xL protein activates endogenous mitochondrial

    channels in living synaptic terminals, Proc. Nat. Acad. Sci. USA 101 (2004) 1359013595.

    [16] E.A. Jonas, Regulation of synaptic transmission by mitochondrial ion channels, J. Bioenerg. Biomembr. 36 (2004) 357361.[17] E.A. Jonas, J. Buchanan, L.K. Kaczmarek, Prolonged activation of mitochondrial conductances during synaptic transmission,

    Science 286 (1999) 13471350.

    [18] V. De Pinto, G. Prezioso, F. Palmieri, A simple and rapid method for purification of the mitochondrial porin from mammalian

    tissues, Biochim. Biophys. Acta 905 (1987) 499502.

    [19] N. Roos, R. Benz, D. Brdiczka, Identification and characterization of pore-forming protein in the outer membrane of rat liver

    mitochondria, Biochim. Biophys. Acta 686 (1982) 204214.

    [20] L.S. Liebovitch, Fractal analysis of channel mechanisms, in: M. Blank, I. Vodyanoy (Eds.), Biomembrane Electrochemistry,

    American Chemical Society, Washington, DC, 1994, pp. 357374.

    [21] G. Yellen, The moving parts of voltage-gated ion channels, Q. Rev. Biophys. 31 (1998) 239295.

    [22] F.J. Sigworth, Voltage gating of ion channels, Q. Rev. Biophys. 27 (1994) 140.

    [23] C.M. Armstrong, F. Bezanilla, Charge movement associated with the opening and closing of the activation gates of the Na+

    channels, J. Gen. Physiol. 63 (1974) 533552.

    [24] F. Bezanilla, The voltage sensor in voltage-dependent ion channels, Physiol. Rev. 80 (2000) 555592.

    [25] F. Bezanilla, Voltage sensor movements, J. Gen. Physiol. 120 (2002) 465473.[26] A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in

    nerve, J. Physiol. (London) 117 (1952) 500544.

    [27] R. Casadioa, I. Jacoboni, A. Messina, V. De Pinto, A 3D model of the voltage-dependent anion channel (VDAC), FEBS Lett. 520

    (2002) 17.

    [28] L. Thomas, E. Blachly-Dyson, M. Colombini, M. Forte, Mapping of residues forming the voltage sensor of the voltage dependent

    anion selective channel, Proc. Nat. Acad. Sci. USA 90 (1993) 54465449.

    [29] L.S. Liebovitch, A.T. Todorov, Using Fractals and nonlinear dynamics to determine the physical properties of ion channel proteins,

    Crit. Rev. Neurobiol. 10 (1996) 169187.

    [30] V. Paar, N. Pavin, M. Rosandic, Link between truncated fractals and coupled oscillators in biological systems, J. Theor. Biol. 212

    (2001) 4756.

    [31] R. Horn, Coupled movements in voltage-gated ion channels, J. Gen. Physiol. 120 (2002) 449453.

    [32] C.S. Gandhi, E.Y. Isacoff, Molecular models of voltage sensing, J. Gen. Physiol. 120 (2002) 455463.

    [33] H.P. Larsson, The search is on for the voltage sensor-to-gate coupling, J. Gen. Physiol. 120 (2002) 475481.

    [34] M. Laine, M.-c.A. Lin, J.P.A. Bannister, W.R. Silverman, A.F. Mock, B. Roux, D.M. Papaztan, Atomic proximity between S4

    segment and pore domain in shaker potassium channels, Neuron 39 (2003) 467481.

    ARTICLE IN PRESS

    S. Manna et al. / Physica A 386 (2007) 573580580