besaran fisika dan pengukuran

31
BESARAN FISIKA DAN PENGUKURAN Fisika merupakan ilmu pengetahuan yang mempunyai pengaruh besar terhadap perkembangan ilmu pengetahuan yang lainnya, misalnya teknologi elektronika, teknologi informasi, dan teknologi alat ukur. Hal ini disebabkan di dalam fisika mengandung prinsip-prinsip dasar mengenai gejala-gejala alam yang ada di sekitar kita. Fenomena dan gejala-gejala alam tersebut meliputi besaran-besaran fisika di antaranya: gerak, cahaya, kalor, listrik, dan energi. Penerapan besaran-besaran fisika dalam aktivitas kegiatan sehari-hari senantiasa berkaitan dengan pengamatan dan pengukuran. Sebagai contoh, informasi kecepatan gerak pesawat terbang bagi seorang pilot berguna untuk mengoperasikan pesawat yang dikendalikannya. Besarnya suhu badan kita merupakan informasi untuk mengetahui apakah badan kita sehat atau tidak. Sepatu dan pakaian yang kita gunakan mempunyai ukuran tertentu. Melihat betapa pentingnya pengukuran besaran fisika, maka di dalam bab ini akan dipelajari pengertian

Upload: reza-effendi

Post on 24-Jul-2015

338 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Besaran Fisika Dan Pengukuran

BESARAN FISIKA DAN PENGUKURAN

Fisika merupakan ilmu pengetahuan yang mempunyai pengaruh besar terhadap perkembangan ilmu pengetahuan yang lainnya, misalnya teknologi elektronika, teknologi informasi, dan teknologi alat ukur. Hal ini disebabkan di dalam fisika mengandung prinsip-prinsip dasar mengenai gejala-gejala alam yang ada di sekitar kita. Fenomena dan gejala-gejala alam tersebut meliputi besaran-besaran fisika di antaranya: gerak, cahaya, kalor, listrik, dan energi. Penerapan besaran-besaran fisika dalam aktivitas kegiatan sehari-hari senantiasa berkaitan dengan pengamatan dan pengukuran. Sebagai contoh, informasi kecepatan gerak pesawat terbang bagi seorang pilot berguna untuk mengoperasikan pesawat yang dikendalikannya. Besarnya suhu badan kita merupakan informasi untuk mengetahui apakah badan kita sehat atau tidak. Sepatu dan pakaian yang kita gunakan mempunyai ukuran tertentu. Melihat betapa pentingnya pengukuran besaran fisika, maka di dalam bab ini akan dipelajari pengertian besaran fisika, pengukuran besaran fisika yang meliputi massa, panjang, waktu, dan suhu serta konversi satuannya.

Page 2: Besaran Fisika Dan Pengukuran

A. Besaran Fisika dan Satuan

1. Pengertian Besaran Fisika, Besaran Pokok, dan Besaran Turunan

Berapakah tinggi dan berat badanmu? Tentu saja kamu dapat mengukur secara langsung tinggi badanmu dengan alat ukur meteran pita, misalnya 165 cm. Bagaimana dengan berat badanmu? Di dalam pembicaraan kita sehari-hari yang dimaksud dengan berat badan adalah massa, sedangkan dalam fisika pengertian berat dan massa berbeda. Berat badan dapat kita tentukan dengan menggunakan alat timbangan berat badan. Misalnya, setelah ditimbang berat badanmu 50 kg atau dalam fisika bermassa 50 kg. Tinggi atau panjang dan massa adalah sesuatu yang dapat kita ukur dan dapat kita nyatakan dengan angka dan satuan. Panjang dan massa merupakan besaran fisika. Jadi, besaran fisika adalah ukuran fisis suatu benda yang dinyatakan secara kuantitas. Selain besaran fisika juga terdapat besaran-besaran yang bukan besaran fisika, misalnya perasaan sedih, gembira, dan lelah. Karena perasaan tidak dapat diukur dan tidak dapat dinyatakan dengan angka dan satuan, maka perasaan bukan besaran fisika.

Besaran fisika dikelompokkan menjadi dua, yaitu besaran pokok dan besaran turunan. Besaran pokok adalah besaran yang sudah ditetapkan terlebih dahulu. Adapun, besaran turunan merupakan besaran yang dijabarkan dari besaran-besaran pokok. Sistem satuan besaran fisika pada prinsipnya bersifat standar atau baku, yaitu bersifat tetap, berlaku universal, dan mudah digunakan setiap saat dengan tepat. Sistem satuan standar ditetapkan pada tahun 1960 melalui pertemuan para ilmuwan di Sevres, Paris. Sistem satuan yang digunakan dalam dunia pendidikan dan pengetahuan dinamakan sistem metrik, yang dikelompokkan menjadi sistem metrik besar atau MKS (Meter Kilogram Second) yang disebut sistem internasional atau disingkat SI dan sistem metrik kecil atau CGS (Centimeter Gram Second). Besaran pokok dan besaran turunan beserta dengan satuannya dapat dilihat dalam Tabel 1.1 dan Tabel 1.2 berikut.

Page 3: Besaran Fisika Dan Pengukuran

Selain tujuh besaran pokok di atas, terdapat dua besaran pokok tambahan, yaitu sudut bidang datar dengan satuan radian (rad) dan sudut ruang dengan satuan steradian (sr).

Satuan Sistem Internasional (SI) digunakan di seluruh negara dan berguna untuk perkembangan ilmu pengetahuan dan perdagangan antarnegara. Kamu dapat membayangkan betapa kacaunya perdagangan apabila tidak ada satuan standar, misalnya satu kilogram dan satu meter kubik.a. Satuan Internasional untuk Panjang

Hasil pengukuran besaran panjang biasanya dinyatakan dalam satuan meter, centimeter, milimeter, atau kilometer. Satuan besaran panjang dalam SI adalah meter. Pada mulanya satu meter ditetapkan

sama dengan panjang sepersepuluh juta dari jarak kutub utara ke khatulistiwa melalui Paris. Kemudian dibuatlah batang meter standar dari campuran Platina-Iridium. Satu meter didefinisikan sebagai jarak dua goresan pada batang ketika bersuhu 0ºC. Meter standar ini disimpan di International Bureau of Weights and Measure di Sevres, dekat Paris.

Page 4: Besaran Fisika Dan Pengukuran

Batang meter standar dapat berubah dan rusak karena dipengaruhi suhu, serta menimbulkan kesulitan dalam menentukan ketelitian pengukuran. Oleh karena itu, pada tahun 1960 definisi satu meter diubah. Satu meter didefinisikan sebagai jarak 1650763,72 kali panjang gelombang sinar jingga yang dipancarkan oleh atom gas krypton-86 dalam ruang hampa pada suatu lucutan listrik. Pada tahun 1983, Konferensi Internasional tentang

timbangan dan ukuran memutuskan bahwa satu meter merupakan jarak yang ditempuh cahaya

pada selang waktu sekon. Penggunaan kecepatan cahaya ini, karena nilainya dianggap selalu konstan.b. Satuan Internasional untuk MassaBesaran massa dalam SI dinyatakan dalam satuan kilogram (kg). Pada mulanya para ahli mendefinisikan satu kilogram sebagai massa sebuah silinder yang terbuat dari bahan campuran Platina dan Iridium yang disimpan di Sevres, dekat Paris. Untuk mendapatkan ketelitian yang lebih baik,

massa standar satu kilogram didefinisikan sebagai massa satu liter air murni pada suhu 4ºC.

c. Satuan Internasional untuk WaktuBesaran waktu dinyatakan dalam satuan detik atau sekon dalam SI. Pada awalnya satuan waktu dinyatakan atas dasar waktu rotasi bumi pada porosnya, yaitu 1 hari. Satu detik

didefinisikan sebagai kali satu hari rata-rata. Satu hari rata-rata sama dengan 24 jam = 24 x 60 x 60 = 86400 detik. Karena satu hari matahari tidak selalu tetap dari waktu ke waktu, maka pada tahun 1956 para ahli menetapkan definisi baru. Satu detik adalah selang waktu yang diperlukan oleh atom cesium-133 untuk melakukan getaran sebanyak 9192631770 kali.

Page 5: Besaran Fisika Dan Pengukuran

2. Mengonversi Satuan Panjang, Massa, dan Waktu

Setiap besaran memiliki satuan yang sesuai. Penggunaan satuan suatu besaran harus tepat, sebab apabila tidak sesuai akan berkesan janggal bahkan lucu. Misalnya seseorang mengatakan tinggi badannya 150ºC, orang lain yang mendengar mungkin akan tersenyum karena hal itu salah. Demikian pula dengan pernyataan bahwa suhu badan orang yang sehat biasanya 36 meter, terdengar janggal. Hasil suatu pengukuran belum tentu dinyatakan dalam satuan yang sesuai dengan keinginan kita atau yang kita perlukan. Contohnya panjang meja 1,5 m, sedangkan kita memerlukan dalam satuan cm, satuan gram dinyatakan dalam kilogram, dari satuan milisekon menjadi sekon. Untuk mengonversi atau mengubah dari suatu satuan ke satuan yang lainnya diperlukan tangga konversi. Gambar 1.8 pada halaman 7 menunjukkan tangga konversi panjang, massa, dan waktu, beserta dengan langkah-langkah penggunaannya.

A. Pengertian Besaran

Page 6: Besaran Fisika Dan Pengukuran

Besaran adalah sesuatu yang dapat diukur dan dinyatakan dengan angka. Pengukuran adalah membandingkan suatu besaran dengan satuan yang dijadikan sebagai patokan. Dalam fisika pengukuran merupakan sesuatu yang sangat vital. Suatu pengamatan terhadap besaran fisis harus melalui pengukuran. Pengukuran-pengukuran yang sangat teliti diperlukan dalam fisika, agar gejala-gejala peristiwa yang akan terjadi dapat diprediksi dengan kuat.

Pengukuran dapat dilakukan dengan dua cara:

1. Secara Langsung

Yaitu ketika hasil pembacaan skala pada alat ukur, langsung menyatakan nilai besaran yang diukur, tanpa menggunakan rumus untuk menghitung nilai yang diinginkan.

2. Secara tidak langsung

Yaitu dalam pengukuran memerlukan penghitungan tambahan untuk mendapatkan nilai besaran yang diukur.

Untuk mendaptkan hasil pengukuran yang akurat, faktor yang harus diperhatikan antara lain :

- alat ukur yang dipakai

- aturan angka penting

- posisi mata pengukuran (paralax)

Kesalahan (error) adalah penyimpangan nilai yang diukur dari nilai benar x0. Kesalahan dapat digolongkan menjadi tiga golongan :

1. Keteledoran

Umumnya disebabkan oleh keterbatasan pada pengamat, diantaranya kurang terampil menggunakan instrumen, terutama untuk instrumen canggih yang melibatkan banyak komponen yang harus diatur atau kekeliruan dalam melakukan pembacaan skala yang kecil.

2. Kesalahan sistmatik

Adalah kesalahan yang dapat dituangkan dalam bentuk bilangan (kuantitatif), contoh : kesalahan pengukuran panjang dengan mistas 1 mm, jangka sorong, 0,1 mm dan mikrometer skrup 0,01 mm

3. Kesalahan acak

Merupakan kesalahan yang dapat dituangkan dalam bentuk bialangan (kualitatif),

Contoh :

- kesalahan pengamat dalam membaca hasil pengukuran panjang

- pengabaian pengaruh gesekan udara pada percobaan ayunan sederhana

- pengabaian massa tali dan gesekan antar tali dengan katrol pada percobaan hukum II Newton.

Ketidakpastian pada Pengukuran

Ketika mengukur suatu besaran fisis dengan menggunakan instrumen, tidaklah mungkin akan mendapatkan nilai benar X0, melainkan selalu terdapat ketidakpastian. Ketidakpastian ini disebabkan oleh beberapa hal misalnya batas ketelitian dari masing-masing alat dan kemampuan dalam membawa hasil yang ditunjukkan alat ukur.

Page 7: Besaran Fisika Dan Pengukuran

Beberapa istilah dalam pengukuran:

· Ketelitian (accuracy)

adalah suatu ukuran yang menyatakan tingkat pendekatan dari nilai yang diukur terhadap nilai benar X0

· Kepekaan

adalah ukuran minimal yang masih dapat dideteksi (dikenal) oleh instrumen, misal galvanometer memiliki kepekaan yang lebih besar daripada Amperemeter / Voltmeter

· Ketepatan (precision)

adalah suatu ukuran kemampuan untuk mendapatkan hasil pengukuran yang sama.

· Presisi

berkaitan dengan perlakuan dalam proses pengukuran, penyimpangan hasil ukuran dan jumlah angka desimal yang dicantumkan dalam hasil pengukuran.

· Akurasi

yaitu seberapa dekat hasil suatu pengukuran dengan nilai yang sesungguhnya.

Ketelitian alat ukur panjang

1. Mistar : 1 mm

Mistar berskala terkecil memiliki memiliki ketelitian sampai 0,5 mm atau 0,05 cm. Ketelitian alat untuk satu kali adalah setengah skala terkecil.

Panjang benda melebihi 8,7 cm

Panjang kelebihan ditaksir 0,05 cm

Hasil pengukuran panjang 8,75 cm

Batas ketelitian ½ x 1 mm = 0,5 mm

2. Jangka Sorong : 0,1 mm

Jangka sorong memiliki ketelitian sampai 0,1 mm atau 0,1 cm. Jangka sorong terdiri dari rahang tetap yang berskala cm dan mm, dan rahang sorong (geser) yang dilengkapi dengan skala nonius yang panjangnya 9 mm dan dibagi dalam 10 m skala. Panjang 1 skala nonius adalah 0,9 mm.

Benda skala antara rahang utamadengan rahang sorong adalah 0,1mm sehingga ketidakpastian dari jangka sorong adalah ½ x 0,1 mm = 0,005 mm

Page 8: Besaran Fisika Dan Pengukuran

Contoh:

Sebuah benda diukur dengan jangka sorong dengan kedudukan skala seperti pada gambar, maka panjang benda:

Skala Utama = 26 mm

Skala nonius 0,5 mm

Batas ketelitiannya ½ skala terkecil = ½ x 0,1 mm = 0,05 mm

3. Mikrometer sekrup 0,01 mm

Mikrometer skrup memiliki ketelitian sampai 0,01 mm atau 0,001 cm. Mikrometer skrup juga memiliki dua skala , yaitu skala utama yang berskala mm (0,5 mm) dan skala nonius yang terdapat pada selubung luar. Skala nonius memiliki 50 bagian skala yang sama. Bila diselubung luar berputar berputar satu kali, maka poros berulir (rahang geser) akan maju atau mundur 0,5 mm. Bila selubung luar berputar satu bagian skala, maka poros berulir akan maju atau mundur sejauh 0,02 x 0,5 mm = 0,01 mm, sehingga kepastian untuk mikrometer sekrup adalah ½ x 0,01 mm = 0,005 mm untuk pengukuran tungga. Pelaporan hasil pengukuran adalah (X ± DX).

Cara meningkatkan ketelitian antara lain:

1. Waktu membaca alat ukur posisi mata harus benar

2. Alat yang dipakai mempunyai ketelitian tinggi

3. Melakukan pengukuran berkali-kali

Pengukuran dengan jangka sorong

Page 9: Besaran Fisika Dan Pengukuran

Cara menentukan / mebaca jangka sorong:

1. Angka pada skala utama yang berdekatan dengan angka 0 pada nonius adalah 2,1 cm dan 2,2 cm.2. Garis nonius yang tepat berhimpit dengan garis skala utama adalah garis ke-5, jadi x = 2,1 cm + 5 x

0,01 cm = 2,15 cm (dua desimal)

Karena ketidakpastian jangka sorong = ½ x 0,01 cm = 0,005 cm (tiga desimal), maka hasilpengukuran jangka sorong :

Cara menentukan / membaca Mikrometer Sekrup

1. Garis skala utama yang berdekatan dengan tepi selubung luar 4,5 mm lebih.2. Garis mendatar pada selubung luar yang berhimpit dengan garis skala utama.

X = 4,5 mm + 47 x 0,01 mm = 4,97 mm (dua desimal)

Ketidakpastian mikrometer sekrup ½ x 0,01 mm = 0,005 mm

Jadi hasil pengukurannya

Page 10: Besaran Fisika Dan Pengukuran

B. Pengukuran Besaran Fisika

Peranan pengukuran dalam kehidupan sehari-hari sangat penting. Seorang tukang jahit pakaian mengukur panjang kain untuk dipotong sesuai dengan pola pakaian yang akan dibuat dengan menggunakan meteran pita. Penjual daging menimbang massa daging sesuai kebutuhan pembelinya dengan menggunakan timbangan duduk. Seorang petani tradisional mungkin melakukan pengukuran panjang dan lebar sawahnya menggunakan satuan bata, dan tentunya alat ukur yang digunakan adalah sebuah batu bata. Tetapi seorang insinyur sipil mengukur

lebar jalan menggunakan alat meteran kelos untuk mendapatkan satuan meter

1. Pengukuran Panjang

Alat ukur yang digunakan untuk mengukur panjang benda haruslah sesuai dengan ukuran benda. Sebagai contoh, untuk mengukur lebar buku kita gunakan pengaris, sedangkan untuk mengukur lebar jalan raya lebih mudah menggunakan meteran kelos. a. Pengukuran Panjang dengan Mistar Penggaris atau mistar berbagai macam jenisnya, seperti penggaris yang berbentuk lurus, berbentuk segitiga yang terbuat dari plastik atau logam, mistar tukang kayu, dan penggaris berbentuk pita (meteran pita). Mistar mempunyai batas ukur sampai 1 meter, sedangkan meteran pita dapat mengukur panjang sampai 3 meter. Mistar memiliki ketelitian 1 mm atau 0,1 cm.

Posisi mata harus melihat tegak lurus terhadap skala ketika membaca skala mistar. Hal ini untuk menghindari kesalahan pembacaan hasil pengukuran akibat beda sudut kemiringan dalam melihat atau disebut dengan kesalahan paralaks.

Page 11: Besaran Fisika Dan Pengukuran

b. Pengukuran Panjang dengan Jangka SorongBagaimanakah mengukur kedalaman suatu tutup pulpen? Untuk mengukur kedalaman tutup pulpen dapat kita gunakan jangka sorong. Jangka sorong merupakan alat ukur panjang yang mempunyai batas ukur sampai 10 cm dengan ketelitiannya 0,1 mm atau 0,01 cm. Jangka sorong juga dapat digunakan untuk mengukur diameter cincin dan diameter bagian dalam sebuah pipa. Bagian-bagian penting jangka sorong yaitu1. rahang tetap dengan skala tetap terkecil 0,1 cm2. rahang geser yang dilengkapi skala nonius. Skala tetap dan nonius mempunyai selisih 1 mm.

ometer adalah rahang putar, skala utama, skala putar, dan silinder bergerigi. Skala terkecil dari skala utama bernilai 0,1 mm, sedangkan skala terkecil untuk skala putar sebesar 0,01 mm. Berikut ini gambar bagian-bagian dari mikrometer.

Page 12: Besaran Fisika Dan Pengukuran

2. Pengukuran Massa Benda

Pernahkah kamu pergi ke pasar? Ketika di pasar kamu mungkin akan melihat berbagai macam alat ukur timbangan seperti dacin, timbangan pasar, timbangan emas, bahkan mungkin timbangan atau neraca digital. Timbangan tersebut digunakan untuk mengukur massa benda. Prinsip kerjanya adalah keseimbangan kedua lengan, yaitu keseimbangan antara massa benda yang diukur dengan anak timbangan yang digunakan. Dalam dunia pendidikan sering digunakan neraca O’Hauss tiga lengan atau dua lengan. Perhatikan beberapa alat ukur berat berikut ini.

Bagian-bagian dari neraca O’Hauss tiga lengan adalah sebagai berikut:• Lengan depan memiliki skala 0—10 g, dengan tiap skala bernilai 1 g.• Lengan tengah berskala mulai 0—500 g, tiap skala sebesar 100 g.• Lengan belakang dengan skala bernilai 10 sampai 100 g, tiap skala 10 g.

3. Pengukuran Besaran Waktu

Ketika bepergian kita tidak lupa membawa jam tangan. Jam tersebut kita gunakan untuk menentukan waktu dan lama perjalanan yang sudah ditempuh. Berbagai jenis alat ukur waktu yang lain, misalnya: jam analog, jam digital, jam dinding, jam atom, jam matahari, dan stopwatch. Dari alat-alat tersebut, stopwatch termasuk alat ukur yang memiliki ketelitian cukup baik, yaitu sampai 0,1 s.

Page 13: Besaran Fisika Dan Pengukuran

C. Suhu dan Pengukurannya

1. Pengertian SuhuKalian tentunya pernah mandi menggunakan air hangat, bukan? Untuk mendapatkan air hangat tersebut kita mencampur air dingin dengan air panas. Ketika tangan kita menyentuh air yang dingin, maka kita mengatakan suhu air tersebut dingin. Ketika tangan kita menyentuh air yang panas maka kita katakan suhu air tersebut panas. Ukuran derajat panas dan dingin suatu benda tersebut dinyatakan dengan besaran suhu. Jadi, suhu

adalah suatu besaran untuk menyatakan ukuran derajat panas atau dinginnya suatu benda.

2. Termometer sebagai Alat Ukur Suhu

Suhu termasuk besaran pokok. Alat untuk untuk mengukur besarnya suhu suatu benda adalah termometer. Termometer yang umum digunakan adalah termometer zat cair dengan pengisi pipa kapilernya adalah raksa atau alkohol. Pertimbangan dipilihnya raksa sebagai pengisi pipa kapiler termometer adalah sebagai berikut:a. raksa tidak membasahi dinding kaca,b. raksa merupakan penghantar panas yang baik,c. kalor jenis raksa rendah akibatnya dengan perubahan panas yang kecil cukup dapat mengubah suhunya,d. jangkauan ukur raksa lebar karena titik bekunya -39 ºC dan titik didihnya 357ºC.

Pengukuran suhu yang sangat rendah biasanya menggunakan termometer alkohol. Alkohol memiliki titik beku yang sangat rendah, yaitu -114ºC. Namun demikian, termometer alkohol

Page 14: Besaran Fisika Dan Pengukuran

tidak dapat digunakan untuk mengukur suhu benda yang tinggi sebab titik didihnya hanya 78ºC. Pada pembuatan termometer terlebih dahulu ditetapkan titik tetap atas dan titik tetap bawah. Titik tetap termometer tersebut diukur pada tekanan 1 atmosfer. Di antara kedua titik tetap tersebut dibuat skala suhu. Penetapan titik tetap bawah adalah suhu ketika es melebur dan penetapan titik tetap atas adalah suhu saat air mendidih. Berikut ini adalah penetapan titik tetap pada skala termometer.a. Termometer CelciusTitik tetap bawah diberi angka 0 dan titik tetap atas diberi angka 100. Diantara titik tetap bawah dan titik tetap atas dibagi 100 skala.b. Termometer ReaumurTitik tetap bawah diberi angka 0 dan titik tetap atas diberi angka 80. Di antara titik tetap bawah dan titik tetap atas dibagi menjadi 80 skala.c. Termometer FahrenheitTitik tetap bawah diberi angka 32 dan titik tetap atas diberi angka 212. Suhu es yang dicampur dengan garam ditetapkan sebagai 0ºF. Di antara titik tetap bawah dan titik tetap atas dibagi 180 skala.d. Termometer KelvinPada termometer Kelvin, titik terbawah diberi angka nol. Titik ini disebut suhu mutlak, yaitu suhu terkecil yang dimiliki benda ketika energi total partikel benda tersebut nol. Kelvin menetapkan suhu es melebur dengan angka 273 dan suhu air mendidih dengan angka 373. Rentang titik tetap bawah dan titik tetap atas termometer Kelvin dibagi 100 skala.

Perbandingan skala antara temometer Celcius, termometer Reaumur, dan termometer Fahrenheit adalahC : R : F = 100 : 80 : 180C : R : F = 5 : 4 : 9Dengan memperhatikan titik tetap bawah 0ºC = 0ºR = 32ºF, maka hubungan skala C, R, dan F dapat ditulis sebagai berikut:

Page 15: Besaran Fisika Dan Pengukuran

Hubungan skala Celcius dan Kelvin adalaht K = tºC + 273 KKita dapat menentukan sendiri skala suatu termometer. Skala termometer yang kita buat dapat dikonversikan ke skala termometer yang lain apabila pada saat menentukan titik tetap kedua termometer berada dalam keadaan yang sama. Misalnya, kita akan menentukan skala termometer X dan Y. Termometer X dengan titik tetap bawah Xb dan titik tetap atas Xa. Termometer Y dengan titik tetap bawah Yb dan titik tetap atas Ya. Titik tetap bawah dan titik tetap atas kedua termometer di atas adalah suhu saat es melebur dan suhu saat air mendidih pada tekanan 1 atmosfer.

Dengan membandingkan perubahan suhu dan interval kedua titik tetap masing-masing termometer, diperoleh hubungan sebagai berikut.

Keterangan:Xa = titik tetap atas termometer XXb = titik tetap bawah termometer XTx = suhu pada termometer XYa = titik tetap atas termometer YYb = titik tetap bawah termometer YTy = suhu pada termometer Y

D. Memperhatikan dan Menerapkan Keselamatan Kerja dalam Pengukuran

Page 16: Besaran Fisika Dan Pengukuran

Belajar fisika tidak dapat dipisahkan dari kegiatan laboratorium. Dalam melaksanakan percobaan dan kegiatan di laboratorium mungkin saja terjadi kecelakaan. Oleh karena itu, penting sekali untuk menjaga keselamatan dalam bekerja. Salah satu usaha menjaga keselamatan kerja dan mencegah terjadinya kecelakaan adalah dengan memperhatikan dan melaksanakan tata tertib di laboratorium. Mengapa kecelakaan dapat terjadi? Kecelakaan di laboratorium dapat terjadi disebabkan beberapa hal, antara lain1. tidak mematuhi tata tertib laboratorium,2. tidak bersikap baik dalam melaksanakan kegiatan laboratorium,3. kurangnya pemahaman dan pengetahuan terhadap alat, bahan, serta cara penggunaannya,4. kurangnya penjelasan dari guru atau tenaga laboratorium, dan5. tidak menggunakan alat pelindung.

Adapun bahaya-bahaya yang mungkin perlu diantisipasi di lingkungan laboratorium adalah sebagai berikut:1. luka bakar akibat panas,2. bahaya listrik,3. bahaya radioaktif, dan4. bahaya kebakaran.

Kegiatan percobaan yang menggunakan bahan-bahan kimia atau bahan radioaktif dan peralatan listrik hendaknya dilakukan dengan hati-hati. Mintalah petunjuk dan bimbingan kepada guru apabila kamu belum memahami langkah kerjanya.

Page 17: Besaran Fisika Dan Pengukuran

Bab1: Besaran Dan Satuan

1. Besaran Pokok

Besaran-besaran dalam fisika dapat dikelompokkan menjadi dua macam, yaitu besaran pokok dan besaran turunan. Besaran pokok adalah besaran yang satuannya didefinisikan atau ditetapkan terlebih dahulu, yang  berdiri sendiri, dan tidak tergantung pada besaran lain. Para ahli merumuskan tujuh macam besaran pokok, seperti yang ditunjukkan pada Tabel

2. Sistem Satuan

Satuan merupakan salah satu komponen besaran yang menjadi standar dari suatu besaran. Adanya berbagai macam satuan untuk besaran yang sama akan menimbulkan kesulitan. Kalian harus melakukan penyesuaian-penyesuaian tertentu untuk memecahkan persoalan

Page 18: Besaran Fisika Dan Pengukuran

yang ada. Denganadanya kesulitan tersebut, para ahli sepakat untuk menggunakan satu sistem satuan, yaitu menggunakan satuan standar Sistem Internasional, disebut Systeme Internationale d’Unites (SI).Satuan Internasional adalah satuan yang diakui penggunaannya secara internasional serta memiliki standar yang sudah baku. Satuan ini dibuat untuk menghindari kesalahpahaman yang timbul dalam bidang ilmiah karena adanya perbedaan satuan yang digunakan. Pada awalnya, Sistem Internasional disebut sebagai Metre – Kilogram – Second (MKS). Selanjutnya pada Konferensi Berat dan Pengukuran Tahun 1948, tiga satuan yaitu newton (N), joule (J), dan watt (W) ditambahkan ke dalam SI. Akan tetapi, pada tahun 1960, tujuh Satuan Internasional dari besaran pokok telah ditetapkan yaitu meter, kilogram, sekon, ampere, kelvin, mol, dan kandela.

Sistem MKS menggantikan sistem metrik, yaitu suatu sistem satuan desimal yang mengacu pada meter, gram yang didefinisikan sebagai massa satu sentimeter kubik air, dan detik. Sistem itu juga disebut sistem Centimeter – Gram – Second (CGS).Satuan dibedakan menjadi dua jenis, yaitu satuan tidak baku dan satuan baku. Standar satuan tidak baku tidak sama di setiap tempat, misalnya jengkal dan hasta. Sementara itu, standar satuan baku telah ditetapkan sama di setiap tempat.

1. Satuan Standar Panjang

Satuan besaran panjang berdasarkan SI dinyatakan dalam meter (m). Ketika sistem metrik diperkenalkan, satuan meter diusulkan setara dengan sepersepuluh juta kali seperempat garis bujur bumi yang melalui kota Paris. Tetapi, penyelidikan awal geodesik menunjukkan ketidakpastian standar ini, sehingga batang platinairidium yang asli dibuat dan disimpan di Sevres dekat Paris, Prancis. Jadi, para ahli menilai bahwa meter standar itu kurang teliti karena mudah berubah.Para ahli menetapkan lagi patokan panjang yang nilainya selalu konstan. Pada tahun 1960 ditetapkan bahwa satu meter adalah panjang yang sama dengan 1.650.763,73 kali panjang gelombang sinar jingga yang dipancarkan oleh atom-atom gas kripton-86 dalam ruang hampa pada suatu loncatan listrik. Definisi baru menyatakan bahwa satuan panjang SI adalah panjang lintasan yang ditempuh cahaya dalam ruang hampa selama selang waktu 299.792.458 1sekon.Angka yang sangat besar atau sangat kecil oleh ilmuwan digambarkan menggunakan awalan dengan suatu satuan untuk menyingkat perkalian atau pembagian dari suatu satuan.

b. Satuan Standar Massa

Satuan standar untuk massa adalah kilogram (kg). Satu kilogram standar adalah massa sebuah silinder logam yang terbuat dari platina iridium yang disimpan di Sevres, Prancis. Silinder platina iridium memiliki diameter 3,9 cm dan tinggi 3,9 cm. Massa 1 kilogram standar mendekatimassa 1 liter air murni pada suhu 4 oC.

c. Satuan Standar Waktu

Satuan SI waktu adalah sekon (s). Mula-mula ditetapkan bahwa satu sekon sama dengan 1/86.400rata-rata gerak semu matahari mengelilingi Bumi. Dalam pengamatan astronomi, waktu ini ternyata kurang tepat akibat adanya pergeseran, sehingga tidak dapat digunakan

Page 19: Besaran Fisika Dan Pengukuran

sebagai patokan. Selanjutnya, pada tahun 1956 ditetapkan bahwa satu sekon adalah waktu yang dibutuhkan atom cesium-133 untuk bergetar sebanyak 9.192.631.770 kali.

d. Satuan standar arus listrik

Satuan standar arus listrik adalah ampere (A). Satu ampere didefinisikan sebagai arus tetap, yang dipertahankan untuk tetap mengalir pada dua batang penghantar sejajar dengan panjang tak terhingga, dengan luas penampang yang dapat diabaikan dan terpisahkan sejauh satu meter dalam vakum, yang akan menghasilkan gaya antara kedua batang penghantar sebesar 2 × 10–7 Nm–1.

e. Satuan Standar Suhu

Suhu menunjukkan derajat panas suatu benda. Satuan standar suhu adalah kelvin (K), yang didefinisikan sebagai satuan suhu mutlak dalam termodinamika yang besarnya sama dengan 1/273,16dari suhu titik tripel air. Titik tripel menyatakan temperatur dan tekanan saat terdapatkeseimbangan antara uap, cair, dan padat suatu bahan. Titik tripel air adalah 273,16 K dan 611,2 Pa. Jika dibandingkan dengan skala termometer Celsius, dinyatakan sebagai berikut:T = 273,16o + tc

f. Satuan Standar Intensitas Cahaya

Intensitas cahaya dalam SI mempunyai satuan kandela (cd), yang besarnya sama dengan intensitas sebuah sumber cahaya yang memancarkan radiasi monokromatik dengan frekuensi 540 × 1012 Hz dan memiliki intensitas pancaran 1/683watt per steradian pada arah tertentu.

g. Satuan Standar jumlah Zat

Satuan SI untuk jumlah zat adalah mol. Satu mol setara dengan jumlah zat yang mengandung partikel elementer sebanyak jumlah atom di dalam 1,2 10-2 kg karbon-12. Partikel elementer merupakan unsur fundamental yang membentuk materi di alam semesta. Partikel ini dapat berupa atom, molekul, elektron, dan lain-lain.

Pengukuran Besaran Fisika

1. Pengukuran panjang dengan menggunakan mistar/penggaris

mistar dan penggunaannya

2. Pengukuran panjang dengan menggunakan jangka sorong

Page 20: Besaran Fisika Dan Pengukuran

Jangka sorong dan penggunaannya

3. Pengukuran panjang dengan menggunakan mikrometerskrup

mikrometerskrup dan penggunaannya

4. Pengukuran massa dengan menggunakan neraca/timbangan

neraca dan penggunaannya

5. Pengukuran waktu dengan menggunakan stopwatch

stopwatch dan penggunaannya

6. Pengukuran suhu/temperatur dengan menggunakan thermometer

Page 21: Besaran Fisika Dan Pengukuran

thermometer dan penggunaannya

7. Pengukuran arus listrik dengan menggunakan amperemeter

amperemeter dan penggunaannya

Coba Anda amati lagi gambarnya sampai Anda benar-benar mengerti dan memahami maksudnya. Saya percaya bahwa sebagian besar alat ukur di atas sudah tidak asing lagi buat Anda, karena memang alatnya ada di sekolah, yang kemungkinannya Anda telah melihat wujudnya dan bahkan Anda telah mencobanya pada kegiatan praktikum fisika. Semoga ya…

Gambar-gambar di atas dapat menjadi petunjuk bagi anda untuk bisa menjawab  semua pertanyaan pendahuluan secara utuh. Bahkan anda dapat mengembangkan jawabannya seperti berikut ini.

Mengukur adalah membandingkan sesuatu yang dapat diukur dengan sesuatu yang dijadikan sebagai acuan. Sesuatu yang dapat diukur,kemudian hasilnya dinyatakan dengan angka-angka, dinamakan besaran. Besaran Fisika dikelompokkan menjadi Besaran Pokok dan Besaran Turunan. Besaran pokok adalah besaran yang sudah ditetapkan terlebih dahulu dan merupakan besaran dasar. Sedangkan besaran turunan adalah besaran yang diturunkan dari besaran pokok. Panjang, massa, waktu, suhu dan arus listrik merupakan contoh besaran pokok. Luas, volume, massa jenis, kecepatan dan gaya merupakan contoh dari besaran turunan. Dalam Sistem Internasional (SI) terdapat tujuh besaran pokok yang mempunyai satuan dan dua besaran pokok yang tidak mempunyai satuan. Sedangkan untuk mengukur suatu besaran fisika biasanya menggunakan alat ukur sebagaimana yang telah diperlihatkan pada gambar berbagai pengukuran besaran fisika di atas.

Berikut ini adalah tabel besaran pokok fisika

Page 22: Besaran Fisika Dan Pengukuran

Tabel Besaran Pokok

Saat melakukan pengukuran, informasi yang kita peroleh dari hasil pengukuran dapat berupa angka-angka yang disebut dengan angka penting. Angka penting sendiri terdiri dari angka pasti dan angka tangsiran. Disamping angka-angka, digunakan juga satuan pengukuran besaran fisika yang sesuai dengan Sistem Internasional (SI) sebagaimana tabel di atas. Dengan demikian, kegiatan pengukuran menjadi bagian dari kegiatan pembelajaran fisika. Oleh karenanya, saat Anda akan melakukan pengukuran besaran fisika, lakukanlah secara benar dengan mengikuti aturan-aturan sistem internasional yang telah disepakati bersama.

Pengertian Besaran

Besaran adalah segala sesuatu yang dapat diukur atau dihitung, dinyatakan dengan angka dan mempunyai satuan.Dari pengertian ini dapat diartikan bahwa sesuatu itu dapat dikatakan sebagai besaran harus mempunyai 3 syarat yaitu

1. dapat diukur atau dihitung2. dapat dinyatakan dengan angka-angka atau mempunyai nilai3. mempunyai satuan

Bila ada satu saja dari syarat tersebut diatas tidak dipenuhi maka sesuatu itu tidak dapat dikatakan sebagai besaran.

Besaran berdasarkan cara memperolehnya dapat dikelompokkan menjadi 2 macam yaitu :

1. Besaran Fisika yaitu besaran yang diperoleh dari pengukuran. Karena diperoleh dari pengukuran maka harus ada alat ukurnya. Sebagai contoh adalah massa. Massa merupakan besaran fisika karena massa dapat diukur dengan menggunakan neraca.

2. Besaran non Fisika yaitu besaran yang diperoleh dari penghitungan. Dalam hal ini tidak diperlukan alat ukur tetapi alat hitung sebagai misal kalkulator. Contoh besaran non fisika adalah Jumlah.

Besaran Fisika sendiri dibagi menjadi 2

1. Besaran Pokok adalah besaran yang ditentukan lebih dulu berdasarkan kesepatan para ahli fisika. Besaran pokok yang paling umum ada 7 macam yaitu Panjang (m), Massa (kg), Waktu (s), Suhu (K), Kuat Arus Listrik (A), Intensitas Cahaya (cd), dan Jumlah

Page 23: Besaran Fisika Dan Pengukuran

Zat (mol). Besaran pokok mempunyai ciri khusus antara lain diperoleh dari pengukuran langsung, mempunyai satu satuan (tidak satuan ganda), dan ditetapkan terlebih dahulu.

2. Besaran Turunan adalah besaran yang diturunkan dari besaran pokok. Besaran ini ada banyak macamnya sebagai contoh gaya (N) diturunkan dari besaran pokok massa, panjang dan waktu. Volume (meter kubik) diturunkan dari besaran pokok panjang, dan lain-lain. Besaran turunan mempunyai ciri khusus antara lain : diperoleh dari pengukuran langsung dan tidak langsung, mempunyai satuan lebih dari satu dan diturunkan dari besaran pokok.

Saat membahas bab Besaran dan Satuan maka kita tidak akan lepas dari satu kegiatan yaitu pengukuran. Pengukuran merupakan kegiatan membandingkan suatu besaran dengan besaran sejenis yang ditetapkan sebagai satuan.

Pengertian Satuan

Satuan didefinisikan sebagai pembanding dalam suatu pengukuran besaran. Setiap besaran mempunyai satuan masing-masing, tidak mungkin dalam 2 besaran yang berbeda mempunyai satuan yang sama. Apa bila ada dua besaran berbeda kemudian mempunyai satuan sama maka besaran itu pada hakekatnya adalah sama. Sebagai contoh Gaya (F) mempunyai satuan Newton dan Berat (w) mempunyai satuan Newton. Besaran ini kelihatannya berbeda tetapi sesungguhnya besaran ini sama yaitu besaran turunan gaya. Untuk melihat berbagai rumus dalam bab besaran dan satuan silakan klik http://alljabbar.files.wordpress.com/2008/03/01-besaran-dan-satuan.pdf

Besaran berdasarkan arah dapat dibedakan menjadi 2 macam

1. Besaran vektor adalah besaran yang mempunyai nilai dan arah sebagai contoh besaran kecepatan, percepatan dan lain-lain.

2. Besaran sekalar adalah besaranyang mempunyai nilai saja sebagai contoh kelajuan, perlajuan dan lain-lain.

Menggambar Penjumlahan atau selisih dua buah vektor dengan metode segitiga

Misalkan dua orang anak mendorong sebuah benda dengan vektor gaya masing-masing sebesar F1 dan F2, seperti ditunjukkan diagram di bawah. Ke arah mana benda itu akan pindah ? tentu saja benda tersebut tidak berpindah searah F1 atau F2. dalam kasus seperti itu, maka benda tersebut berpindah searah dengan F1 + F2. Operasi ini disebut jumlah vektor.

Cara menggambar jumlah dua buah vektor adalah dengan metode segitiga. Pertama, gambar vektor F1 berupa tanda panah. kedua, gambar vektor kedua, F2, dengan pangkalnya berhimpitan dengan ujung vektor pertama, F1. ketiga, jumlahkan kedua vektor, dengan menggambar vektor resultan (F1 + F2), dari pangkal vektor F1 menuju ujung vektor F2. selesai. Proses ini ditunjukkan pada gambar di bawah ini.

Page 24: Besaran Fisika Dan Pengukuran

Cara menggambar selisih vektor pada dasarnya sama dengan menggambar penjumlahan dua vektor. Sebagai contoh, sebuah vektor F1 dan vektor F2 nilainya seperti tampak pada diagram di bawah. Berapa selisih kedua vektor tersebut ? misalnya F3 adalah selisih vektor F1 dan F2, maka dapat kita tulis F3 = F1 – F2 atau F3 = F1 + (-F2). Hal ini menunjukkan bahwa selisih antara vektor F1 dan F2 sama saja dengan penjumlahan vektor F1 dan vektor -F2. tanda minus hanya menunjukkan bahwa arah -F2 berlawanan dengan F2. Bingung ? silahkan baca terus biar paham.

Bagaimana menggambar selisih vektor F1 dan F2 ?

Pertama, gambar terlebih dahulu tanda panah yang melambangkan vektor F1. kedua, gambar vektor -F2. vektor -F2 besarnya sama dengan F2, hanya arahnya berlawanan. (Lihat dan bandingkan gambar di bawah dan di atas). Ketiga, gambar tanda panah vektor resultan F3, di mana pangkal vektor F3 berimpit dengan pangkal vektor F1 dan ujung vektor F3 berimpit dengan ujung vektor -F2. Berimpit itu artinya menempel, atau apalah terserah kamu. Selesai….

Gampang to ? masih ga mudeng ? ulangi dari awal, bacanya pelan2 biar ngerti. Kalau sudah paham, lanjut, next mission…..

Menggambar Penjumlahan lebih dari 2 Vektor dengan metode Poligon

Poligon itu artinya segi banyak/banyak segi. Gimana, dah siap belum ? sekarang tarik napas panjang….

Sebelumnya, kita belajar menggambar 2 vektor dengan cara segitiga. Bagaimana jika kamu disuruh menggambar resultan atau jumlah vektor yang lebih dari 3 ?

Misalnya kamu berpindah sejauh 4 meter, vektor A (lihat gambar di bawah), lalu kamu berpindah lagi sejauh 3 meter, vektor B. Karena hobimu jalan-jalan, maka kamu pindah lagi sejauh 2 meter, vektor C. karena suka jalan-jalan maka kamu dihukum pacarmu (aneh ya…) untuk menggambar vektor perpindahanmu tadi. Loncat ke bawah….

Page 25: Besaran Fisika Dan Pengukuran

untuk menggambar vektor resultan/hasil penjumlahan lebih dari 2 vektor, maka kamu tidak bisa menggunakan metode/cara segitiga. Kenapa? Cari tahu sendiri ya, kan dah besar. Kamu harus menggunakan metode poligon/segi banyak. Caranya, pertama, gambar vektor A. kedua, gambar vektor B, di mana pangkal vektor B berimpit/nempel dengan ujung vektor A (lihat gambar di bawah). Ketiga, gambar vektor C di ujung vektor B. caranya seperti menggambar vektor B. terakhir, gambar vektor D sebagai vektor resultan/hasil, dimana pangkal vektor D nempel dengan pangkal vektor A dan ujung vektor B nempel dengan ujung vektor C. selesai…

Kalo masih bingung, baca, sambil lihat gambar. Guampang to ? mission complete… lanjut.

Menggambar Penjumlahan 2 atau Lebih vektor dengan metode Jajaran Genjang.

Selain menggambar penjumlahan vektor dengan metode/cara segitiga dan poligon, kita juga bisa menggunakan metode jajaran genjong, eh genjang. Kalau metode segitiga khusus untuk dua vektor dan metode poligon khusus untuk lebih dari dua vektor, maka metode jajaran genjang untuk menggambar penjumlahan dua vektor atau lebih. Bagaimana menggambar penjumlahan dua vektor atau lebih menggunakan cara jajaran genjang ?

Menggambar penjumlahan 2 vektor menggunakan metode jajaran genjong.

Misalkan dua orang anak mendorong sebuah benda dengan vektor Gaya masing-masing sebesar F1 dan F2, seperti ditunjukkan diagram di bawah. Ke arah mana benda itu akan pindah ?

untuk menggambar penjumlahan dua vektor, lakukan sesuai langkah2 di bawah ini. Pertama, gambar vektor F1 menggunakan tandah panah (lihat gambar di bawah). Kedua, gambar vektor F2, di mana pangkal/buntut berimpit/nempel dengan pangkal/buntut vektor F1. ketiga, gambar vektor resultan, F3 (F1 + F2), di mana pangkal vektor F3 nempel dengan pangkal vektor F1 dan F2, sedangkan ujung vektor F3 nempel dengan titik temu garis putus-putus dari kedua ujung vektor F1 dan vektor F2 (sambil lihat gambar, biar tidak bingung).

Page 26: Besaran Fisika Dan Pengukuran

Menggambar penjumlahan lebih dari 2 vektor menggunakan metode jajaran genjong.

Misalnya kamu berpindah sejauh 4 meter seperti vektor A (lihat gambar di bawah), lalu kamu berpindah lagi sejauh 3 meter seperti vektor B. Karena hobimu jalan-jalan, maka kamu pindah lagi sejauh 2 meter seperti vektor C. karena suka jalan-jalan maka kamu dihukum pacarmu (aneh ya…) untuk menggambar vektor perpindahanmu, tapi kali ini dengan metode jajaran genjong. Bagaimanakah ?

Untuk menggambar penjumlahan lebih dari 2 vektor, lihat petunjuk berikut ini. Pertama, gambar vektor A menggunakan tandah panah (lihat gambar di bawah). Kedua, gambar vektor B, di mana pangkalnya berimpit/nempel dengan pangkal/buntut vektor A. ketiga, gambar vektor C, di mana pangkalnya berhimpit dengan pangkal vektor A dan B. keempat, buat garis putus-putus tegak lurus dari ujung vektor A dan B sampai kedua garis putus-putus tersebut bertemu, Vektor D (buat garis satu2, kalo kamu kidal+, pake aja dua tanganmu sekalian, hehe…). Kelima, tarik garis dari pangkal vektor A,B dan C menuju titik temu garis putus-putus yang sudah kamu buat tadi (jangan lupa lihat gambar ya). Keenam, buat lagi garis putus2 tegak lurus dari titik temu vektor A dan B dan dari ujung vektor C sampai kedua garis putus2 tersebut bertemu. Nah, sekarang tarik garis lurus dari pangkal vektor A, B dan C menuju titik temu garis putus2 yang baru saja kamu buat, Vektor Resultan (R). Garis terakhir tersebut adalah vektor resultannya….

Tadi kita belajar menggambar resultan penjumlahan vektor, sekarang kita belajar menentukan besar dan arah vektor resultan.