berry phase effects on bloch electrons in electromagnetic fields qian niu 牛谦 university of texas...

31
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛牛 University of Texas at Austin 牛牛牛牛 Collaborators: Y. Gao, Shengyuan Yang, C.P. Chuu, D. Xiao, W. Yao, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C. Chang, T. Jungwirth, J. Sinova, A.H.MacDonald H. Weitering, J. Beach, M. Tsoi, J. Erskine Supported by : DOE, NSF, Welch Foundation

Upload: corey-weaver

Post on 16-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Berry Phase Effects on Bloch Electrons in

Electromagnetic Fields

Qian Niu 牛谦University of Texas at Austin 北京大

学Collaborators: Y. Gao, Shengyuan Yang, C.P. Chuu, D. Xiao, W. Yao, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C. Chang, T. Jungwirth, J. Sinova, A.H.MacDonald H. Weitering, J. Beach, M. Tsoi, J. Erskine

Supported by : DOE, NSF, Welch Foundation

Page 2: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Outline

• Berry phase and its applications

• Berry curvature in momentum space– Anomalous velocity, Anomalous Hall effect

– Density of States, Orbital Magnetization

– Effective Quantum Mechanics

• Second order extension– Positional shift

– Magnetoelectric Polarization

– Nonlinear anomalous Hall effect

Page 4: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

1 2 2 1

ii

21 ddn1

2

C

C

nnn id

Well defined for a closed path

Stokes theorem

Berry Curvature

Page 5: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Berry curvature Magnetic field

Berry connection Vector potential

Geometric phase Aharonov-Bohm phase

Chern number Dirac monopole

Analogy to Gauge Field

i

)(

)(rB

)( 2

did )( )( 2 rBrdrAdr

)(rA

integer)( 2

d ehBrd r /integer )( 2

Page 6: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Berry curvature Gaussian curvature

Berry connection Levi-Civita connection

Geometric phase Holonomy angle

Chern number Genus

Analogy to Riemann Geometry

Page 7: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Applications

• Berry phaseinterference,

energy levels,

polarization in crystals

• Berry curvaturespin dynamics,

electron dynamics in Bloch bands

• Chern numberquantum Hall effect,

quantum charge pump``Berry Phase Effects on Electronic Properties”, by D. Xiao, M.C. Chang, Q. Niu, Review of Modern Physics

Page 8: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Outline• Berry phase and its applications

• Berry curvature in momentum space– Anomalous velocity, Anomalous Hall effect

– Density of States, Orbital Magnetization

– Effective Quantum Mechanics

• Second order extension– Positional shift

– Magnetoelectric Polarization

– Nonlinear anomalous Hall effect

Page 9: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,
Page 10: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Symmetry properties

• time reversal:

• space inversion:

• both:

• violation: ferromagnets, asymmetric crystals

Page 11: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

-103

-102

-101

0

101

102

103

104

105

-3

-2

-1

0

1

2

3

4

5

H(100)(000)

(101)H(001)

Berry Curvature in Fe crystal

Page 12: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Anomalous Hall effect

• velocity

• distribution g( ) = f( ) + f( )

• current

Intrinsic

Page 13: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

J. P. Jan, Helv. Phys. Acta 25, 677 (1952)

Temperature dependence of AHE

Page 14: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Experiment Mn5Ge3 : Zeng, Yao, Niu & Weitering, PRL 2006

Page 15: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Intrinsic AHE in other ferromagnets

• Semiconductors, MnxGa1-xAs– Jungwirth, Niu, MacDonald , PRL (2002) , J Shi’s group (2008)

• Oxides, SrRuO3

– Fang et al, Science , (2003).

• Transition metals, Fe– Yao et al, PRL (2004),Wang et al, PRB (2006), X.F. Jin’s group (2008)

• Spinel, CuCr2Se4-xBrx

– Lee et al, Science, (2004)

• First-Principle Calculations-Review

– Gradhand et al (2012)

Page 16: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,
Page 17: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Some Magneto EffectsDensity of states and specific heat:

Magnetoconductivity:

Page 18: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Orbital magnetization

Free energy

Xiao, Shi & Niu, PRL 2005Xiao, et al, PRL 2006

Also see:Thonhauser et al, PRL (2005).Ceresoli et al PRB (2006).

Page 19: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Anomalous Thermoelectric Transport

• Berry phase correction

• Thermoelectric transport

Page 20: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Thermal Hall Conductivity

Wiedemann-Franz Law

Phonon

Magnon

Electron

Page 21: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Effective Quantum Mechanics

• Wavepacket energy• Energy in canonical

variables

• Quantum theory

Spin-orbit

Yafet termSpin & orbital moment

Page 22: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Outline• Berry phase and its applications

• Berry curvature in momentum space– Anomalous velocity, Anomalous Hall effect

– Density of States, Orbital magnetization

– Effective Quantum Mechanics

• Second order extension– Positional Shift

– Magnetoelectric Polarization

– Nonlinear anomalous Hall effect

Page 23: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Why second order?Why second order?• In many systems, first order response vanishes

• May be interested in magnetic susceptibility, electric polarizebility, magneto-electric coupling

• Magnetoresistivity

• Nonlinear anomalous Hall effects

Page 24: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Positional ShiftPositional Shift• Use perturbed band:

• Solve from the first order energy correction:

• Modification of the Berry connection – the positional shift

Page 25: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Equations of MotionEquations of Motion

• Effective Lagrangian:

• Equations of motion

Page 26: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Magnetoelectric PolarizationMagnetoelectric Polarization

• Polarization in solids:

• Correction under electromagnetic fields:

• Magnetoelectric Polarization:

Page 27: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Magnetoelectric Polarization Magnetoelectric Polarization

Restrictions: No symmetries of time reversal, spatial inversion, and rotation about B.

Page 28: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Nonlinear anomalous Hall currentNonlinear anomalous Hall current

• Intrinsic current:

• Results – only anomalous Hall current:

Page 29: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Electric-field-induced Hall EffectElectric-field-induced Hall Effect

• Electric field induced Hall conductivity (2-band model):

Page 30: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Magnetic-field induced anomalous Magnetic-field induced anomalous HallHall

• Model Hamiltonian:

• Magnetic field induced Hall conductivity:

• Compare to ordinary Hall effect

Page 31: Berry Phase Effects on Bloch Electrons in Electromagnetic Fields Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Y. Gao, Shengyuan Yang,

Conclusion• Berry phase is a unifying concept

• Berry curvature in momentum space– Anomalous velocities, Anomalous Hall effect

– Density of states, Orbital magnetization

– Effective quantum Mechanics

• Second order extension• Positional shift

• Magnetoelectric polarization

• Nonlinear anomalous Hall effect